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Abstract

We reformulate the analysis of nuclear parity violation (PV) within the framework of effe
field theory (EFT). ToO(Q), the PV nucleon–nucleon (NN) interaction depends on five a prio
unknown constants that parameterize the leading-order, short-range four-nucleon operator
pions are included as explicit degrees of freedom, the potential contains additional mediu
long-range components parameterized by PVπNN coupling. We derive the form of the correspon
ing one- and two-pion-exchange potentials. We apply these considerations to a set of exist
prospective PV few-body measurements that may be used to determine the five independe
energy constants relevant to the pionless EFT and the additional constants associated with dy
pions. We also discuss the relationship between the conventional meson-exchange framework
EFT formulation, and argue that the latter provides a more general and systematic basis for an
nuclear PV.
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1. Introduction

The cornerstone of traditional nuclear physics is the study of nuclear forces and, o
years, phenomenological forms of the nuclear potential have become increasingly s
ticated. In the nucleon–nucleon (NN ) system, where data abound, the present state o
art is indicated, for example, by phenomenological potentials such as AV18 that are
fit phase shifts in the energy region from threshold to 350 MeV in terms of∼ 40 parame-
ters [72]. Progress has been made in the description of few-nucleon systems [1], but
purely phenomenological approach is less efficient in dealing with the components
nuclear interaction that are not constrained byNN data. At the same time, in recent year
new technique—effective field theory (EFT)—has been used in order to attack this pr
by exploiting the symmetries of QCD [2]. In this approach the nuclear interaction is
rated into long- and short-distance components. In its original formulation [3], design
processes with typical momenta comparable to the pion mass,Q ∼ mπ , the long-distance
component is described fully quantum mechanically in terms of pion exchange, while th
short-distance piece is described in terms of a number of phenomenologically dete
contact couplings. The resulting potential [4,5] is approaching [6,7] the degree of acc
of purely phenomenological potentials. Even higher precision can be achieved at
momenta, where all interactions can be taken as short ranged, as has been demo
not only in theNN system [8,9], but also in the three-nucleon system [10,11]. Pre
(∼ 1%) values have been generated also for low-energy, astrophysically importan
sections of reactions such asn + p → d + γ [12]. Besides providing reliable values f
such quantities, the use of EFT techniques allows for a realistic estimation of the s
possible corrections.

Over the past nearly half century there hasalso developed a series of measureme
attempting to illuminate the parity-violating (PV) nuclear interaction. Indeed, the fir
experimental paper was that of Tanner in 1957[13], shortly after the experimental co
firmation of parity violation in nuclear betadecay by Wu et al. [14]. Following the semin
theoretical work by Michel in 1964 [15] and that of other authors in the late 1960s [16
the results of such experiments have generally been analyzed in terms of a meson-excha
picture, and in 1980 the work of Desplanques, Donoghue, and Holstein (DDH) developed
a comprehensive and general meson-exchange framework for the analysis of such inte
actions in terms of seven parameters representing weak parity-violating meson–n
couplings [19]. The DDH interaction has become the standard setting by which ha
and nuclear PV processes are now analyzed theoretically.

It is important to observe, however, that the DDH framework is, at heart, amodelbased
on a meson-exchange picture. Provided one is interested primarily in near-thresho
nomena, use of a model is unnecessary, and one can instead represent the PV
interaction in a model-independent effective-field-theoretic fashion. The purpose

present work is to formulate such a systematic, model-independent treatment of PVNN

interactions. We feel that this is a timely goal, since such PV interactions are interesting not
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only in their own right but also as effects entering atomic PV measurements [21] a
as experiments that use parity violation in electromagnetic interactions to probe nucle
structure [23].

In our reformulation of nuclear PV, we consider two versions of EFT, one in which
pions have been “integrated out” and the other including the pion as an explicit d
of freedom. In the pionless theory, the PV nuclear interaction is entirely short-ra
and the most general potential depends atleading order on five independent operat
parameterized by a set of five a priori unknown low-energy constants (LECs). Whe
plied to low-energy (Ecm � 50 MeV) two-nucleon PV observables—such as the neu
spin asymmetry in the capture reaction�n + p → d + γ —it implies that there are five
independent PV amplitudes, which may be determined by an appropriate set of me
ments. We therefore recover previous results obtained without effective field theo
Danilov [24] and Desplanques and Missimer [25]. Making contact with these know
sults is an important motivation for us to consider this pionless EFT. Going beyond th
next (non-vanishing) order in the EFT, there are several additional independent operato
By contrast, the DDH meson-exchange framework amounts to a model in which the
range physics is codified into six independentoperators. On one hand, the heavy-me
component of the DDH potential is a redundant representation of the leading-orde
On the other, it does not provide the most complete parameterization of the short-
PV NN force to subleading order, because it is based on a truncation of the QCD spectru
after inclusion of the lowest-lying octet of vector mesons. It may, therefore, not be en
physically realistic, and we feel that a more general treatment using EFT is warrante

When we are interested in observables at higher energies, we need to account f
propagation explicitly, simultaneously removing its effects from the contact interac
Inclusion of explicit pions introduces a long-range component into the PVNN interaction,
whose strength is set at the lowest order by the PVπNN Yukawa coupling,h1

πNN . This
long-range component, which is formally of lower-order than shorter-range interaction
is identical to the long-range, one-pion-exchange (OPE) component of the DDH p
tial. However, in addition, inclusion of pions leads to several new effects that do not
explicitly in the DDH picture:

• A medium-range, two-pion-exchange (TPE) component in the potential that ari
the same order as the leading short-range potential and that is also proportio
h1

πNN . This medium-range component was considered some time ago in Ref. [1
could not be systematically incorporated into the treatment of nuclear PV unt
advent of EFT. As a result, such piece has not been previously included in the an
of PV observables. We find that the two-pion terms introduce a qualitatively new a
into the problem and speculate that their inclusion may modify theh1

πNN sensitivity
of various PV observables.

• Next-to-next-to-leading-order (NNLO) PVπNN operators. In principle, there exi
several such operators that contribute to the PVNN interaction at the same order
the leading short-range potential. In practice, however, effects of all but one o
independent NNLO PVπNN operators can be absorbed via a suitable redefin

1
of the short-range operator coefficients andhπNN . The coefficient of the remaining,
independent NNLO operator—k1a

πNN—must be determined from experiment. Addi-
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tional terms are generated in the potential atO(Q) by higher-order corrections to th
strongπNN coupling (here,Q denotes a small momentum or pion mass). These te
have also not been included in previous treatments of the PVNN interaction. Their
coefficients are fixed by either reparameterization invariance or measurements of ot
parity-conserving pion–nucleon observables.

• A new electromagnetic operator. For PV observables involving photons, the ex
incorporation of pions requires inclusion of a PVNNπγ operator that is entirely ab
sent from the DDH framework and whose strength is characterized by a constanC̄π .

In short, for the low-energy processes of interest here, the most general EFT treatm
of PV observables depends in practice on eight a priori unknown constants when th
is included as an explicit degree of freedom: five independent combinations ofO(Q) short-
range constants and those associated with the effects of the pion:h1

πNN , C̄π , and the NNLO
PV πNN couplingk1a

πNN . In order to determine these PV low-energy constants (LE
one therefore requires a minimum of five independent, low-energy observables for the
onless EFT and eight for the EFT with dynamicalpions. Given the theoretical ambiguiti
associated with interpreting many-body nuclear observables (see below), one would
attempt to determine the PV LECs from measurements in few-body systems. Inde
state of the art in few-body physics allows one perform ab initio computations of few-
observables [1], thereby making the few-body system a theoretically clean environm
which to study the effects of hadronic PV. At present, however, there exist only two
surements of few-body PV observables:A

pp
L , the longitudinal analyzing power in polarize

proton–proton scattering, andApα
L , the longitudinal analyzing power for�pα scattering. In

what follows, we outline a prospective program of additional measurements that
afford a complete determination of the PV LECs throughO(Q).

Completion of this low-energy program would serve two additional purposes.
it would provide hadron structure theorists with a set of benchmark numbers that
principle calculable from first principles. This situation would be analogous to wha
encounters in chiral perturbation theory forpseudoscalar mesons, where the experime
determination of the ten LECs appearing in theO(Q4) Lagrangian presents a challen
to hadron-structure theory. While many of theO(Q4) LECs are saturated byt-channel
exchange of vector mesons, it is not clear a priori that the analogous PVNN constants are
similarly saturated (as is assumed implicitly in the DDH model). Moreover, analysis o
PV NN LECs involves the interplay of weak and strong interactions in the strange
conserving sector. A similar situation occurs in�S = 1 hadronic weak interactions, an
the interplay of strong and weak interactions in this case is both subtle and only pa
understood, as evidenced, e.g., by the well-known�I = 1/2 rule enigma. The additiona
information in the�S = 0 sector provided by a well-defined set of experimental num
would undoubtedly shed light on this fundamental problem.

The information derived from the low-energy few-nucleon PV program could also
vide a starting point for a reanalysis of PV effects in many-body systems. Until now
has attempted to use PV observables obtained from both few- and many-body sys
order to determine the seven PV meson–nucleon couplings entering the DDH po

and several inconsistencies have emerged. Themost blatant is the vastly different value for
h1

πNN obtained from the PVγ -decays of18F and from the combination of the�pp asym-
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metry and the Cesium anapole moment. Although combinations of coupling constan
be found that fit partial sets of experiments (see, e.g., Ref. [20]), it seems difficult
scribe all experiments consistently with theory(see, e.g., Ref. [21] and references there
The origin of this clash could be due to any one of a number of factors. Using the op
constraints derived from the few-body program as input into the nuclear analysis
help clarify the situation. It may be, for example, that the medium-range TPE poten
higher-order operators relevant only to nuclear PV processes play a more significant
nuclei than implicitly assumed by the DDH framework. Alternatively, the treatment o
many-body system—such as the truncation of the model space in shell-model appr
to the Cesium anapole moment—may be the culprit. (For an example of the releva
nucleon–nucleon correlations to parity violation in nuclei, see Ref. [22].) In any cas
proaching the nuclear problem from a more systematic perspective and drawing up
results of few-body studies would undoubtedly represent an advance for the field.

In the remainder of the paper, then, we describe in detail the EFT reformulation o
nuclear PV and the corresponding program of study. In Section 2, we briefly revie
conventional, DDH analysis and summarize the key differences with the EFT approach.
particular, we write down the various components of the PV EFT potential here, re
ing its derivation to subsequent sections. In Section 3, we outline the phenomenol
the low-energy few-body PV program, providing illustrative relationships between vario
observables and the five relevant, independent combinations of short-range LECs. W
phasize that the analysis presented in Section 3 is intended to demonstratehowone would
go about carrying out the few-body program rather than to give precise numerical form
Obtaining the latter will require more sophisticated few-body calculations than we ar
to undertake here. Section 4 contains the derivation of the PV potential in the EFT w
explicit pions. We then extend the framework to include pions explicitly in Section
Section 6 we discuss the relationship between the PV LECs and the PV meson–n
couplings entering the DDH framework, and illustrate how this relationship depen
one’s truncation of the QCD spectrum. Section 7 contains some final observations. V
details pertaining to the calculations contained in the text appear in the appendices.

2. Nuclear PV: old and new

The essential idea behind the conventional DDH framework relies on the fairly
cessful representation of the parity-conservingNN interaction in terms of a single meso
exchange approach. Of course, this requires the use of strong-interaction coupling
lightest vector (ρ, ω) and pseudoscalar (π ) mesons (M),

Hst = −igπNN N̄γ5τ · πN − gρN̄

(
γµ + i

χρ

2mN

σµνk
ν

)
τ · ρµN

− gωN̄

(
γµ + i

χω

2mN
σµνk

ν

)
ωµN, (1)

whose values are reasonably well determined. The DDH approach to the parity-vio

weak interaction utilizes a similar meson-exchange picture, but now with one strong and
one weak vertex—cf. Fig. 1.
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Fig. 1. Parity-violatingNN potential generated by meson exchange.

Table 1
WeakNNM couplings as calculated in Refs. [19,28,29]. All numbers are quoted in units of the “sum rule” val
gπ = 3.8× 10−8

DDH [19] DDH [19] DZ [28] FCDH [29]
Coupling Reasonable range “Best” value

h1
πNN

0→30 +12 +3 +7

h0
ρ 30→ −81 −30 −22 −10

h1
ρ −1→0 −0.5 +1 −1

h2
ρ −20→ −29 −25 −18 −18

h0
ω 15→ −27 −5 −10 −13

h1
ω −5→ −2 −3 −6 −6

We require then a parity-violatingNNM Hamiltonian in analogy to Eq. (1). The proce
is simplified somewhat by Barton’s theorem, which requires that in the CP-conse
limit, which we employ, exchange of neutral pseudoscalars is forbidden [26]. From ge
arguments, the effective Hamiltonian with fewest derivatives must take the form

Hwk = h1
πNN√

2
N̄(τ × π)3N

− N̄

(
h0

ρτ · ρµ + h1
ρρ

µ
3 + h2

ρ

2
√

6

(
3τ3ρ

µ
3 − τ · ρµ

))
γµγ5N

− N̄
(
h0

ωωµ + h1
ωτ3ω

µ
)
γµγ5N + h′1

ρ N̄
(
τ × ρµ

)
3

σµνk
ν

2mN

γ5N. (2)

We see that there exist, in this model, seven unknown weak couplingsh1
πNN ,h0

ρ, . . . .

