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Elastic Energy Loss in an Expanding QGP
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The discovery of the jet quenching in central Au + Au collisions at the Relativistic Heavy-ion Collider (RHIC)
has provided clear evidence for the formation of strongly interacting dense matter. It has been predicted to occur
due to the energy loss of high energy partons that propagate through the quark gluon plasma. Since the medium
is not static and it cools while expands, the strong coupling is not fixed, running with the evolution of the
system. In this work, we present an investigation of the dependence on the value of the strong coupling in
the parton energy loss due to elastic scatterings in a parton plasma. We analyze different prescriptions for the
QCD coupling and calculate the energy and length dependence of the fractional energy loss. Moreover, the
quenching factor for light and heavy quarks is estimated. We found that the predicted enhancement of heavy to
light hadrons (D/π) ratio is strongly dependent on the running of the QCD coupling constant.
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In the last years, the understanding of the partonic energy
loss has been extensively developed. It was provocated by
the expectation of the Quark Gluon Plasma (QGP) forma-
tion in the early stages of the collision. The discovery of jet
quenching in central Au+Au collisions at RHIC has provided
evidences for the formation of this strongly interacting dense
matter. Basically, high parton density produced in heavy ion
collisions could induce a large amount of energy loss for hard
partons produced in the initial stage of the collision during its
propagation through the fireball, due to their interactions with
the medium.

The total energy loss of a particle in a medium can be
decomposed into an elastic and a radiative contribution. At
large energies one expects that radiative energy loss becomes
much larger than the collisional one, as in the electromagnetic
case. However, since at lower energies the elastic and radia-
tive processes can contribute equally, for small values of the
parton energy the collisional one can dominate. So, an open
question is to quantify the contribution of each process in the
RHIC kinematical region. Recent studies of elastic mecha-
nism contributions to energy loss [1–4] have indicate that, for
RHIC regimes, it is far from clear that radiative energy loss
dominates over elastic one.

Besides, we have to consider that the medium properties
and interactions change with time (For a discussion of the

medium evolution see, e.g. Refs. [5, 6]), since in nucleus-
nucleus collisions, at collider energies, the produced hard par-
tons propagate through a rapidly expanding medium. The sce-
nario assumed here consider that the interactions in the plasma
of quarks and gluons get stronger with the time because the
average parton energies drop due to the expansion of the sys-
tem [7, 8]. The basic idea comes from the feature that the QGP
is not a static medium, but it is cooling while partons propa-
gate through. We assume that the temperature is the domi-
nant scale and consequently will control the running of the
QCD coupling. As the temperature drops over the lifetime of
the QGP, αs should also vary during the equilibration and the
evolution of the plasma. Furthermore, two prescriptions for
the temperature dependence of the running coupling constant
was considered. We denote them as thermal [α(th)

s ] , which
has been used in, e.g., Refs. [9, 10] and as from lattice α(lat)

s ,
obtained from recent results in the lattice [11].

As the temporal development of the coupling constant di-
rectly influences the various particle signatures [7, 8, 12–14],
we can expect a similar effect in the estimates of the energy
loss of a parton propagating in a QGP. So we estimate [3] the
influence of the running coupling constant in the elastic en-
ergy loss, presenting a reanalyzes of the studies from Refs.
[1, 2, 15, 16], and an estimate of the quenching factor Q(p⊥)
of light and heavy quarks.
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Since the parton interacts with the medium during its prop-
agation through it, after escaping the collision the parton will
have lost an energy fraction ∆E. Consequently, the inclu-
sive transverse momentum spectra of the particles produced in
nucleus - nucleus collisions will be modified with respect to
hadron - hadron collisions. In general the hadron formation is
described in terms of parton recombination and/or by the frag-
mentation of the energetic partons. In particular, it is expected
that for p⊥ > 5 GeV the hadrons are dominantly produced by
fragmentation. So, we will assume that fragmentation is the
dominant process of hadron formation and that it occurs after
the parton has left the comoving medium. It allows to analyze
the energy loss effects directly in the p⊥ spectrum of the scat-
tered partons. We can express these effects in the computation
of the quenching factor, following the assumption [17]

Q(p⊥) =
dNmed

d2 p⊥
/

dNvac

d2 p⊥
(1)

where

dNmed

d2 p⊥
=

1
2π2R2

∫ 2π

0
dφ

∫ R

0
d2r

dNvac(p⊥+∆E)
d2 p⊥

, (2)

and ∆E is the total energy loss by partons in the medium.
Moreover, Q(p⊥) is the medium dependent quenching factor.
For a realistic calculation of the quenching, the knowledge of
the full probability distribution is actually required [18].