However, quark model calculations suggest thath′1
ρ is quite small [27], so this term is usu

ally omitted, leaving parity-violating observables described in terms of just six cons
DDH attempted to evaluate such PV couplings using basic quark-model and sym
techniques, but they encountered significant theoretical uncertainties. For this reaso
results were presented in terms of an allowable range for each, accompanied by a “b
value” representing their best guess for eachcoupling. These ranges and best values
listed in Table 1, together with predictions generated by subsequent groups [28,29].
Before making contact with experimental results, however, it is necessary to convert
theNNM couplings generated above into a parity-violatingNN potential. Inserting the
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strong and weak couplings, defined above, into the meson-exchange diagrams sh
Fig. 1 and taking the Fourier transform, one finds the DDH parity-violatingNN potential

V PV
DDH(�r) = i

h1
πNNgAmN√

2Fπ

(
τ1 × τ2

2

)
3
(�σ1 + �σ2) ·

[ �p1 − �p2

2mN

,wπ(r)

]

− gρ

(
h0

ρτ1 · τ2 + h1
ρ

(
τ1 + τ2

2

)
3
+ h2

ρ

(3τ3
1 τ3

2 − τ1 · τ2)

2
√

6

)

×
(

(�σ1 − �σ2) ·
{ �p1 − �p2

2mN

,wρ(r)

}

+ i(1+ χρ)�σ1 × �σ2 ·
[ �p1 − �p2

2mN

,wρ(r)

])
− gω

(
h0

ω + h1
ω

(
τ1 + τ2

2

)
3

)

×
(

(�σ1 − �σ2) ·
{ �p1 − �p2

2mN

,wω(r)

}

+ i(1+ χω)�σ1 × �σ2 ·
[ �p1 − �p2

2mN

,wω(r)

])

− (gωh1
ω − gρh1

ρ

)(τ1 − τ2

2

)
3
(�σ1 + �σ2) ·

{ �p1 − �p2

2mN

,wρ(r)

}

− gρh′1
ρ i

(
τ1 × τ2

2

)
3
(�σ1 + �σ2) ·

[ �p1 − �p2

2mN

,wρ(r)

]
, (3)

where �pi = −i �∇i , �∇i denoting the gradient with respect to the coordinate�xi of the ith
nucleon,r = |�x1 − �x2| is the separation between the two nucleons,

wi(r) = exp(−mir)

4πr
(4)

is the usual Yukawa form, and the strongπNN couplinggπNN has been expressed
terms of the axial-current couplinggA using the Goldberger–Treiman relation:gπNN =
gAmN/Fπ , with Fπ = 92.4 MeV being the pion decay constant.

Nearly all experimental results involvingnuclear parity violation have been analyz
usingV PV

DDH for the past twenty-some years. At present, however, there appear to exist d
crepancies between the values extracted for the various DDH couplings from exper
In particular, the values ofh1

πNN andh0
ρ extracted from�pp scattering and theγ decay of

18F do not appear to agree with the corresponding values implied by the anapole m
of 133Cs measured in atomic parity violation [30].

These inconsistencies suggest that the DDH framework may not, after all, adeq
characterize the PVNN interaction and provides motivation for our reformulation us
EFT. The idea of using EFT methods in order to study parity-violating hadronic�S = 0
interactions is not new [31,80]. Recently, a flurry of activity (see, for example, Refs.
38]) has centered on PV processes involving a single nucleon, such as
ep → e′p, γp → γp, γp → nπ+, etc.
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There has also been work on theNN system, with pion exchange treated pertur
tively [39,40] or non-perturbatively [41]. However, a comprehensive analysis has y
take place, and this omission is rectified in the study described below, wherein we ge
erate a systematic framework within which to address PVNN reactions. We utilize the
so-called Weinberg formulation [3], wherein the pion, when included explicitly, is tre
fully quantum mechanically while shorter-distance phenomena—as would be produ
the exchange of heavier mesons such asρ, ω, etc.—are represented in terms of sim
four-nucleon contact terms. The justification for the non-perturbative treatment of
of) pion exchange has been discussed in a recent paper [42].

Although a fully self-consistent procedure would involve use of EFT to compute
the PV operatorsandfew-body wavefunctions, equally accurate results can be obtaine
drawing upon state-of-the art wave functions obtained from a phenomenological, s
interactionNN potential, including PV effects perturbatively, and using EFT to system
atically organize the relevant PV operators. Such a “hybrid” approach has been fo
with some success in other contexts [2] and we adopt it here. In so doing, we tru
our analysis of the PV operators at orderQ/Λχ , whereQ is a small momentum cha
acteristic of the low-energy PV process andΛχ = 4πFπ ∼ 1 GeV is the scale of chira
symmetry breaking [86,88]. Since realistic wave functions obtained from a phenom
logical potential effectively include strong-interaction contributions to all orders inQ/Λχ ,
the hybrid approach introduces some inconsistency at higher orders inQ/Λχ . For the low-
energy processes of interest here (Ecm � 50 MeV), however, we do not expect the impa
of these higher-order problems to be significant. We would not, however, attempt to
our analysis to higher-energy processes (e.g., the TRIUMF 221 MeV�pp experiment [43])
where inclusion of higher-order PV operators would be necessary.

With these considerations in mind, it is useful to compareV PV
DDH with the leading-orde

PV NN EFT potential. In the pionless theory, this potential is entirely short ranged
and has coordinate space form

V PV
1,SR(�r) = 2

Λ3
χ

{[
C1 + (C2 + C4)

(
τ1 + τ2

2

)
3
+ C3τ1 · τ2 + IabC5τ

a
1 τb

2

]

× (�σ1 − �σ2) · {−i �∇, fm(r)
}

+
[
C̃1 + (C̃2 + C̃4)

(
τ1 + τ2

2

)
3
+ C̃3τ1 · τ2 + IabC̃5τ

a
1 τb

2

]

× i(�σ1 × �σ2) · [−i �∇, fm(r)
]

+ (C2 − C4)

(
τ1 − τ2

2

)
3
(�σ1 + �σ2) · {−i �∇, fm(r)

}
}

+ C6iε
ab3τa

1 τb
2 (�σ1 + �σ2) · [−i �∇, fm(r)

]
, (5)
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where the subscript “1” in the potential denotes the chiral index of the operators1

I =
(1 0 0

0 1 0
0 0 −2

)
, (6)

andfm(�r) is a function that

(i) is strongly peaked, with width∼ 1/m aboutr = 0, and
(ii) approachesδ(3)(�r) in the zero-width (m → ∞) limit.

A convenient form, for example, is the Yukawa-like function

fm(r) = m2

4πr
exp(−mr). (7)

Herem is a mass chosen to reproduce the appropriate short-range effects (m ∼ Λχ in the
pionful theory, butm ∼ mπ in the pionless theory). Note that, since the terms contai
C̃2 andC̃4 are identical,V PV

SR nominally contains ten independent operators. As we s
below, however, only five combinations of these operators are relevant at low-energ

For the purpose of carrying out actual calculations, one could just as easily u
momentum-space form ofV PV

1,SR, thereby avoiding the use offm(�r) altogether. Neverthe
less, the form of Eq. (5) is useful when comparing with the DDH potential. For exam
we observe that the same set of spin-spaceand isospin structures appear in bothV PV

1,SR and

the vector-meson exchange terms inV PV
DDH, though the relationship between the vario

coefficients inV PV
1,SR is more general. In particular, the DDH model is tantamount to ta

m ∼ mρ,mω and assuming

C̃1

C1
= C̃2

C2
= 1+ χω, (8)

C̃3

C3
= C̃4

C4
= C̃5

C5
= 1+ χρ, (9)

assumptions which may not be physically realistic. In Section 6, we give illustrative mech
anisms which may lead to a breakdown of these assumptions.

When pions are included explicitly, one obtains in addition the same long-range (L
component induced by OPE as inV PV

DDH,

V PV−1,LR(�r) = i
h1

πNNgAmN√
2Fπ

(
τ1 × τ2

2

)
3
(�σ1 + �σ2) ·

[ �p1 − �p2

2mN

,wπ(r)

]
, (10)

wherewπ(r) is given by Eq. (4). Note that, as we will explain in Section 5,V PV
−1,LR is

two orders lower thanV PV
1,SR—in contrast to the strong potential where the short- and lo

range components first arise formally at the same order. (Even though Eq. (10) h
1 Roughly speaking, the chiral index corresponds to the order of a given operator in theQ/Λχ expansion. A
precise definition is given in Section 5 below.
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same form as a term in Eq. (5), it has no suppression by powers ofΛχ or other heavy
scales. Therefore, it appears at lower order.)

Furthermore, two new types of contributions to the potential arise at the same or
Eq. (5): (a) a long-range component stemming from higher-orderπNN operators, and (b)
medium-range (MR), two-pion-exchange (TPE) contribution,V PV

1,MR. At O(Q), the TPE

potential is proportional toh1
πNN and involves two terms having the same spin–isos

structure as the terms inV PV
1,SR proportional toC̃2 andC6 but having a more complicate

spatial dependence. In momentum space

V PV
1,MR(�q)

= − 1

Λ3
χ

{
C̃2π

2 (q)
τ z

1 + τ z
2

2
i(�σ1 × �σ2) · �q + C2π

6 (q)iεab3τa
1 τb

2 (�σ1 + �σ2) · �q
}
, (11)

where the functions̃C2π
2 (q) andC2π

6 (q), defined below in Eq. (121), are determined by
leading-orderπNN couplings. Again, it is more convenient to compute matrix elem
of V PV

1,MR using the momentum-space form, and we defer a detailed discussion of the

until Section 5 below. We emphasize, however, the presence ofV PV
1,MR introduces a quali

tatively new element into the treatment of nuclear PV with pions not present in the
framework.

The NNLO long-range contribution to the potential generated by the new PVπNN

operator is

V PV
1,LR = −i

k1b
πNNgA

2ΛχF 2
π

(
τ1 × τ2

2

)
3

×
{
εabcσ

c
1σe

2

{∇a
1 ,
[∇b

r ∇e
r ,wπ (r)

]}+ (1↔ 2)
}

+ · · · , (12)

where∇r is the gradient with respect to the relative coordinate�x1 − �x2 and where the
· · · denote long-range, NNLO contributions proportional toh1

πNN that are generated b
NNLO effects at the strongπNN vertex (see Appendix B).

As we discuss in Section 3, a complete program of low-energy PV measurements
cludes photo-reactions. In the DDH framework, PV electromagnetic (EM) matrix elemen
receive two classes of contributions: (a) those involving the standard, parity-conservingE
operators in combination with parity-mixing in the nuclear states, and (b) PV two-bod
operators derived from the amplitudes of Fig.13. Explicit expressions for these operat
in the DDH framework can be found in Ref. [21]. In the case of EFT, the two-body
EM operators associated with heavy-meson exchange in DDH are replaced by operat
obtained by gauging the derivatives inV PV

1,SR as well as by explicit photon insertions on e

ternal legs. The two-body operators associated withV PV
−1,LR are identical to those appearin

in DDH, while the PV currents associated withV PV
1,MR andV PV

1,LR are obtained by gaugin
the derivatives appearing in the potential and by inserting the photon on all charged-p
lines in the corresponding Feynman diagrams.2 The foregoing two-body currents introdu
2 The derivation of the medium-range two-body operators involves an enormously detailed computation, which
we defer to a later publication.
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no new unknown constants beyond those already appearing in the potential. Howe
additional, independent pion-exchange two-body operator also appears at the same o
as the short-range PV two-body currents:

�J (�x1, �x2, �q) =
√

2gAC̄πm2
π

Λ2
χFπ

e−i �q·�x1τ+
1 τ−

2 �σ1 × �q �σ2 · r̂hπ (r) + (1 ↔ 2), (13)

where

hπ (r) = exp(−mπr)

mπr

(
1+ 1

mπr

)
, (14)

andC̄π is an additional LEC parameterizing the leading PVNNπγ interaction. Any pho-
toreaction sensitive to the short-range PV potential will also depend onC̄π when pions are
included explicitly.

ThroughO(Q), then the phenomenology of nuclear PV depends on five unknown co
stants in the pionless theory and eight when pions are included explicitly (h1

πNN , k1a
πNN ,

andC̄π in addition to the contact interactions). As we discuss below, an initial low-en
program will afford a determination of the five constants in the pionless theory. Addit
low-energy measurements in few-body systems would provide a test of the self-cons
of the EFT at this order. Any discrepancies could indicate the need to including pio
explicit degrees of freedom, thereby necessitating the completion of additional me
ments in order to determine the pion contributions toO(Q). As we discuss below, ther
exists a sufficient number of prospective measurements that could be used for this p
Given the challenging nature of the experiments, a sensible strategy would be to fi
for the self-consistency of the pionless EFT with a smaller set of measurements an
to complete the additional measurements needed for EFT with pions if necessary.

3. Parity violation in few-body systems

There exist numerous low-energy experiments that have attempted to explore ha
parity violation. Some, like the photon asymmetry in the decay of a polarized isome
state of180Hf,

Aγ = −(1.66± 0.18) × 10−2 [44], (15)

or the asymmetry in longitudinally-polarized neutron scattering on139La,

Az = (9.55± 0.35) × 10−2 [45], (16)

involve F–P shell nuclei wherein the effects of hadronic parity violation are large
clearly observed, but where the difficulty of performing a reliable wave function cal
tion precludes a definitive interpretation. For this reason, it is traditional to restrict
attention to S–D shell or lighter nuclei. Here too, there exist a number of experiments
as the asymmetry in the decay of the polarized first excited state of19F,

A
(1−

, 110 keV
)= −(8.5± 2.6) × 10−5 [46]
γ 2

= −(6.8± 1.8) × 10−5 [47], (17)
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wherein a clear parity-violating signal is observed, or those such as the circular polar
in the decay of excited levels of21Ne,

Pγ

( 1
2
−
, 2.789 MeV

)= (24± 24) × 10−4 [48]

= (3± 16) × 10−4 [49], (18)

or of 18F,

Pγ (0−, 1.081 MeV) = (−7± 20) × 10−4 [50]

= (3± 6) × 10−4 [51]

= (−10± 18) × 10−4 [52]

= (2± 6) × 10−4 [53], (19)

wherein a nonzero signal has not been seen, but where the precision of the exp
is high enough that a significant limit can beplaced on the underlying parity-violatin
mechanism.

The reason that a 10−4 experiment can reveal information about an effect which is
the surface at the level

GF m2
N(pF /mN) ∼ 10−6,

wherepF ∼ 270 MeV is the Fermi momentum, is that the nucleus can act as an
amplifier. This occurs when there exist a pair of close-by levels having the same spin b
opposite parity,|J±〉. In this case the parity mixing expected from lowest-order pertu
tion theory,|ψ±〉 � |J±〉 ± ε|J∓〉, can become anomalously large due to the smallne
the energy differenceEJ+ − EJ− in the mixing parameter

ε � 〈J−|Hweak|J+〉
EJ+ − EJ−

. (20)

Indeed, when compared with a typical level splitting of∼ 1 MeV, the energy difference
exploited in19F (�E = 110 keV),21Ne (�E = 5.7 keV), and18F (�E = 39 keV) lead
to expected enhancements at the level of 10, 100, and 25, respectively. However
interpreted in terms of the best existing nuclear shell-model wave functions, there e
serious discrepancy between the values of the�I = 1 pion coupling required in order t
understand the19F or 21Ne experiments and the upper limit allowed by the18F result.

Such matters have been extensively reviewed by previous authors [54–56], and
not intend to revisit these issues here. Instead we suggest thatat the present timeany de-
tailed attempt to understand the parity-violatingNN interaction must focus on experimen
involving only the very lightest—NN , Nd , Nα—systems, wherein our ability to calcula
the effects of a given theoretical picture are under much better control. As we demo
below, there exist a sufficient number of such experiments, either in progress or plan
order to accomplish this task for either the pionless EFT or the EFT with dynamical pion

Once a reliable set of low-energy constants are in hand, as obtained from such very-light
systems, theoretical work can proceed on at least two additional fronts:
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(i) experimental results from the heavier nuclear systems—involving P, S–D, and
shells and higher levels—can be revisited and any discrepancies hopefully re
with the confidence that the weak low-energy constants are correct, and

(ii) one can attempt to evaluate the size of the phenomenological weak constants s
from the fundamental quark–quark weak interaction in the Standard Model.

This scheme mirrors the approach that has proven highly successful in chiral pe
tion theory (ChPT) [57], wherein phenomenological constants are extracted purely
experimental results, using no theoretical prejudices other than the basic (broken
symmetry of QCD. In the meson sector [58], the phenomenologically determined co
termsL1,L2, . . . ,L10 have already become the focus of various theoretical prog
attempting to predict their size from fundamental theory. Note that our approach t
clear parity violation is similar in spirit to the one advocated in a prescient 1978 pap
Desplanques and Missimer [25] that builds on ideas put forward by Danilov [24]. In
sequent work, this approach was superseded by the use of the DDH potential. In ou
then, we are in a sense recasting the ideas of Refs. [24,25] in the modern and theoretica
systematic framework of EFT.

3.1. Amplitudes

We now consider the first part of the program—elucidation of the basic weak
plings. We argue that, provided one is working in a region of sufficiently low-energy
parity-violatingNN interaction can be described in terms of justfivereal numbers, which
characterize S–P wave mixing in the spin singlet and triplet channels. The arguments in t
section borrow heavily from the work of Danilov [24] and Desplanques and Missimer
The following sections will show how to interpret this phenomenology within EFT.

For simplicity we begin with a parity-conserving system of two nucleons. Then theNN

scattering matrix can be expressed purely in terms of S-wave scattering at low energ
has the phenomenological form [24]

M(�kf , �ki) = 〈�kf |T̂ |�ki〉 = mt(k)P1 + ms(k)P0, (21)

where

P1 = 1

4
(3+ �σ1 · �σ2), P0 = 1

4
(1− �σ1 · �σ2)

are spin-triplet and spin-singlet projection operators. All other partial waves can b
glected. We can determine the form of the functionsmi(k) by using the stricture o
unitarity,

2 ImT̂ = T̂ †T̂ . (22)

In the S-wave sector this becomes

Immi(k) = k
∣∣mi(k)

∣∣2, (23)

whose solution is of the familiar form
mi(k) = 1

k
eiδi (k) sinδi(k). (24)
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Since at zero energy

lim
k→0

mi(k) = −ai (25)

whereai is the scattering length, it is clear that unitarity can be enforced by the si
modification

mi(k) = −ai

1+ ikai

, (26)

which is the lowest-order effective-range result. The scattering cross section is foun

dσ

dΩ
= TrM†M = a2

i

1+ k2a2
i

, (27)

so that at the lowest energy we have the familiar form

lim
k→0

dσs,t

dΩ
= |as,t |2. (28)

The associated scattering wave functions are given by

ψ
(+)

�k (�r) =
[
ei�k·�r − mN

4π

∫
d3r ′ eik|�r−�r ′|

|�r − �r ′| V (�r ′)ψ(+)

�k (�r ′)
]
χ

r→∞−−−→
[
ei�k·�r +M(−i �∇, �k)

eikr

r

]
χ, (29)

whereχ is the spin wave function. In the simple Born approximation, then, we can r
sent the wave function in terms of an effective local potential

V
(0)PC
eff (�r) = 4π

mN

(atP1 + asP0)δ
3(�r), (30)

as can be confirmed by substitution into Eq. (29).
Parity mixing can be introduced into this simple representation, as done by Danilov

via generalization of the scattering amplitude to include parity-violating structures.
laboratory momenta of 140 MeV or so, we can omit all but S- and P-wave mixing, in w
case there exist five independent such amplitudes:

(i) dt (k), representing3S1–1P1 mixing;
(ii) d

0,1,2
s (k), representing1S0–3P0 mixing with �I = 0,1,2, respectively; and

(iii) ct (k), representing3S1–3P1 mixing,

and, after a little thought, it becomes clear that the low-energy scattering matrix in th
presence of parity violation can be generalized to

M(�kf , �ki) = mt(k)P1 + ms(k)P0

+ [(d0
s (k)Q1 + d1

s (k)Q1+ + d2
s (k)Q2

)(�ki · (�σ1 − �σ2)P1

+ P �k (�σ − �σ )
)+ d (k)

(�k · (�σ − �σ )P + P �k · (�σ − �σ )
)]
1 f 1 2 t i 1 2 0 0 f 1 2

+ ct (k)Q1−(�σ1 + �σ2) · (�kiP1 + P1�kf ), (31)
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where we have introduced the isovector and isotensor operators

Q1− = 1

2
(τ1 − τ2)z, Q1+ = 1

2
(τ1 + τ2)z,

Q2 = 1

2
√

6
(3τ1zτ2z − �τ1 · �τ2), (32)

and isospin projection operators

Q0 = 1

4
(1− �τ1 · �τ2), Q1 = 1

4
(3+ �τ1 · �τ2). (33)

Each of the new pieces is indeed odd under spatial inversion (�σi → �σi and �kf , �ki →
−�kf ,−�ki) and even under time reversal (�σi → −�σi and�ki · (�σ1 − �σ2)Pj ↔ Pj

�kf · (�σ1 −
�σ2)).

Now consider what constraints can be placed on the formsdi(k), ci(k). The requiremen
of unitarity reads

Imdi(k) = k
[
m∗

i (k)di(k) + d∗
i (k)mp(k)

]
, (34)

wheremi(k),mp(k) are the scattering amplitudes in the S-, P-wave channels connec
di(k). Eq. (34) is satisfied by the solution

di(k) = ∣∣di(k)
∣∣expi

[
δi(k) + δp(k)

]
, (35)

i.e., the phase of the transition amplitude is simply the sum of the strong interaction
shifts in the incoming and outgoing channels.

Danilov [24] suggested that, on account of the short-range of the weak interaction, t
energy dependence of the weak couplingsdi(k) should be primarily determined, up to s
50 MeV or so solely by the strong interaction dynamics. Since at very low energ
P-wave scattering can be neglected, he suggested the use of the forms

ct (k) = ρtmt(k), dt (k) = λtmt(k), di
s(k) = λi

sms(k), (36)

which provide the parity-mixing amplitudes in terms of the five phenomenological
stants:ρt , λt , λ

i
s .

We can understand the motivation behind Danilov’s assertion by writing down the sim
plest phenomenological form for a weak low-energy parity-violatingNN potential. To do
so, one may start with the momentum-space form ofV PV

1,SR given in Eq. (5):

V PV
1,SR(�q, �p)

= − 1

Λ3
χ

{
−
[
(C1 + C3)Q1 + (C1 − 3C3)Q0 + (C2 + C4)Q1+ −

√
8

3
C5Q2

]

× (�σ1 − �σ2) · �p

+
[
(C̃1 + C̃3)Q1 + (C̃1 − 3C̃3)Q0 + (C̃2 + C̃4)Q1+ −

√
8

3
C̃5Q2

]

× i(�σ1 × �σ2) · �q }

+ [C2 − C4]Q1−(�σ1 + �σ2) · �p + C6i(�τ1 × �τ2)z(�σ1 + �σ2) · �q , (37)
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wherep = [(p1 − p2) + (p′
1 − p′

2)]/2 andq = [(p1 − p2) − (p′
1 − p′

2)]/2.
The change in the wave function generated byV PV

1,SR(�r) is understood to involve the fu
strong-interaction Green’s function and wave functions

δψ(+)(�r) =
∫

d3r ′ Gk(�r, �r ′)V PV
1,SR(�r ′)ψ(+)(�r ′), (38)

and the connection between the weak PV potentialV PV
1,SR(�r) and the scattering matri

Eq. (31) can be found via

di(k) ∼ −mN

4π

(〈
ψ

P(−)
k

∣∣V PV
1,SR

∣∣ψS(+)
k

〉+ 〈ψS(−)
k

∣∣V PV
1,SR

∣∣ψP(+)
k

〉)
. (39)

Now, if we are at very low energy, we may use the plane-wave approximation for
wave,

ψ
P(−)
k (r) � j1(kr), (40)

and we can approximate the S wave by its asymptotic form

ψ
S(+)
k (r) � 1

kr
eiδi(k) sin

(
kr + δi(k)

) k→0−−−→ 1

kr
eiδi (k) sinδi(k), (41)

where we have used the experimental fact that|δi | ≈ |kai| � k/m where 1/m is maximum
range set by the integration. Then, we can imagine calculating a generic parity-vio
amplitudedi(k) via Eq. (39):

di(k) ∼ 4π

k
Ci

∞∫
0

dr r2j1(kr)

[
∂

∂r
, fm(r)

]
1

kr
eiδi(k) sinδi(k)

≡ λi
1

k
eiδi sinδi = λimi(k), (42)

with Ci symbolically indicating the appropriate combination of PV constants appeari
V PV

1,SR and

λi ∼ 4π

k
Ci

∞∫
0

dr rji(kr)
dfm(r)

dr
≈ 4π

3
Ci

∞∫
0

dr r2dfm(r)

dr
, (43)

which is the basic form advocated by Danilov.3 An analogous relationship holds forρt .
At low energy then it seems prudent to explicitly include the appropriate S-wave

tering length in expressing the effective weak potential, and we can define

lim
k→0

ms,t (k) = −as,t, lim
k→0

ct (k), ds(k), dt(k) = −ρtat ,−λi
sas,−λtat . (44)

As emphasized above, the real numbersρt , λ
i
s , λt —which can in turn be related to the e

fective parametersCi—completelycharacterize the low-energy parity-violating interaction

3 Note that this argument is not quite correct quantitatively. Indeed, since 1/m is much smaller than the rang
of the NN interaction (in the pionful theory), we should really use interior forms of the wave functions. How

ever, when this is done, the same qualitative result is found, but the simple relationship in Eq. (43) is somewhat
modified.
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and can be determined experimentally, as we shall discuss below. Alternatively, we
isospin decomposition

λ
pp
s = λ0

s + λ1
s + 1√

6
λ2

s ,

λ
np
s = λ0

s − 2√
6
λ2

s ,

λnn
s = λ0

s − λ1
s + 1√

6
λ2

s , (45)

to write things in terms of the appropriateNN quantities. Now, the explicit connectio
between the S-matrix elementsλi, ρt and the weak interaction parametersCi, C̃i in our
effective Lagrangian must be done carefully using the Eq. (39) and the best possibNN

wave functions. This work is underway, but is not yet completed [59]. In the meantim
may obtain an indication of the connection by using the following simple arguments

When we restrict ourselves to a model-space containing only the low-energy S,
plitudes noted above, then several of the operators in Eqs. (5), (37) become redund
example, thedt amplitude involves aT = 0 → T = 0 transition, so only the terms propo
tional toQ0 contribute. In this case, the spin-space operators(�σ1− �σ2) · �p andi(�σ1× �σ2) · �q
yield identical matrix elements up to an overall constant of proportionality. This feature ca
be seen by considering the coordinate space potential, which contains the functionfm(r)

times derivatives acting on the initial and final states. In the short range limit and
absence of theNN repulsive core, both the P-wave and first derivative of the S-wave
ish at the origin, whereas the product of the S-wave and first derivative of the P-wa
non-zero. Thus, only the components of�q and �p that yield derivatives of the P-wave
the origin contribute, leading to identical matrix elements of these two operators (
an overall phase). Of course, corrections to this statement occur whenfm(r) is smeared
out over some short range∼ 1/m. Since 1/m � 1/typical momentum∼ a, wherea is the
scattering length, at low energy such corrections are higher-order in our power cou
going asK2/m2, whereK ∼

√
M(E + V̄ ) with V̄ ∼ 50 MeV representing some ave

age depth of theNN potential characterizing the interior region. Similarly, the opera
(�σ1 − �σ2)z and(�σ1 × �σ2)z each transform a spin-triplet intoa spin-singlet state, and vic
versa. Hence, one may absorb the effect of the term proportional to(C̃1 + C̃3) into the
corresponding term proportional to(C1 + C3) by a suitable redefinition of the constan
Related arguments allow one to absorb the remaining terms proportional to theC̃i—as
well as the term containingC6—into the terms involving(C1 − 3C3)P1, (C2 + C4)Q1+,
(C2 − C4)Q1−, andC5Q2 for a net total offive independent operators, which in turn ge
erate the five independent low-energy PV amplitudesλ0

s , λ
1
s , λ

2
s , λt , ρt . In the zero-range

limit, then, we have

λt ∝ (C1 − 3C3) − (C̃1 − 3C̃3),

λ0
s ∝ (C1 + C3) + (C̃1 + C̃3),

λ1 ∝ (C + C ) + (C̃ + C̃ ),
s 2 4 2 4

λ2
s ∝ −√8/3(C5 + C̃5),
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ρt ∝ 1

2
(C2 − C4) − C6. (46)

However, going away from strict threshold values and the use of more realistic
functions will modify these expectations somewhat, as illustrated by a simple, did
discussion in Appendix E. We emphasize, however, that what is needed at the prese
is a purely empirical evaluation in terms of five independent and precise experimen
that is what we shall discuss next.

3.2. Relation to observables

The next step of the program—contact between this effective parity-violating
action and experimental observables—wasinitiated by Desplanques and Missimer [2
Before quoting these results, we sketch the manner by which such a confrontation
formed. In doing so, we emphasize that the following analysis doesnot rely on definitive
computations employing state-of-the art few-body wave functions—carrying out suc
culations goes beyond the scope of the present study. Indeed, obtaining precise va
theλi andρt will require a concerted effort on the part of both experiment and few-b
nuclear theory. What we provide below is intended, rather, to serve as a qualitative ro
for such a program, setting the context for what we hope will be future experimental an
theoretical work.