In order to calculate ∆E we will use the approach proposed
by Svetitsky in Ref. [15], which considers the Brownian mo-
tion of a parton in a thermal bath, governed by the Fokker-
Planck equation. In this approach one starts from the Boltz-
mann equation for the distribution function f (x, p), which in
the relativistically covariant form can be written as

pµ∂µ f (x, p) = C{ f} , (3)

where pµ = (E~p,~p) is the four-momentum of the test quark
and f is its phase-space density and C{ f} is the collision term.
Following Refs. [1, 2, 15, 16] we assume that: (a) the hydro-
dynamical evolution can be described by the Bjorken scenario,
which implies that it is valid to assume that the plasma is uni-
form and consequently the phase space density of the quark is
independent of~x and (b) the collision term is given by the elas-
tic collisions of the test quark with other quarks, antiquarks
and gluons in the system. Using the Landau approximation
and restringing the analyzes to the one-dimensional problem
one obtain [1, 2, 15, 16] the Landau kinetic equation.

If we consider that the background heat bath is constituted
of a large amount of weakly coupled particles in thermal equi-
librium at a temperature T, with some non-thermal but ho-
mogeneously distributed particles due to the fluctuations, the
problem can be simplified assuming that the equilibrium of the

bath will not be disturbed by the presence of these few non-
thermal particles. Due to their small number, one can also as-
sume that they will not interact among themselves, only with
particles of the thermal bath. So, one can replace the distrib-
ution functions of the collision partners of the test particle by
their Fermi-Dirac or Bose-Einstein distributions and the Lan-
dau kinetic equation reduces to the Fokker-Planck equation,
which is expressed as follows [1, 2, 15, 16]

∂ f
∂t

= A
∂

∂p
(p f )+DF

∂2 f
∂p2 , (4)

where A is the drag coefficient and DF is the diffusion coeffi-
cient, which is given by DF = AT 2 if we assume that the mo-
mentum p can be approximated by the temperature T of the
system and the coupling between the Brownian particle and
the bath is weak. The Eq. (4) describes the evolution of the
momentum distribution of a test particle undergoing Brownian
motion. The Gaussian shaped solution from Eq. (4) has been
obtained in Refs. [1, 2], assuming as the boundary condition
f (p, t)

t→t0−→ δ(p− p0) and using the method of characteristics
[1, 2]

Then, we can estimate the mean energy of the parton due to
elastic collisions, after traversing a distance L as

〈E 〉 =
∫ ∞

0
E f (p,L)d p , (5)

where f (p,L) is the solution of Eq. (4) and the average energy
loss due to elastic collisions in the medium will be given by

∆E = E0 − 〈E 〉 , (6)

where E = m⊥ =
√

p2
⊥ +M2 at the central rapidity region,

y = 0. Consequently, in order to estimate the average energy
loss it is necessary to solve Eq. (4). The solution of Eq. (4)
is strongly dependent on the drag coefficient. Following Refs.
[15, 16], we approximate the drag coefficient by its average
value,

〈A(p, t)〉 = A(t) =
〈
− 1

p
dE
dL

〉
, (7)

which is directly dependent of the energy loss rate dE/dL.
The above approximation is reasonable up to moderate mo-
mentum values (p≤ 15 GeV) [2].

The energy loss rate in the QGP due to elastic collisions
with high-momentum transfer have been originally estimated
by Bjorken [20] and recalculated in Refs. [21–24] taking into
account the loss with low-momentum transfer dominated by
the interactions with plasma collective modes in the hard ther-
mal loop approximation [25]. In particular, in Ref. [23] the
authors have estimated the energy loss for heavy quarks and
in Ref. [22] for light partons. For heavy quarks, it reads

− dE
dL

=
8πα2

s T 2

3

(
1+

n f

6

)[
1
v
− 1− v2

2v2 ln
(

1+ v
1− v

)]
ln

[
2

n f
6+n f B(v)

ET
mgM

]
for E << M2/T (8)
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− dE
dL

=
8πα2

s T 2

3

(
1+

n f

6

)
ln

[
2

n f
2(6+n f ) 0.92

√
ET

mg

]
for E >> M2/T (9)

where n f is the number of quark flavors, αs is the strong cou-
pling constant, mg =

√
(1+n f /6)g2T 2/3 is the thermal gluon

mass, E is the energy and M is the mass of the quark. B(v) is a
smooth velocity function, which can be taken approximately
as 0.7 [23]. For light quarks we use the expression (9) and
set M = 0 in the calculations. At the energies (temperatures)
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FIG. 1: Heavy-to-light ratio of the fractional energy loss

which we are interested in this paper the drag coefficient A for
partons propagating in a plasma can be calculated using Eq.
(7) and the expressions for elastic energy loss given by Eqs.
(8) and (9). The average over the momentum is made using
the Boltzmann distribution. In order to simplify our consider-
ations we model the space-time evolution of the quark-gluon
plasma by the Bjorken scenario with boost invariant longitudi-
nal expansion and conserved entropy per rapidity unit [19] and
neglect the transverse expansion of the system. Assuming this
scenario, the time dependence of the temperature is given by
T (t) = t1/3

0 T0/t1/3, where t0 and T0 are, respectively, the initial
time and temperature at which the background of the partonic
system has attained local kinetic equilibrium. The time de-
pendence from the drag coefficient is directly associated with
this evolution for the temperature, which decreases with time
as the system expands. We assume as maximum time limit for
the evolution the length of the plasma L. These approxima-
tions has been considered in Refs. [1, 2] which we would like
compare our results. Moreover, we assume T0 = 375 MeV
and t0 = 0.33 fm for RHIC energies.