For simplicity, we begin with an illustrative example ofnn scattering, for which the
Pauli principle demands that the initial state at low energy must be purely1S0. One can
imagine longitudinally polarizing a neutron of momentum�p and measuring the total sca
tering cross section from an unpolarized target. Since�σ · �p is odd under spatial inversion
the cross section can depend on helicity only if parity is violated, and via trace techn
the helicity-correlated cross section can easily be found. Using

M(�kf , �ki) = ms(k)P0 + dnn
s

[�ki · (�σ1 − �σ2)P0 + P0�kf · (�σ1 − �σ2)
]

(47)

we determine

σ± =
∫

dΩf TrM(�kf , �ki)
1

2
(1± �σ1 · k̂i )M†(�kf , �ki)

= 4π
∣∣ms(k)

∣∣2 TrP0 + 8π Rem∗
s (k)dnn

s (k)TrP0(�σ1 − �σ2) · k̂i (1± �σ1 · k̂i ) + · · ·
= 4π

∣∣ms(k)
∣∣2 ± 16π Rem∗

s (k)dnn
s (k) + · · · . (48)

Defining the asymmetry via the sum and difference of such helicity cross section
neglecting the tiny P-wave scattering, we have then

AL = σ+ − σ−
σ+ + σ−

= 4k Re[m∗
s (k)dnn

s (k)]
|ms(k)|2 � 4kλnn

s . (49)

Thus the helicity-correlatednn asymmetry provides a direct measure of the parity-viola
parameterλnn

s . Note that, since the total cross section is involved, some investigators
opted to utilize the optical theorem via [60–62]
AL = 4k
Imdnn

s (k)

Imms(k)
, (50)
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which, using our unitarized forms, is completely equivalent to Eq. (49).
Of course,nn scattering is currently just a gedanken experiment, and we have disc

it merely as a warm-up to the real problem:pp scattering, which introduces the complic
tions associated with the Coulomb interaction. In spite of this complication, the calcu
proceeds quite in parallel to the discussion above with obvious modifications. We find

AL = σ+ − σ−
σ+ + σ−

= 4k Re[m∗
s (k)d

pp
s (k)]

|ms(k)|2 � 4kλ
pp
s . (51)

In the next section we show how this can be obtained straightforwardly within an
approach.

On the experimental side, such asymmetries have been measured both at low e
(13.6 and 45 MeV) as well as at higher energies (221 and 800 MeV). It is only the
energy results4

A
pp
L (13.6 MeV) = −(0.93± 0.20± 0.05) × 10−7 [63],

A
pp

L (45 MeV) = −(1.50± 0.22) × 10−7 [64], (53)

that are appropriate for our analysis, and from these results we can extract the exper
number for the singlet mixing parameter as

(
λ

pp
s

)expt= −AL(45 MeV)

4k
= −(4.0± 0.6) × 10−8 fm, (54)

where 4k ≈ 0.88mN . Note that this Eq. (54) is consistent with that of Desplanques
Missimer [25](

λ
pp
s

)expt= −AL(45 MeV)

0.82mN

= −(4.1± 0.6) × 10−8 fm. (55)

In a corresponding fashion, as described by Ref. [25], contact can be made be
other low-energy observables and the effective parity-violating interaction. Clearly, w
require five independent experiments in orderto identify the five independent S–P mixin
amplitudes. As emphasized above, we consideronlyPV experiments on systems withA =
4 or lower, in order that nuclear-model dependence be minimized. We utilize he
results of Desplanques and Missimer [25], but these forms should certainly be up
using state-of-the-art few-body computations. There exist many such possible experime
and we suggest the use of

(i) low-energypp scattering, for which

pp(13.6 MeV): A
pp
L = −0.48λpp

s mN,

pp(45 MeV): A
pp

L = −0.82λpp
s mN ; (56)

4 Note that the 13.6 MeV Bonn measurement is fully consistent with the earlier but less precise numbe

A
pp

(15 MeV) = −(1.7± 0.8) × 10−7 [65] (52)

L

determined at LANL.
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(ii) low-energypα scattering, for which

pα(46 MeV): A
pα
L =

[
−0.48

(
λ

pp
s + 1

2
λ

pn
s

)
− 1.07

(
ρt + 1

2
λt

)]
mN ; (57)

(iii) thresholdnp radiative capture, for which there exist two independent observable

circular polarization: Pγ = (0.63λt − 0.16λpn
s

)
mN,

photon asymmetry: Aγ = −0.107ρtmN ; (58)

(iv) neutron spin rotation from4He,

dφnα

dz
=
[
1.2

(
λnn

s + 1

2
λ

pn
s

)
− 2.68

(
ρt − 1

2
λt

)]
Mn

rad

m
. (59)

Inverting these results, we can determine the five S–P mixing amplitudes via

mNλ
pp
s = −1.22App

L (45 MeV),

mNρt = −9.35Aγ(np → dγ ), (60)

mNλ
pn
s = 1.6A

pp

L (45 MeV) − 3.7A
pα

L (46 MeV) + 37Aγ (np → dγ )

− 2Pγ (np → dγ ),

mNλt = 0.4A
pp
L (45 MeV) − 0.7A

pα
L (46 MeV) + 7Aγ (np → dγ )

+ Pγ (np → dγ ),

mNλnn
s = 0.83

dφnα

dz
− 33.3Aγ (np → dγ ) − 0.69App

L (45 MeV)

+ 1.18Apα
L (46 MeV) − 1.08Pγ (np → dγ ). (61)

At the present time only two of these numbers are known definitively—the longitu
asymmetry inpp, Eq. (53), and inpα scattering,

A
pα
L (46 MeV) = −(3.3± 0.9) × 10−7 [66]. (62)

However, efforts are underway to measure the photon asymmetry in radiativenp capture
at LANSCE [67] as well as the neutron spin rotation on4He at NIST [68]. These measur
ments are also proposed at the neutron beamline at the Spallation Neutron Source
under construction at Oak Ridge National Laboratory. An additional, new measureme
of the circular polarization innp radiative capture would complete the above program
though this is very challenging because of the difficulty of measuring the photon helicity
Alternatively, one could consider the inverse reaction—the asymmetry in�γ d → np—and
this is being considered at Athens [69] and at HIGS at Duke [70].

To the extent that one can neglect inclusion of theπ as an explicit degree of freedom
one could use this program of measurements to perform a complete determination
five independent combinations ofO(Q), PV LECs. Nonetheless, in order to be confiden
the results of such a series of measurements, it is useful to note that other light systems c

and should also be used as a check of the consistency of the extraction. There are various
possibilities in this regard, including
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(i) pd scattering

A
pd
L (15 MeV) = (−0.21ρt − 0.07λpp

s − 0.13λt − 0.04λpn
s

)
mN, (63)

(ii) radiativend capture

Aγ = (1.42ρt + 0.59λnn
s + 1.18λt + 0.51λpn

s

)
mN, (64)

(iii) neutron spin rotation onH

dφnp

dz
= (1.26ρt − 0.63λt + 1.8λ

np
s + 0.45λpp

s + 0.45λnn
s

)
mN

rad

m
. (65)

Note that possible follow-ups of the LANSCE and NIST experiments include the last
processes [71].

We emphasize that the above results have been derived under the assumption
spin-conserving interactionρt is short-ranged—an assumption applicable at energies
below the pion mass. On the other hand, for the 46 MeV�pα measurement, the proton m
mentum is well abovemπ , so integrating out the pion may not be justified. In this ca
inclusion of the pion will lead to modification of the above formulas, introducing a de
dence onh1

πNN , k1a
πNN , andC̄π . Thus, a total of eight low-energy few-body measureme

would be needed to determine the relevant set of low-energy constants. In the for
discussion, we have identified eight few-body observables that could be used for th
pose. Additional possibilities include the PV asymmetry in near-threshold pion photo- o
electro-production [37,38,73] or deuteron photodisintegration [74]. At present, we a
able to write down the complete dependence of the few-body PV observables onh1

πNN ,
k1a
πNN , andC̄π , since only the effects of the LO OPE PV potential (and associated tw

body currents) have been included in previous few-body computations. Obtaining
expressions is a task requiring future theoretical effort. In any case, it is evident from ou
discussion that there exists ample motivation for several new few-body PV experi
and that a complete determination of the relevant PV low-energy constants is cert
feasible prospect.

4. EFT without explicit pions

Although the foregoing analysis relied on traditional scattering theory, it is entirel
equivalent to an EFT approach. In the following two sections, we present this EFT
ment in greater detail, considering first only processes where the momentap of all external
particles are much smaller than the pion mass. In this regime, the detailed dynamics und
lying the NN interaction cannot be resolved, and interactions are represented by s
delta-function potentials. As with any EFT, this approximation is justified by a sep
tion of scales. In this case, one has scales set by theNN scattering lengths—as ∼ −20 fm,
at ∼ 5 fm—that are both much larger than the∼ 1/mπ range of the pion-exchange comp
nent of theNN strong interaction [8,9]. Because of this separation of scales, the deu
can be described within this pionless EFT. For example, one can calculate the deute

form factors at momenta up to the pion mass [9]. This pionless EFT is limited in energy,
but it is very simple (since all interactions among nucleons are of contact character) and
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high-order calculations can be carried out. Therefore, although its expansion param
not particularly small, high precision can be reached easily.

In this very-low-energy regime the EFT of the two-nucleon problem is not much m
than a reformulation of the analysis in Section 3. The full benefits of an EFT frame
will, however, be evident when we consider the regime of momenta comparable to th
mass in the next section.

4.1. Effective Lagrangian

Nucleons with momenta much smaller than the pion mass are non-relativistic, and
this case, it is convenient to redefine the nucleon fields so as to eliminate the term p
tional tomN from the Lagrangian. In so doing, one obtains an infinite tower of oper
proportional to powers ofp/mN � 1. This widely-used heavy-fermion formalism [75,7
is nothing but a Galilean-covariant expression of the usual non-relativistic expansion
the non-relativistic EFT must match the relativistic theory forp ∼ mN , Lorentz invariance
relates various terms in the tower of(p/mN)k-suppressed effective operators. Thus,
way to construct the effective Lagrangian is to write the most general rotational-inv
non-relativistic Lagrangian, then to relate parameters by imposing this matching con
or “reparameterization” invariance [77]. Alternatively, we can simply write a relativist
Lagrangian and then take the non-relativistic limit.

The most general Lagrangian involving two nucleon fieldsN, N̄ and a photon fieldAµ

that is invariant under Lorentz, parity, time reversal andU(1) gauge symmetries is

LN,PC = N̄

{
iv · D + 1

2mN

(
(v · D)2 − D2)+ [Sµ,Sν]

[
Dµ,Dν

]
+ κ0 + κ1τ3

mN

εµναβvαSβFµν + · · ·
}
N, (66)

whereκ0 (κ1) is the isoscalar (isovector) anomalous magnetic moment,vµ andSµ are
the nucleon velocity and spin (vµ = (1, �0) andSµ = (0, �σ/2) in the nucleon rest frame
Dµ = ∂µ + ieQNAµ is the electromagnetic covariant derivative, withQN = (1+ τz)/2 the
nucleon charge matrix, andFµν = ∂µAν − ∂νAµ. Here, as in the following Lagrangian
“ · · ·” denote terms with more derivatives, which give rise to other nucleon properties
as polarizabilities.

When we relax the restriction of parity invariance, we can write additional terms,
as

LN,PV = 2

m2
N

N̄(a0 + a1τz)SµN∂νF
µν + · · · , (67)

wherea0 (a1) is the isoscalar (isovector) anapole moment of the nucleon. These term
discussed in Refs. [33,34]; they appear in PV electron scattering but not in the pro
we focus on here.

For the two-nucleon system, we need to consider contact terms withfour nucleon fields.
The simplest parity-conserving (PC) interactions are
LPC,NN = −1

2
CSN̄NN̄N + 2CT N̄SµNN̄SµN + · · · , (68)
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whereCS , CT are dimensional coupling constants first introduced in Ref. [3]. Their
jections onto the twoNN S-waves are

C0s = CS − 3CT , C0t = CS + CT . (69)

These parameters are related to the respective scattering lengths, while higher-de
operators give rise to additional parameters,such as S-wave effective ranges and P-w
scattering volumes [8].

For future reference, it is also useful to write down the first-quantizedNN potential
arising fromLPC,NN . To orderO(Q), we have

V CT
PC (�q, �p) = CS + CT �σ1 · �σ2. (70)

Similarly, we can construct PV two-nucleon contact interactions. A detailed deriv
appears in Appendix A and leads atO(Q) to

LPV,NN = 1

Λ3
χ

{−C1N
†NN†�σ · i �D−N + C1N

†iDi−NN†σ iN

− C̃1iε
ijkN†iDi+σjNN†σkN

− C2 N†NN†τ3�σ · i �D−N + C2N
†iDi−NN†τ3σ

iN

− C̃2iε
ijkN†iDi+σjNN†τ3σ

kN

− C3N
†τaNN†τa �σ · i �D−N + C3N

†τaiDi−NN†τaσ iN

− C̃3iε
ijkN†τaiDi+σjNN†τaσ kN

− C4N
†τ3NN†�σ · i �D−N + C4N

†τ3iD
i−NN†σ iN

− C̃4iε
ijkN†τ3iD

i+σjNN†σkN

− C5IabN
†τaNN†τb �σ · i �D−N + C5IabN

†τaiDi−NN†τbσ iN

− C̃5Iabiε
ijkN†τaiDi+σjNN†τbσ kN

− C6iε
ab3N†τaNN†τb �σ · i �D+N

}+ · · · , (71)

where we have introduced the short-hand notation

N†iD
µ
±N ≡ (iDµN

)†
N ± N†(iDµN

)
(72)

(in momentum space,iDµ
+ and iD

µ
− give rise to the difference and sum, respectively

the initial and final nucleon momenta). The effects of the weak interaction are repre
by the LECsCi . We have normalized the operators to a scaleΛχ = 4πFπ ∼ 1 GeV, as
would appear natural in a pionful theory. One might then anticipate that theCi are of order
GF Λ2

χ ∼ 10−5. In fact, as discussed in Section 5, naive dimensional analysis (NDA)

gests that these quantities have the magnitudeCi ∼ (Λχ/Fπ )2gπ , wheregπ = 3.8× 10−8

sets the scale for non-leptonic weak interactions. One may also attempt to predic
constants using models (see Section 6) and compare with the experimentally dete
linear combinations discussed above.

TheO(Q) LagrangianLPV,NN gives rise to the potential in Eq. (5), which genera

energy-independent S–P wave mixing as discussed earlier. Higher-derivative PV operators
lead both to energy-dependence in the S–P mixing amplitudes as well as mixing involving
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higher partial waves. Given the levelof complexity already appearing atO(Q), we will not
consider these higher-order terms.

4.2. Amplitudes

In processes involving a single nucleon, amplitudes can be expanded in loops. Th
ation is more subtle when two or more nucleons are present [3]. This is due to the fa
intermediate states that differ from initial states only by nucleon kinetic energies re
O(mN/p) enhancements. A resummation then must be performed, leading, e.g., to nucle
bound states, and it is not immediately obvious that such resummations can be don
maintaining the derivative expansion necessary to retain predictive power order by
The large values for theNN scattering lengths, however, provide justification for suc
procedure [8,9]. Before considering PV effects, it is helpful to review what resumm
technique yields for the case of the strongNN interaction.

In lowest order, the S-waveNN interaction can be represented via a contact term

T0i = C0i (µ). (73)

Including the rescattering corrections, the fullT -matrix is found to be

Ti(k) = C0i (µ) + C0i (µ)G0(k)C0i (µ) + · · ·
= C0i (µ)

1− C0i (µ)G0(k)
= − 4π

mN

1

− 4π
mNC0i (µ)

− µ − ik
, (74)

where

G0(k) = lim
�r,�r ′→0

G0(�r, �r ′) =
∫

d3s

(2π)3

1
k2

mN
− s2

mN
+ iε

= −mN

4π
(µ + ik) (75)

is the zero-range Green’s function, which displays the large nucleon mass in the num
Identifying the scattering length via

− 1

ai

= − 4π

mNC0i (µ)
− µ (76)

and using the relation

mi(k) = −mN

4π
Ti(k) (77)

connecting the scattering andT -matrices, we find

mi(k) = 1

− 1
ai

− ik
= − ai

1+ ikai

. (78)

It is important to note here that sinceai is a physical quantity, it cannot depend on the sc
parameterµ and this invariance is observed in Eq. (76), wherein theµ dependence of th
Green’s function is canceled by the corresponding scale dependence in−4π/mNC0i (µ).
We observe that the resummation is at this order completely equivalent to the unitariza-
tion that lead to Eq. (26), and one can show similarly that in theNN system inclusion
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of higher-derivative operators reproduces higher powers of energy in the effective-ran
expansion [8,9].

It is straightforward to generalize the above calculation to account for electroma
interactions. As shown in Ref. [78] (see also Ref. [79]) the unitarizedpp scattering ampli-
tude has the form

ms(k) = −mN

4π

C0s(µ)C2
η(η+(k))e2iσ0

1− C0s (µ)GC(k)
, (79)

whereη+(k) = Mα/2k,

C2
η(x) = 2πx

e2πx − 1
(80)

is the usual Sommerfeld factor,σ0 = arg�(� + 1 + iη+(k)) is the Coulomb phase shif
and the free Green’s functionG0(k) has also been replaced by its Coulomb analog

GC(k) =
∫

d3s

(2π)3

C2(η+(k))

k2

mN
− s2

mN
+ iε

. (81)

Remarkably, this integral can be performed analytically, yielding

GC(k) = −mN

4π

[
µ + mNα

(
H
(
iη+(k)

)− log
µ

mNπα
− ζ

)]
. (82)

Hereζ is defined in terms of the Euler constantγE via ζ = 2π − γE and

H(x) = ψ(x) + 1

2x
− logx. (83)

The resultant scattering amplitude has the form

ms(k) = C2
η(η+(k))e2iσ0

− 4π
mNC0s (µ)

− µ − mNα
[
H(iη+(k)) − log µ

mN πα
− ζ
]

= C2
η(η+(k))e2iσ0

− 1
a0s

− mNα
[
h(η+(k)) − log µ

mNπα
− ζ
]− ikC2

η(η+(k))
, (84)

where we have defined, as before,

− 1

a0s(µ)
= − 4π

MC0s(µ)
− µ, (85)

and

h
(
η+(k)

)= ReH
(
iη+(k)

)
. (86)

The experimental scattering lengthaCs in the presence of the Coulomb interaction
defined via ( )
− 1

aCs

= − 1

a0s(µ)
+ mNα log

µ

mNπα
− ζ , (87)
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in which case the scattering amplitude takes its traditional lowest-order form

ms(k) = C2
η(η+(k))e2iσ0

− 1
aCs

− mNαH(iη+(k))
. (88)

Of course, Eq. (88) requires that the Coulomb-corrected scattering length be differen
its non-Coulomb partner, and comparison of the experimentalpp scattering length—app =
−7.82 fm—with itsnn analog—ann = −18.8 fm—is roughly consistent with Eq. (87) if
reasonable cutoff is chosen (e.g.,µ ∼ 1 GeV).

Having unitarized the strong scattering amplitude, we can now proceed analogously
its parity-violating analog. The lowest-order S–P mixing amplitude is

T0SP= W0SP(µ). (89)

Inclusion of S-wave rescattering effects while neglecting P-wave scattering and Coulo
contributions yields the result

TSP(k) = W0SP(µ) + W0SP(µ)G0(k)C0i (µ) + · · · = W0SP(µ)

1− G0(k)C0i (µ)
. (90)

Writing Eq. (90) in the form

di(k) = −mN

4π
TSP(k) =

W0SP(µ)
C0i (µ)

− 4π
mNC0i (µ)

− µ − ik

= λi

− 1
ai

− ik
= λimi(k), (91)

we identify thephysical(µ-independent) S–P wave mixing amplitude via

λi = W0SP(µ)

C0i (µ)
. (92)

Similarly, including the Coulomb interaction, we find for the unitarized weak amplitu

T0SP= W0SP(µ)C2
η(η+(k))ei(σ0+σ1)

(1− C0s (µ)GC(k))
≡ λ

pp

SPC
2
η(η+(k))ei(σ0+σ1)

− 1
aCs

− mNαaCsH(iη+(k))
, (93)

where we have again neglected the P-wave scattering, and have identified

λ
pp

SP = W0SP(µ)

C0s(µ)
(94)

as the physical mixing parameter.
Having obtained fully unitarized forms, wecan now proceed to evaluate the helici

correlated cross sections, finding, as before, at the very lowest energies,

AL = σ+ − σ−
σ+ + σ−

= 4k Re(d∗
s (k)m

pp
s (k))

|ms(k)|2 � 4kλ
pp
s . (95)

Somewhat more involved, of course, are processes involving more than two nuc

Besides the inherent calculational difficulty, interesting new physics arises when three nu-
cleons can overlap. When pions are integrated out of the theory, three-nucleon interactions
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become significant. In fact, it has been shown [11] that its strong running requires th
non-derivative contact three-body force be included atleadingorder in the EFT, togethe
with the non-derivative contact two-body forces considered above. This three-nu
force acts only on the S1/2 channel, and provides a mechanism for triton saturation.
existence of one three-body parameter in leading order is the reason behind the p
enological Phillips line. Note that most three-nucleon channels are free of a three-n
force up to high order, and can therefore be predicted to high accuracy with two-nucleo
input only [10]. Similar renormalization might also take place in the four-nucleon sys
It remains to be seen whether the same phenomenon also enhances PV few-body
We defer a detailed treatment ofA � 3 PV forces and related renormalization issues
future study.

5. EFT with explicit pions

For processes in whichp ∼ mπ , it is no longer sufficient to integrate the pions out
the effective theory. Incorporation of the pion as an explicit degree of freedom requir
of consistent PV chiral Lagrangian, which we develop in this section.

5.1. Effective Lagrangian

Chiral perturbation theory (χPT) provides a systematic expansion of physical obs
ables in powers of small momenta and pion mass for systems with at most one nucle
76]. The interactions obtained fromχPT can be used to build four-nucleon operators a
ing from pion exchange, though care must be taken to avoid double-counting the
of multi-pion exchange in both operators and wave functions (see below). In the app
we follow here, pionic effects are generally included non-perturbatively. StrongπN inter-
actions are derivative in nature, and thus scale as powers ofp/Λχ . As a result, one ca
include them while maintaining a systematic derivative expansion [57]. By contrast,
πN interactions need not involve derivatives, but the small scale associated with hadro
weak interactions (gπ ) implies that one needs at most one weak vertex. In addition, ex
chiral symmetry-breaking effects associatedwith the up- and down-quark masses also
ter perturbatively, sincemπ � Λχ . To incorporate all these effects, we require the m
general effective Lagrangian to a given order inp containing local interactions paramete
ized by a priori unknown low-energy constants (LECs). The corrections from quark m
and loops are then included order by order.

We give here the basic ingredients to our discussion. (For a review, see Ref. [82
nucleon massmN is much larger than the pion massmπ , so we continue to employ
heavy-nucleon field. The pion fieldsπa , a = 1,2,3, enter through

ξ = exp

(
iπaτ a

2Fπ

)
, (96)
whereFπ = 92.4 MeV is the pion decay constant [83]. This quantity allows us to construct
chiral vector and axial-vector currents given by
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Vµ = 1

2

(
ξDµξ† + ξ†Dµξ

)
,

Aµ = − i

2

(
ξDµξ† − ξ†Dµξ

)= −Dµπ

Fπ

+ O
(
π3),

respectively.
Chirally-symmetric strong interaction pionic effects can be incorporated into the

less Lagrangian by substitutingDµ → Dµ, where the chiral covariant derivative is

Dµ = Dµ + Vµ, (97)

and by adding interactions involvingAµ. On the other hand, the quark mass matrixM =
diag(mu,md) generates chiral-symmetry breaking that can be incorporated via

χ± = ξ†χξ† ± ξχ†ξ, (98)

where

χ = 2B(s + ip), (99)

with B a constant with dimensions of mass, ands, p representing scalar and pseudosc
source fields. In the present applications = M andp = 0, and in the following, we work
in the isospin-symmetric limit,mu = md = m̂. Isospin-breaking effects will generate sm
(� 10−2) multiplicative corrections to the tiny PV effects of interest here, so we sa
neglect them. In this case, to leading order in the chiral expansion we have

χ+ = 2Bm̂ + O
(
π2), χ− = 2Bm̂

iπ

Fπ

+ O
(
π3). (100)

The building blocks for including a∆ field in the Lagrangian can be found in Ref. [8
For simplicity we here integrate out∆ isobars. It is straightforward but tedious to use th
building blocks to extend the results of our paper by including explicit∆ effects.

We group terms in LagrangiansL(ν) labeled by the chiral indexν = d +f/2−2, where
d is the number of derivatives and powers of the pion mass andf the number of fermion
fields. We only display terms that are relevant for the arguments that follow.

Parity-conservingπN Lagrangian
We then arrive at

L(0)
πN,PC = N̄

[
iv ·D + 2g0

AS · A]N, (101)

with the lowest index. Similarly, we have for the next to leading order (NLO) Lagrang

L(1)
πN,PC = 1

2mN

N̄
{
(v ·D)2 −D2 + [Sµ,Sν]

[
Dµ,Dν

]
− 2ig0

A(S ·Dv · A + v · AS ·D)

+ 2(κ0 + κ1τ3)εµναβvαSβFµν
}
N + · · · (102)
and the next-to-next-to-leading order (NNLO) terms



te
e

cleon
n

in the

is

at

rs of

. [38],
s

S.-L. Zhu et al. / Nuclear Physics A 748 (2005) 435–498 463

L(2)
πN,PC = N̄

{
g0

A

4m2
N

[
Dµ, [Dµ,S · A]]− g0

A

2m2
N

v · ←−DS · Av ·D

− g0
A

2m2
N

({S ·D, v · A} v ·D + h.c.
)− g0

A

4m2
N

(
S · AD2 + h.c.

)

− g0
A

2m2
N

(
S · ←−DA ·D + h.c.

)+ 2d̂16S · A〈χ+〉

+ 2d̂17〈S · Aχ+〉 + id̂18[S ·D, χ−] + id̂19
[
S ·D, 〈χ−〉]}N + · · · . (103)

Here the ellipses denote counter-terms not relevant in our present calculation, a comple
list of which is given in Ref. [85]. The superscript “0” ingA andµN indicates that thes
quantities must be appended by the corresponding loop contributionsin order to obtain the
physical (renormalized) axial coupling and nucleon magnetic moment.

Parity-conservingNN Lagrangian
For nuclear systems, we require the PC Lagrangian involving more than two nu

fields. Here we will only need the lowest index (ν = 0) terms, containing four nucleo
fields. The relevant Lagrangian has the same form as Eq. (68),

L(0)
NN,PC = −1

2
CSN̄NN̄N + 2CT N̄SµNN̄SµN + · · · , (104)

but hereCS,CT are constants whose numerical values are different from the ones
pionless theory. This is because we are nowremoving soft-pion contributions from the
counter-terms, and including them explicitly.

The NLO four-nucleon corrections occur atν = 2, which will not be used since in th
work we truncate the chiral expansion of the PV potential atO(Q). Likewise, six-nucleon
PC interactions first appear atν = 1 so their contribution to PV observables will be
higher order in loop diagrams.

Parity-violatingπN Lagrangian
The lowest-index (ν = −1) PV interaction arises from theπNN Yukawa interaction,

L(−1)
πN,PV = −h1

πNN

2
√

2
N̄X3−N

= −ih1
πNN (p̄nπ+ − n̄pπ−) + · · · , (105)

where

X3− = ξ†τ3ξ − ξτ3ξ†, (106)

and the “· · ·” denote the terms in this operator containing additional (odd) numbe
pions. At ν = 0 there exist also PV vector and axial-vectorπNN interactions, detailed
expressions for which can be found in Refs. [31,32]. However, as discussed in Ref
the effects of the vector operators can be eliminated throughO(Q) by using the equation

of motion and by suitably redefining the constantC̄π (defined below). The PV axial-vector
couplings involve two or more pions, and, as pointed out in Ref. [32], such couplings
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renormalizeh1
πNN at O(Q3). Consequently, their contribution to the PVNN potential

appears atO(Q2), via loop effects.
At NNLO (ν = 1) we find several new PVπNN operators that will contribute to th

PV NN potential atO(Q). In principle, these operators can be expressed in terms o
quantitiesXa

L,R defined in Ref. [31], thereby allowing one to determine the full, non-lin
dependence on the pion fields. For our purposes, however, it is sufficient to truncate
pansion of these operators at one power of the pion field, since terms containing add
pion fields only contribute to the PVNN interaction beyondO(Q). After implementing
the strictures of reparameterization invariance, we obtain the Lagrangian

L1
πNN,PV = 2ik1a

πNN

ΛχFπ

εµναβN̄
←−
Dµ(�τ × �π)3

−→
DνvαSβN

+ k1b
πNN

ΛχFπ

N̄
[
DλDλ, (�τ × �π)3

]
N + k1c

πNNm2
π

ΛχFπ

N̄(�τ × �π)3N + · · · ,
(107)

where we have chosen a normalization such that the constantsk1a–c
πNN ought to be of orde

a few timesgπ according to naive dimensional analysis (see below) and where the· · ·”
indicate terms involving more than one pion field.