In Fig. 1 we present the ratio between the fractional energy
loss for heavy and light quarks. While for fixed αs the ratio is
almost constant in the range considered, for running αs with
the lattice prescription, the ratio is monotonously increasing,
and the value is greater than 0.5 in all the range considered;
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FIG. 2: Quenching factor for light quarks

on the other hand, with the thermal prescription, the ratio is
strongly suppressed when compared with the result for fixed
αS. This feature suggests that the heavy quarks lose less than
20% of the energy lost by light quarks in its path through the
fireball.

In order to compute the p⊥-spectra, we assume that the
geometry is described by a cylinder of radius R and the parton
moves in the transverse plane in the local rest frame. Further-
more, we will assume the following parameterization of the
p⊥ distribution

dNvac
L

d2 p⊥
= A

(
1

p0 + p⊥

)ν
, (10)

where ν = 8.0 and p0 = 1.75 GeV [17]. The results for the
quenching factor for light quarks are shown in the Fig. 2 for
both sets of parameters. For a comparison, we present a esti-
mative of the quenching due to the radiative energy loss, fol-
lowing the parameterization proposed in Ref. [17]. Due to
the smaller drag coefficient, the thermal QCD αS prescrip-
tion gives a high quenching factor, so the spectrum is less
modified by collisional energy loss than in the case of fixed
αS. At αS = 0.3 we have that in the high p⊥ region elastic
and radiative energy loss are of the same order of magnitude.
On the other hand, the lattice QCD αS prescription implies a
very large modification of the spectrum. Finally, if the sys-
tem presents a lower value of αS than considered in earlier
calculations, the gluon bremsstrahlung becomes the dominant
mechanism of energy loss again.

For heavy quarks, we use the p⊥ distribution of charmed
hadrons, D-mesons, produced in hadron collisions, experi-
mentally found [27] to be well described by the following
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FIG. 3: Quenching factor for charm quarks
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FIG. 4: Charm-to-light ratio of quenching factors

simple parameterization as

dNvac
H

d2 p⊥
= C

(
1

bM2
c + p2

⊥

)n/2

, (11)

where b = 1.4±0.3, n = 10.0±1.2 and Mc = 1.5 GeV. Eq. 11
was fitted from fixed target data and its validity at RHIC en-
ergies could be questionable. However, since our goal is the
study of quenching ratios and their behaviour with the changes
of the medium properties, we use Eq. 11 to simplify our cal-
culation. The quenching factor for heavy quarks is shown in
Fig. 3. The results are similar to the case of light quarks, pre-
sented in Fig. 2. The thermal QCD αS prescription gives the

higher quenching factor, and the lattice QCD one gives the
smaller factor, shown a strong suppression in the charm spec-
tra when this prescription is used. Again, smaller is the αS
value, higher the quenching factor due to elastic scattering in
the QGP.

Recently, the ratio between the spectra of hadrons with
heavy quarks and with light quarks has been proposed as a tool
to investigate the medium formed in heavy ion collisions [26].
Because of their large mass, radiative energy loss for heavy
quarks would be lower than for light quarks. The predicted
consequence of this distinct radiative energy losses is an en-
hancement of this ratio at moderately large transverse momen-
tum, relative to that observed in the absence of energy loss (A
recent analysis for LHC energies is given in Ref. [28]). As the
behavior of this ratio considering collisional energy loss is still
an open question, in Fig. 4 we present the ratio between heavy
and light quark quenching factors, which reflects the heavy to
light hadrons (D/π) ratio, considering only collisional energy
loss. While for fixed αS, the results show an enhancement fac-
tor close to 1.4, this enhancement is suppressed when running
coupling prescriptions are considered. This feature could sug-
gest that with an expanding cooling medium, the collisional
energy loss for heavy and light quarks would be of similar
magnitude.

As a summary, we have investigated the dependence of the
parton collisional energy loss in a QGP on the value of the
strong coupling. Since the plasma is not a static medium,
a fixed value for αs had to be treated as an approximation,
and more realistic estimatives should consider the evolution
of the fireball. We have considered running coupling in the
calculation, evolving it with the cooling of the QGP. From
the Fokker-Planck equation, we derived the transport coeffi-
cients and related them with parton mean energy loss. For
light quarks, we found that the radiative and collisional en-
ergy loss are of the same order of magnitude, in the high p⊥
region, if the αS value is compared or greater than 0.3. For
smaller values of coupling, the gluon bremsstrahlung becomes
the dominant process for energy loss, again. We also pre-
sented the ratio between heavy and light quenching factors,
and found an absence of enhancement of the heavy to light
hadrons ratio if running coupling is used. It was a striking
result, since it seems to suggest that heavy and light quarks
have the same order of magnitude of collisional energy loss.
Our results motivate a similar study in radiative parton energy
loss.
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