Nominally, then, there exist three new, independent operators that contribute to the
NN potential atO(Q). A proof of their independence under reparameterization invaria
following the arguments of Ref. [87], will appear in a forthcoming publication and
do not reproduce the full arguments here. Heuristically, however, the existence of
operators can be seen from their correspondence with the independentO(Q2) scalars tha
can be formed from the independent momenta, nucleon spin, and pion mass:5 �p · �p′, �σ · �p×
�p′, ( �p − �p′)2, andm2

π . Naively, then, one would have expected four independentO(Q2)

operators, rather than just three as given in Eq. (107), with the operator correspon
�p′ · �p given by

N̄
←−
Dλ(�τ × �π)3

−→
DλN. (108)

However, in a relativistic formulation of the theory, the corresponding operator ca
rewritten in terms ofN̄(�τ × �π)3N andN̄[DλDλ, (�τ × �π)3]N through suitable integration
by parts and application of the LO equations of motion;6 consequently, it cannot exi
as an independent operator in the heavy baryon formulation. Indeed, similar argu
eliminate an analogous term,N̄

←−
DλS · A−→

DλN , from the parity conserving Lagrangian.
contrast, the remaining terms inL1

πNN,PV cannot be eliminated in the relativistic theo
via such arguments and, thus, must exist as independent terms in the non-relativist

We also note that in order for EFT with non-relativistic nucleon fields to match the
relativistic theory, the coefficientsk1a–c

πNN in general receive contributions proportional to
h1

πNN that arise from a non-relativistic reduction of the LO PVπNN Yukawa interaction
in addition to contributions that representbona fideO(Q2) effects. This situation is analo
gous to what occurs for theO(Q2) nucleon magnetic moment operator, whose coeffic
5 The presence of the single pion field leads to a pseudoscalar interaction with the nucleon.
6 We thank Vincenzo Cirigliano for discussions on this point.
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µN = QN + κN receives a contribution (the Dirac term) that is dictated by relativity an
that is proportional to theO(Q) constant (QN ) and a genuine, a priori unknownO(Q2)

contribution (the Pauli term) parameterized by the anomalous magnetic moment.
present case, onlyk1a,b

πNN receive contributions proportional toh1
πNN as dictated by relativ

ity:

k1a
πNN = h1

πNN

4
√

2

ΛχFπ

M2
N

+ · · · , k1b
πNN = −h1

πNN

8
√

2

ΛχFπ

M2
N

+ · · · , (109)

where the “· · ·” indicate the unconstrainedO(Q2) contributions.
In practical terms, only two of the operators in Eq. (107) are likely to be experimen

distinguishable. In momentum space, the second and third terms can be written as indep
dent linear combinations of( �p − �p′)2 +m2

π andm2
π . The latter acts like a chiral correctio

to h1
πNN , so toO(Q) in the EFT, it cannot be resolved experimentally. When inserted

the PVNN potential, the former cancels the pion propagator, leading effectively t
O(Q) contact operator that is indistinguishable from the SR operator proportional tC6.
In contrast, the effects of the remaining operator involvingk1a

πNN cannot be absorbed int
the LOπ exchange potential or any of the short-rangeO(Q) operators. Its contribution t
the potential has been given in Eq. (12).

Parity-violatingγπN Lagrangian
Finally, there exists also a contactπγNN interaction atν = 1 [38],

L(1)
πγN,PV = −ie

C̄π

ΛχFπ

p̄σµνFµνnπ+ + H.c. (110)

Parity-violatingNN Lagrangian andγπNN Lagrangian
Theν = 1 PV four-nucleon terms have the same form as in Eq. (71) but with the ga

covariant derivativesDµ replaced byDµ, the gaugeand chiral covariant derivatives. I
this case, the coefficientsCi , C̃i will differ numerically from those appropriate to the pi
nless theory, since in the latter case, the effects of pion exchange are incorporated
operator coefficients.

5.2. Power counting

Throughout this work we use power-counting arguments to guide us in the task of
tifying the most significant contributions to PV observables. Power counting is carrie
under an implicit assumption about the size of the couplings of the EFT. It is assume
the couplings are neither particularly small nor particularly large compared with “n
dimensional analysis” (NDA) [86], in which LECs scale withFπ andΛχ as(

Dµ

Λχ

)d(
π

Fπ

)p(
N̄N

ΛχF 2
π

)f/2

× (ΛχFπ)2 × (gπ )n, (111)

whered , p, f = 2k, k andn are positive integers and
gπ ∼ GF F 2
π

2
√

2
∼ 3.8× 10−8. (112)
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In the absence of weak interactions (n = 0), the LECs scale with a large mass scale
(Λχ)−ν , whereν = d + f/2 − 2 is the chiral index defined earlier. Hence, one obta
the ordering of operators inQ/Λχ described earlier. At energies that are small compare
with the mass ofW andZ bosons, weak interactions have a strength given by the F
constantGF = 1.16639×10−5 GeV−2. The effective operators they entail are proportio
to (powers of) the Fermi constant times the square of a mass scale. A natural s
the pion decay constant, so we assume that these operators have coefficients of order
GF F 2

π ∼ 10−7. In Eq. (112), we usegπ = 3.8× 10−8 because this scale appears natur
in quark-model estimates as in Ref. [19].

Here we limit ourselves ton = 1. Up to two derivatives, then, we have one PVπNN

Yukawa couplingh1
πNN , three NNLO PVπNN couplingsk1a–c

πNN , ten short-distance LEC
Ci, C̃i , and one additional independent PV LECC̄π if we consider PV photo-reactions. A
emphasized earlier, only five independent combinations ofCi andC̃i are relevant to low-
energy PV observables in few-body systems, while the effects of all but one of the N
PV πNN operators can be absorbed into other terms in the potential. In practice, the
inclusion of pions leads to a total of eight independent LECs. From Eq. (111), the exp
size of the relevant PV couplings is

h1
πNN ∼

(
Λχ

Fπ

)
gπ , (113)

Ci, C̃i ∼
(

Λχ

Fπ

)2

gπ , (114)

k1a–c
πNN, C̄π = gπ . (115)

The most challenging part of the power counting is to order the strong-interactio
fects. Here we count powers ofQ, where as aboveQ denotes a small quantity such as t
pion massmπ , an external momentump, or the electric charge,e. For example, the stron
πNN vertex is counted asO(Q), the PV Yukawa vertex isO(Q0), the pion propagator i
O(Q−2), and the four-nucleon vertices proportional toCS,T are also counted asO(Q0).

In the one-nucleon system, a loop integral
∫

d4k can be simply counted asO(Q4). If
there are two or more nucleons, this naive counting breaks down. The reason is that
nuclei nucleons are nearly on-shell. Thus, instead of beingO(Q), theq0 component of the
pion four-momentum in the one-pion-exchange (OPE) diagram shown in Fig. 2 isO(Q2),
since

q0 = p0
f − p0

i � �p2
f − �p2

i

2mN

, (116)

wherei, f label initial and final states. This simply means that in first approximation
is static. Now consider the loop diagram generated by the exchange of two pions be
two nucleons, and focus on thedq0 integral, which is, schematically,∫

dq0

2π

i

E
2 + q0 − �q2

2mN
+ iε

i

E
2 − q0 − �q2

2mN
+ iε

(
i

(q0)2 − �q2 − m2
π + iε

)2

( )2
∼ i

E − �q2

mN
+ iε

1

�q2 + m2
π

+ · · · , (117)
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Fig. 2. Parity-conserving iterated one-pion-exchange diagram. A solid (dashed) line represents a nucleon (pion
The dotted line indicates the cut line which picks out the two-nucleon intermediate state.

whereE ∼ O(p2/mN) is the nucleon kinetic energy. The “· · ·” are contributions from
the pion poles, which scale according to naive power counting, and other small term
Yet, the term shown explicitly, stemming from the nucleon pole, represents anO(mN/Q)

enhancement over naive counting.
This enhancement is more general than the specific diagram considered above. It

present in any diagram that represents a time ordering displaying an intermediate state w
nucleons only. Such an intermediate state differs from the initial state only by a diffe
of nucleon kinetic energies, which is small because of the heavy nature of the nucleo
This type of intermediate state already appeared in the pionless EFT, and led to the
mation (74), which is equivalent to unitarization of the potential, i.e., to the solution o
Schrödinger equation.

To carry out the resummation in the presence of explicit pions, two approaches
been proposed, which differ in the treatment of pion effects relative to the contact in
tions. In the simplest approach [89], pion interactions are assumed to be small com
to the non-derivative contact interactions, and only the latter are resummed. Unfortu
this assumption does not converge for allNN channels at momenta of the order of t
pion mass [90]. In the other approach [3], non-derivative contact interactions are as
to be comparable to OPE, and both interactions are resummed. In its original form, Wei
berg’s approach was proposed as an expansion of the potential. This approach ap
be successful in accounting for a broad array of nuclear observables [2], but it, to
problems: iteration of the chiral-symmetry-breaking piece of OPE leads to incons
renormalization [42,89].

Progress has been made recently in the understanding of the power counting releva
for NN scattering atQ ∼ mπ [42]. If an expansion is made around the chiral limit, t
aforementioned problems are in principle resolved, and one obtains an expansion
both consistent and converges. More work is necessary to test the new power count
at this stage we can see the reason for its success. The iteration of OPE in the chir
together with the non-derivativecontact interactions, makes theNN amplitude numerically
similar to Weinberg’s original proposal. Therefore, while unnecessarily resumming high
order terms, Weinberg’s power counting can still be used to organize the potential.

With this scheme, we separate Feynman diagrams into two classes: two-parti
ducible (2PR) and two-particle irreducible (2PI). Only 2PR diagrams lead to the anom

enhancement factor after loop integration discussed above. The 2PI diagrams, in contrast,
do not contain shallow poles, so they have the same power counting as the one-nucleon
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system. With this classification in hand, one can use effective field theory to organi
calculation order by order. The sum of 2PI diagrams yields the potential, which is th
nel for the Lippmann–Schwinger (LS) equation. Through iterations the 2PR diagram
generated. Solving the LS equation, or equivalently the Schrödinger equation, one arriv
at the amplitude from which scattering canbe calculated, and whose poles are theNN

bound states.
In this work we will follow Weinberg’s formalism and derive the PVNN potential up

to O(Q). Only the 2PI PV diagrams are included in the PV potential. All 2PR diagr
can be generated when the PV potential is inserted in the LS equation. In practice,
potential is much smaller than the strong potential so it can be treated as a pertur
One can treat it as a PV operator and calculate the PV matrix element using the
function from LS equation with the strong potential. The connection with the expans
Ref. [42] is easily made by further expanding in powers ofm2

π .

5.3. The PVNN potential

Using the above power counting we construct the PV potential, classifying term
cording to their size. We truncate the chiral expansion of PV potential atO(Q), although
the procedure can be carried out to higher orders in similar fashion. The PC potent
been derived toO(Q4) in Ref. [4].

At O(Q−1), the only contribution comes from OPE diagrams of Fig. 3, where
PV vertex is the LO Yukawa interaction and the strong vertex arises from the op
in Eq. (101). These diagrams give rise to a long-range potential,V PV

LR (�k):

V PV
(−1,LR)(

�k) = −gAh1
πNN

2
√

2Fπ

i[�τ1 × �τ2]3 (�σ1 + �σ2) · �k
�k2 + m2

π

(118)

where the−1 subscript denotes the chiral index of the corresponding amplitude and whe
k = p1 − p′

1 = p′
2 − p2.

Subleading corrections arise from several sources. First, there are corrections to
long-range potential from corrections at the PC vertex (see Fig. 4). As discussed in A
dix B, the corrections involvinĝd16,18,19 amount to a renormalization of the bare coupl
Fig. 3. OPE diagram that contributes to the long-range part of the PV potential. The filled circle indicates the PV
πNN Yukawa coupling.
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Fig. 4. Corrections to the long-range PVNN potential from insertions of(a), (b) higher-order PCπNN terms,
which are denoted by the unfilled circle, and (c) loops.

Fig. 5. Corrections to the long-range PVNN potential from insertions of(a), (b) higher-order PVπNN terms,
which are denoted by the circled filled circle, and (c) loops.

g0
A while the term containinĝd17 does not contribute. The remaining terms in Eqs. (1

(103) are proportional togA and do not introduce any new unknown constants into the
potential. Since their contributions are discussed in Appendix B, we do not reproduce th
here.

Qualitatively new corrections arise atO(Q) from long-, medium-, and short-range e
fects,V PV

1,LR, V PV
1,MR andV PV

1,SR, respectively. The NNLO long-range contributions arise fr
inserting the operators in Eq. (107) in the OPE diagrams (see Fig. 5). As noted in
the effects of the operators proportional tok

1b,c
πNN can be absorbed in the potential throu

a suitable redefinition ofh1
πNN andC6. The momentum space form associated with

remaining operator is

V PV
1,LR( �p1, . . . , �p′

2) = gAk1a
πNN

ΛχF 2
π

( �τ1 × �τ2

2

)
3

[ �σ1 · �p′
1 × �p1�σ2 · �q1

�q2
1 + m2

π

+ (1 ↔ 2)

]
+ · · · ,

(119)

where�pi ( �p′
i ) is the initial (final) momentum of theith nucleon,�qi = �p′

i − �pi , and the “· · ·”
denote theO(Q) contributions generated by corrections to the strongπNN vertex through
NNLO (see Eqs. (102), (103)). Taking the Fourier transform of Eq. (119) leads, after
algebra, to the coordinate space potential in Eq. (12). In a similar way, one may ev

the contributions toV PV

1,LR generated by orderQ3 contributions to the parity conserving
πNN vertex.
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Fig. 6. PVNN contact interactions that contribute to the PV short-range potential.

Fig. 7. Possible PV chiral corrections to PCNN couplingsCS,T .

The short-range partV PV
SR arises from

(i) the PVNN contact interactions in Fig. 6 and
(ii) possible chiral corrections to PCNN operatorsCS,T , as shown in Fig. 7.

The contact interactions have exactly the same form as Eq. (5), so we do not rep
the expression here. Of course, the values of theCi, C̃i differ from those in the pionles
theory, where they effectively account for the effects of low-energy pion exchang
principle, one would expect these couplings to be renormalized byπ loop effects, as in the
case ofh1

πNN . As we show in Appendix C, however, such loop effects vanish toO(Q).
Similarly, PV loop corrections to the leading-order PC operators—illustrated in Fig
generate no corrections to the short-range couplings at this order.

The medium-range partV PV
MR arises from the two-pion-exchange (TPE) diagrams,

cluding

(i) the triangle diagrams in Fig. 8,

(ii) the crossed diagrams in Fig. 9, and
(iii) the box diagrams in Fig. 10.
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Fig. 8. PV TPE triangle diagrams that contribute to the medium-range PVNN interaction atO(Q).

Fig. 9. PV TPE crossed diagrams that contribute to the medium-range PVNN interaction atO(Q).
Fig. 10. PV TPE box diagrams that contribute to the medium-range PVNN interaction atO(Q).



d dis-
lation.
the
grams

c OPE
s
als us-
opriate
parts

ring in
ntified
e
5). The
ch all
r

struc-
ular
–
nce
-

iagram
ts
the
cel
472 S.-L. Zhu et al. / Nuclear Physics A 748 (2005) 435–498

The evaluation of these diagrams is somewhat involved, and we give a detaile
cussion in Appendix D. Here, however, we note a few salient features of the calcu
First, the explicit form of the TPE potential is linked to the definition of OPE and
procedure to subtract the iterated OPE from the box diagrams. The slanted box dia
are meant here as a representation of the full box diagram with the iterated stati
subtracted (according to the procedure explained in Appendix D). Relativistic correction
(beyond those in OPE) appear at higher orders. Next, we regulate the loop integr
ing dimensional regularization. The regulator-dependence is removed by the appr
counter-terms, which in general have the form given in Eq. (5). The remaining, finite
of the integrals contain terms “regular”—or polynomial—in momenta andmπ and “irreg-
ular”, or non-analytic, terms. The former are indistinguishable from operators appea
Eq. (5) (and higher-order parts of the potential), whereas the latter are uniquely ide
with the loop integrals. In principle, one may choose to retain explicitly any portion of th
regular terms and absorb the remainder into the short-range LECs appearing in Eq. (
meaning of theCi, C̃i is, thus, scheme-dependent. Here, we adopt a scheme in whi
of the regular terms are absorbed into the correspondingCi, C̃i , leaving only the irregula
contributions explicitly inV PV

1,MR:

V PV
(1,MR)(�q) = − 1

Λ3
χ

{
C̃2π

2 (q)
τ z

1 + τ z
2

2
i(�σ1 × �σ2) · �q

+ C2π
6 (q)iεab3[�τ1 × �τ2]3(�σ1 + �σ2) · �q

}
, (120)

where

C̃2π
2 (q) = 4

√
2πg3

Ah1
πNNL(q),

C2π
6 (q) = −√

2πgAh1
πNNL(q) + 3

√
2

2
π
[
3L(q) − H(q)

]
g3

Ah1
π , (121)

and

L(q) =
√

4m2
π + �q2

|�q| ln

(√
4m2

π + �q2 + |�q|
2mπ

)
, H(q) = 4m2

π

4m2
π + �q2

L(q). (122)

Thus, the PV TPE amplitudes produce contributions with the same spin–isospin
ture as the contact interactionsC̃2,C6. In fact, since the regulator-dependent and reg
parts of the amplitudes can be absorbed intoV PV

SR , we would not expect any new spin
isospin dependence to emerge from the divergent TPE amplitudes. The spatial-depende
of the finite, non-analytic part, however, is qualitatively different. We discuss this differ
ence below.

Finally, we observe that there is no PV three-nucleon force toO(Q). In connecting a
third nucleon via a pion-exchange interaction, one increases the order of a given d
by the same amount as if one added an additional loop. Consequently, the ingredien
given in Section 5.1 allow atO(Q) only tree-level three-nucleon diagrams that involve
leading order PC vertices and the PV Yukawacoupling. However, these diagrams can

against recoil terms in the iteration of the two-nucleon potential. In fact, the situation here
is analogous to theO(Q2) PC three-nucleon force, where a similar cancellation occurs
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[3,5]. As a result, if one employs an energy-independent potential (as is usually mor
venient in few-body calculations), one may omit these three-nucleon diagrams. Non
three-nucleon PV effects should appear only atO(Q2), which is beyond the order of ou
truncation here.

5.4. EFT PV potential: qualitative features

As shown above, the PVNN potential toO(Q) is given by Eqs. (37), (118), (119
(120). The corresponding coordinate-spaceV PV(r) can be obtained straightforwardly b
taking the Fourier transform of these expressions. On the basis of the power countin
would expect the OPE potentialV PV

−1,LR to dominate in those channels where it contribu

unlessh1
πNN is anomalously small compared with the NDA estimate in Eq. (113).

potential is, of course, not new [16]. Several contributions arise with chiral indexν = 1.
Although they are all formally of the same order in power-counting, their effects
nevertheless be distinct due to the differentoperator structures and spatial ranges.
SR potential has already been discussed extensively in the treatment of the pionless EF
Qualitatively, the only impact on the SR potential of including the pion as an explicit de
is that the numerical values of relevant combinations of theCi andC̃i will differ for the
theory with pions.

The two-pion exchange contributionV PV
1,MR also appears atO(Q). The result in

Eq. (120) appears to be the first analytic expression for the PV TPE potential that is m
independent and consistent with the symmetries of QCD. Although studies of PV
effects have appeared previously in the literature (see, e.g., Ref. [18]), direct comp
with our treatment is difficult. First, we have not been able to find an analytic expre
in the literature. Second, two terms in the PV TPE amplitudes that depend strongly on t
cutoff would have appeared explicitly had we not used dimensional regularization
regulator, or cutoff, dependence requires inclusion of short-range counter-terms in order
guarantee that physical observables are regulator-independent. In the analysis of R
however, no mention is made of the counter-terms, and we suspect that the corre
ing TPE potential is not cutoff-independent. Third, the component of the TPE amplitu
unique to the loop diagrams is determined by chiral symmetry, and it is notoriously dif
to maintain this symmetry without usingχPT (see Ref. [5] for an illustrative example in t
parity conserving three-nucleon sector). The situation for PV interactions closely m
the developments in the PC TPENN potential, whose first derivation in accordance w
chiral symmetry was given within EFT [4], and whose form was recently clearly identifie
in a phase-shift analysis ofNN data [91].

The PV TPE contributes two spin–isospin operators. One,

O6 = i[�τ1 × �τ2]3(�σ1 + �σ2) · q̂, (123)

appears also inV PV
−1,LR, butC2π,Loop

6 (q) is not a simple Yukawa function. The structure

also the same as theh1′
ρ term in the DDH potential, where it is usually neglected. The o

spin–isospin structure,
Õ2 = τ z
1 + τ z

2

2
i(�σ1 × �σ2) · q̂, (124)
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Fig. 11. Components of the PVNN potential (in units ofgπ10−4 MeV−2) as function of the momentum
transferred (in MeV): OPE (thick solid line);C6 component of TPE (long-dash line);̃C2 component of TPE
(short-dash line);C6 component of DDH (thin solid line);̃C2 component of DDH (dotted line).

has the structure of theh1
ω-term in the DDH potential. In Fig. 11 we plot the momentu

dependence of the coefficients of the operatorsO6 (Eq. (123)) andÕ2 (Eq. (124)) for
V PV

1,MR, in comparison with the corresponding components ofV PV
−1,LR and the DDH poten

tial using DDH best values from Table 1.
As expected on the basis of power counting, the OPE potential gives the large

fect forq ∼ mπ . As q increases, the TPE potential grows and eventually overcomes
This feature can be understood simply from the more singular nature of TPE: whileV PV

−1,LR

scales asq−1 at largeq (or r−2 at smallr), V PV
1,MR scales asq1 (or r−4). In comparison with

isovectorω-exchange term in DDH, thẽO2 component ofV PV
1,MR has qualitatively similar

behavior at low-q (up to an overall phase). The rise withq is more rapid, however, indica
ing a longer effective range than forω-exchange. As pointed out above, theO6 component
at distancesr � 1/mπ is missing in DDH, while it is not particularly small inV PV

1,MR. This
component will generate an additional energy-dependence in the same channels OPE
tributes. Presumably, the conventional practice of neglecting the TPE component le
inconsistency in the analysis of experiments that probe theÕ6 operator at different scale
We see no theoretical justification to neglect TPE.

It may, perhaps, be surprising that the TPE contributions toÕ2,6 become numerically
non-negligible compared to the OPE effect at relatively low-momentum. For exa
when q is of the order of typical Fermi momentum for nuclei (∼ 200 MeV), the TPE
contribution toÕ6 is roughly one third the OPE contribution. One may wonder, there

whether the EFT converges too slowly to justify truncation atO(Q). One should keep in
mind, however, that TPE effects always appear in tandem with short-range components of
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the same order and that the latter properly compensate for the most singular part
TPE contribution.

New long-range, single pion-exchange terms also arise at subleading order. The
ture of the operator associated withk1a

πNN —shown in Eq. (12)—is distinct from thos
appearing inV PV

−1,LR, V PV
1,MR andV PV

1,SR as well as from the operators appearing in the D
potential. Additional structures are induced by relativistic corrections to the PVπNN

Yukawa interaction, which are neglected in the DDH approach (see Appendix B). A
sistent power counting, however, requires that one include them along with the SR a
operators.

Finally, one might also worry that we have not included∆ isobar contributions explicitly
sincem∆ − mN is comparable tomπ . Indeed, in our treatment,∆ effects are implicit
in the LECs. Had we kept the∆ as an explicit degree of freedom, it would contribu
to the two-body PVNN interaction solely via loops. Because the PVπN∆ interaction
vertices are of D-wave character, loops that contain this new PV interaction are gene
two orders higher than the correspondingπN loops containing the PV Yukawa couplin
Similarly, there would also be∆ contributions to the renormalization ofh1

π appearing in
V PV

−1,LR. Since experiments are sensitive only to the renormalized Yukawa coupling

treatment of∆ loops will only affect the interpretation ofh1
π and not its extraction from

experiment (see the last article in Ref. [38]). The only new contributions from the∆ to the
PV NN interaction would be in the TPE potential where the∆ appears between two P
πN∆ vertices.7 There would also be three-nucleon diagrams that are the PV versi
the leading PC three-nucleon force [5]. The calculation of these effects is straightforwar
and they introduce no new, a priori unknown PV couplings. We leave the “impro
version of the PV EFT containing these effects for the future when it may be requir
phenomenological considerations.

5.5. Currents

As discussed earlier, any experimental program aimed at determining the PV
energy constants will likely include electromagnetic processes. In order to maintain
invariance, one must include the appropriate set of meson-exchange-current op
Typically in nuclear physics, one expresses the requirements of gauge invariance t
the continuity equation

�∇ · �J = [Ĥ , ρ], (125)

whereJµ = (ρ, �J ). For the long- and medium-range components of the potential, a
imal set of current operators satisfying Eq. (125) can be obtained by inserting the p
on all charged lines in one- and two-pion-exchange diagrams. The meson exchan
rent (MEC) operator corresponding toV PV

−1,LR, Fig. 12, is given in Ref. [21]. The operato

associated withV PV
1,LR andV PV

1,MR are more involved (see Fig. 13(a)–(d)). In particular, c

struction of the MEC operator associated withV PV
1,MR is technically arduous, as one mu
7 In the two-nucleon PV interaction, these are diagrams analogous to those in Figs. 9, 10 but with the∆

substituted for a nucleon on the line without a filled circle.



(a) PC
ntact

e of the
ation.
to en-
(125)

ch
by

men-

nergy

-
these
of

. How-

deed,
476 S.-L. Zhu et al. / Nuclear Physics A 748 (2005) 435–498

Fig. 12. Long-range PV meson-exchange currents in leading order. A wavy lines represents a photon.

Fig. 13. Corrections to PV meson-exchange currents: OPE from minimal substitution in the sub-leading
and (b) PVπNN vertices, (c) TPE, (d) short-range contribution from minimal substitution in the PV co
interaction, and (e) OPE from newγπNN vertex. Not all ordering and topologies are displayed.

evaluate a large number of Feynman diagrams—a task which goes beyond the scop
present study. Thus, we defer a derivation of these MEC operators to a future public

The foregoing set of MECs constitute a minimal, model-independent set required
sure that Eq. (125) is satisfied. In addition, one may consider MECs that satisfy Eq.
independently from the terms in the potential. AtO(Q), we find that there exists one su
MEC that is not determined fromV PV by gauge invariance. This operator is obtained
OPE with an insertion of the operator from Eq. (110) (Fig. 13(e)), leading to the mo
tum space two-body current

�J = −i

[√
2gπNN C̄π

mNΛχFπ

]
τ+

1
�σ2 · �q2 (�q1 + �q2) × �σ1

�q2
2 + m2

π

+ (1↔ 2) (126)

and to Eq. (13) in coordinate space.

6. Short-distance archeology: correspondence with DDH and beyond

In the ideal situation, a systematic EFT treatment would use experimental low e
measurements in order to determine the counter-termsλt , λ

0,1,2
s , ρt , h1

πNN , k1a
πNN , and

C̄π entirely from data. As emphasized earlier, there exists in principle a program of low
energy few-body measurements which will yield at least five linear combinations of
constants. Alternately, one would ultimately hope to gain a theoretical understanding
the values of these constants (and their linear combinations) probed by experiment
ever, obtaining reliable theoretical predictions is complicated, since the PVNN interaction
involves a non-trivial interplay of weak and non-perturbative strong interactions. In

carrying out a first-principles calculation of the PV LECs is not yet possible, since lattice
QCD techniques are not yet sufficiently advanced to address this problem. Consequently,
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in order to say anything about the LECs beyond NDA estimates, theorists have of ne
relied on model approaches. In this section we illustrate how the PV LECs can in pri
be estimated from details of the short-range dynamics.

Before proceeding further, it is useful to comment on the correspondence with
difference from, the conventional DDH formalism in the treatment of short-distanc
physics.

(i) The EFT approach is systematic and model-independent. No assumption is
about the dynamics underlying the short-range interactions in the EFT, where
DDH formalism relies on a light pseudoscalar- and vector-meson-exchange pict
indicated in Fig. 1.

(ii) The LECsC1–5 have a straightforward correspondence with the DDH PV mes
nucleon couplingsh0,1

ω , h0,1,2
ρ . In the EFT framework, however,C1–5 could deviate

strongly from the DDH values, as we illustrate below.
(iii) In terms of the DDH meson-exchange language we have the constraints

C̃DDH
1

CDDH
1

= C̃DDH
2

CDDH
2

= 1+ χω, (127)

C̃DDH
3

CDDH
3

= C̃DDH
4

CDDH
4

= C̃DDH
5

CDDH
5

= 1+ χρ, (128)

whereχρ,ω denotes the ratio between tensor and vector couplings ofρ,ω meson–
nucleon interaction. In our EFT approach, however,C̃1–5 constitute five LECs whos
values need not be related toC1–5 as in the DDH picture.

(iv) The DDH parameterh′1
ρ is generally discarded since its “best value” is tiny. In E

on the other hand,h′1
ρ contributes toC6, but C6 need not be small since it can r

ceive a contribution, e.g., froma0 meson exchange. Moreover, although the operato
accompanyingC6 has the same spin–isospin structure as PV pion exchange,
interactions have different ranges and may in principle be distinguished as lon
sufficient range of energies is probed.

6.1. Resonance saturation

One popular model approach—which we adopthere for purely illustrative purposes—
assumes that the short-distance dynamics is governed by the exchange of light me
onances. This “resonance saturation” approach has some theoretical justification from t
standpoint of the large-Nc expansion, whereNc denotes the number of colors in QCD [92
It is also supported by several phenomenological studies. It is well known, for exampl
in theO(Q4) chiral Lagrangian describing pseudoscalar interactions, the low-energy
stants are well described by the exchange of heavy mesons [93]. In particular, the
radius of the pion receives roughly a 7% long-distance loop contribution, while the r
maining 93% is saturated byt-channel exchange of theρ0. Similarly, in the baryon secto
dispersion-relation analyses of the isovector and isoscalar nucleon electromagnet

factors indicate important contributions from the lightest vector mesons [94]. Finally, the
primary features of theNN PC potential seem to be well described in such a picture [95].
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Thus, it seems reasonable to assume that low-lying-meson exchange may play an im
role in the short-distance physics associated with the PV LECs.

With these observations in mind, we invoke resonance saturation to arrive at illus
estimates for the PV LECs. The relevant Feynman diagram is the same as in Fig. 1, wh
the exchanged bosons include all possible heavy mesons with appropriate quantu
bers. Here, parity violation enters through one of the meson–nucleon interaction ve
While the DDH framework includes only the lowest-lying vector mesons to describ
short-distance PVNN interaction, we also consider the exchange ofa0(980), a1(1260)
andf1(1285), as well as the radial excitations of these systems. Of course, the PV
receive additional contributions from higher resonances, correlated meson exchange,etc.
However, we limit our consideration to this set, as it already suffices to illustrate to
extent the short-distance PVNN interaction can differ from the predictions of the DD
model.

In order to estimate specific values of LECs in the framework of the meson-exc
model we require the corresponding PC and PV meson–nucleon Lagrangians:

Vector-meson exchange
The parity-conserving vector-meson–nucleon interaction Lagrangian reads

LPC
ρNN = gρNN N̄

[
γµ + χρ

2mN

iσµνq
ν

]
τ · ρµN, (129)

LPC
ωNN = gωNN N̄

[
γµ + χω

2mN

iσµνq
ν

]
ωµN, (130)

LPC
φNN = gφNN N̄

[
γµ + χφ

2mN

iσµνq
ν

]
φµN. (131)

The parity-violating vector-meson–nucleon (V NN ) interaction Lagrangian is given i
Ref. [19]:

LPV
ρNN = N̄γ µγ5

[
h0

ρτ · ρµ + h1
ρρ0

µ + h2
ρ

2
√

6

(
3τ3ρ

0
µ − τ · ρµ

)]
N

− h′1
ρ

2mN

N̄(�τ × �ρµ)3σ
µνqνγ5N, (132)

LPV
ωNN = N̄γ µγ5ωµ

[
h0

ω + h1
ωτ3
]
N, (133)

LPV
φNN = N̄γ µγ5φµ

[
h0

φ + h1
φτ3
]
N. (134)

Note that we have adopted the convention forγ5 following Ref. [96], which isdifferent
from that used in Ref. [19].

To our knowledge, the following contributions to the PVNN short-distance interactio
have not been discussed elsewhere in the literature.

a0(980)-meson exchange

LPC
a0NN = ga0NNN̄τ · a0N, (135)
LPV
a0NN = ha0N̄ iγ5(�τ × �a0)3N. (136)
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a1(1260)-meson exchange

LPC
a1NN = ga1NNN̄γµγ5τ · aµ

1 N. (137)

Note that the structurēNiσµνq
ν(�τ · �aµ

1 )γ5N is analogous to the weak-electricity for
factor of nuclear beta decay; it is parity conserving but CP violating and hence is n
included. The PV Lagrangian is

LPV
a1NN = N̄γµ

[
h0

a1
τ · aµ

1 + h1
a1

a1
µ
0 + h2

a1

2
√

6

(
3τ3a1

µ
0 − τ · aµ

1

)]
N

+ N̄
iσµνq

ν

2mN

[
h3

a1
τ · aµ

1 + h4
a1

a1
µ
0 + h5

a1

2
√

6

(
3τ3a1

µ
0 − τ · aµ

1

)]
N, (138)

wherea0
1 is the neutral component ofa1 meson.

f1(1285)-meson exchange

LPC
f1NN = gf1NNN̄γµγ5f

µ
1 N, (139)

LPV
f1NN = N̄γµ

[
h0

f1
f

µ
1 + h1

f1
f1

µτ3]N. (140)

In principle, one may also include in such a model exchange of the radial excitatio
ρ,ω,φ, a0, a1, f1 mesons is also allowed.

6.2. LECs with DDH framework and beyond

With these couplings in hand, we can identify our predictions for the various low-en
constants.

If we consider only vector-meson exchange à la DDH, we have

C̃DDH
i

CDDH
i

= 1+ χω, i = 1,2,
C̃DDH

i

CDDH
i

= 1+ χρ, i = 3–5,

CDDH
1 = −Λωh0

ω, CDDH
2 = −Λωh1

ω, CDDH
3 = −Λρh0

ρ,

CDDH
4 = −Λρh1

ρ, CDDH
5 = Λρ

2
√

6
h2

ρ, CDDH
6 = −ΛρgρNNh′1

ρ ,

where we have defined

ΛM = Λ3
χ

2mNm3
M

. (141)

However, within the context of resonance saturation, these LECs could also r
contributions from radial excitations of rho and omega mesons, and froma0-, a1-, f1-
meson exchange. Hence we have, more generally,

C1,2 = CDDH
1,2 + CRadial

1,2 + C
f1
1,2, C̃1,2 = C̃DDH

1,2 + C̃Radial
1,2 ,

C = CDDH + CRadial+ C
a1 , C̃ = C̃DDH + C̃Radial+ C̃

a1 ,
3–5 3–5 3−5 3–5 3–5 3–5 3–5 3–5

C6 = CDDH
6 + CRadial

6 + C
a0
6 , (142)
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where

C
f1
1 = −Λf1gf1NNh0

f1
, C

f1
2 = −Λf1gf1NNh1

f1
,

C
a1
3 = −Λa1ga1NNh0

a1
, C̃

a1
3 = −Λa1ga1NN

(
h0

a1
+ h3

a1

)
,

C
a1
4 = −Λa1ga1NNh1

a1
, C̃

a1
4 = −Λa1ga1NN

(
h1

a1
+ h4

a1

)
,

C
a1
5 = Λa1

2
√

6
ga1NNh2

a1
, C̃

a1
5 = − Λa1

2
√

6
ga1NN

(
h2

a1
+ h5

a1

)
,

C
a0
6 = −Λa0ha0. (143)

Similar relations will hold for the radial excitations.

6.3. Estimates forC1–6, C̃1–5

As noted above, arriving at reliable theoretical predictions for the PV LECs, even w
the context of a model framework, is a formidable task, and one which certainly
beyond the scope of the present work. Nevertheless, it is useful to have in hand ed
guesses for their magnitudes and signs, if for no other reason than to provide benc
for comparison with experiment. To that end, we quote below both expectations ba
naive dimensional analysis and values obtained from correspondence with the DDH mod
Future work could include, for example, computing the weak couplings entering Eq.
thereby providing model estimates for the departures of theCi andC̃i from their NDA or
DDH values.

There exist various values for the parity-conserving couplingsgρNN , χρ , gωNN , andχω

quoted in the literature [97–99]. Fortunately, the combinationgρNN (1+χρ) takes roughly
the same value in different approaches:gρNN (1+ χρ) ≈ 21. Likewise various approache
consistently yield a very small value forχω. It is thus reasonable to use the valuesχρ =
6, gρNN = 3 or χρ = 3.7, gρNN = 4.5. A word of caution is in order here. The prop
accounting of chiral symmetry in multi-pion contributions might affect the extraction
strong couplings. For example, the effect ofω exchange inNN scattering is significantly
reduced when correct TPE is considered [91]. As we emphasized earlier, the estima
here should be considered to yield only an educated guess for the order of magni
the LECs. The theoretical uncertainty from this exchange model is much larger th
choice ofχρ andgρNN . Here, we simply useχρ = 3.7, gρNN = 4.5, χω = −0.12, and
gωNN = 14 to make our best guess. Results are given in Table 2 and should be use
due caution.

7. Conclusions

In summary, we have performed a systematic study of the parity-nonconse
nucleon–nucleon potential, and have suggested ways by which the present confu

perimental situation can be resolved. We have proposed breaking this program into two
separate pieces:
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Table 2
Estimates of ranges and best values for PV coupling constantsC1–6, C̃1–5 (in units ofgπ = 3.8× 10−8)

LECs Naive dimensional analysis Best values Range

C1 ±158 32 −95→172
C̃1 ±158 28 −84→151
C2 ±158 17 13→32
C̃2 ±158 15 11→28
C3 ±158 63 −63→171
C̃3 ±158 296 −296→803
C4 ±158 95 −289→520
C̃4 ±158 1 0→1
C5 ±158 −11 −13→ −8
C̃5 ±158 −51 −61→ −28
C6 ±158 – –

(i) Since the low-energy parity-violating potential involves five S–P wave mixing am
tudes, we have constructed a simple local effective potential in order to reliably e
such quantities from experiments involving only theNN , Nd , or Nα systems. We
have also suggested the critical experiments that are needed in order to successfu
complete this task and have given explicit formulas which will express the mixing
plitudes in terms of experimental observables. We have also suggested a two
experimental program, where phase one would include six (or possibly seven)
surements needed to test the consistency of the pionless EFT and phase two
involve additional measurements needed to determine the pion-related parameters
necessitated by the results of phase one.

(ii) A second important facet of this program is to confront the extracted phenom
logical potential with theoretical expectations. For this task, we have systema
constructed a parity-violating nucleon–nucleon potentialV PV(�r) within the frame-
work of effective field theory using the Weinberg counting scheme up to the
O(Q). The correspondence with, and difference from, the conventional DDH p
tial were discussed.

In order for this scheme to come to fruition additional work is required on several fr
Experimentally it is critical to complete the key experiments, resulting in a confir
and reliable set of low-energy phenomenological parameters. Once these parameters
known, it is important to use them in order to analyze the heavier nuclear system
resolve the various existing conflicts. Doing so could have important implications fo
applicability of EFT to other electroweak processes in heavy nuclei, such as neutri
doubleβ-decay [81]. Future work is also needed tounderstand the relation between t
underlying effective weak potentialV PV(�r) and the effective phenomenological param
tersρt , λt , λi

s and should involve the best available nuclear wave functions. What sh
result from this program is the resolution of the presently confusing experimental situ

and a reliable form for the parity-violating nuclear potential, which we hope will set the
standard for future work in this field.
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Appendix A. The PV NN contact Lagrangian

Since we employ the heavy-fermion formalism, one can build the most gener
operators by using heavy-baryon fields directly. This approach, however, yields redu
operators, which then have to be eliminated byimposing reparameterization invariance
Alternatively, we can obtain the relevant operators starting from the relativistic theory
performing a non-relativistic expansion. We useψN , ψ̄N for the relativistic nucleon field
andN , N† to denote the nucleon field after non-relativistic reduction. In general, ther
exist twelve possible PV and CP conservingNN -interaction terms up to one derivativ
which we write as

O1 = g1

Λ2
χ

ψ̄N1γµψNψ̄N 1γ µγ5ψN, Õ1 = g̃1

Λ3
χ

ψ̄N1iσµνq
νψNψ̄N1γ µγ5ψN,

O2 = g2

Λ2
χ

ψ̄N1γµψNψ̄Nτ3γµγ5ψN, Õ2 = g̃2

Λ3
χ

ψ̄N1iσµνq
νψNψ̄Nτ3γµγ5ψN,

O3 = g3

Λ2
χ

ψ̄NτaγµψNψ̄Nτaγµγ5ψN, Õ3 = g̃3

Λ3
χ

ψ̄Nτaiσµνq
νψNψ̄Nτaγµγ5ψN,

O4 = g4

Λ2
χ

ψ̄Nτ3γµψNψ̄N 1γµγ5ψN, Õ4 = g̃4

Λ3
χ

ψ̄Nτ3iσµνq
νψNψ̄N1γµγ5ψN,

O5 = g5

Λ2
χ

Iabψ̄NτaγµψNψ̄Nτbγµγ5ψN,

Õ5 = g̃5

Λ3
χ

Iabψ̄Nτaiσµνq
νψN ψ̄Nτbγµγ5ψN,
O6 = g6

Λ2
χ

εab3ψ̄NτaψNψ̄Nτbiγ5ψN,
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Õ6 = g̃6

Λ3
χ

εab3ψ̄NτaγµψNψ̄Nτbiσµνq
νγ5ψN, (A.1)

whereIab is defined in Eq. (6). In writing down these PV operators, we have assume
all the isospin violation arises from the weak interaction, thus neglecting isospin vio
from up and down quark mass difference and electromagnetic interactions, since corre
tions from such effects are typically around a few percent and negligible for our purp
The isospin content of the above terms is transparent: the 1·1, τ · τ terms conserve isospin
the piece withIab carries�I = 2, and all remaining pieces change isospin by one un

In order to understand the constraints that relativity imposes, we consider a s
example—the expansion ofO1 andÕ1. Up toO(Q) we have

O1 = g1

Λ2
χ

1

2mN

[−N†1NN†1�σ · i �D−N + N†1iDi−NN†1σ iN

− iεijkN†1iDi+σjNN†1σkN
]
,

Õ1 = − g̃1

Λ3
χ

iεijkN†1iDi+σjNN†1σkN. (A.2)

Note that thetwo relativistic structuresO1 and Õ1 together yieldthree distinct non-
relativistic spacetime forms. However, only two linear combinations of these form
independent according to the strictures of relativity. On the other hand, if we had starte
from the non-relativistic theory and tried to write the most general effective Lagrangia
we would have naively identified each of these three structures as being independent
would have mistakenly postulated three, rather than two, LECs. The requirements im
on the independence of various non-relativistic operators which follow from consistenc
with the relativistic theory is known as reparameterization invariance. Physically, th
variance amounts to stating that the non-relativistic theory should not contain more p
(e.g., LECs) than the relativistic one. Analogous situations occur in heavy-quark EF
in the non-relativistic expansion of the nucleon kinetic operator in heavy-nucleon EFT.

Similar results follow for the operatorsO2–5 andÕ2–5 in that each set{Oi , Õi} gener-
ates twoindependentcombinations of non-relativistic operators and, thus, two independe
LECs. On the other hand, after non-relativistic reduction,O6 and Õ6 yield exactly the
sameform up toO(Q). Hence, these structures yield onlyone independent LEC in the
non-relativistic theory even though there are two different LECs in the original, relativ
theory. The new LEC is a linear combination ofg6 andg̃6.

The full PV contact heavy-nucleon Lagrangian atO(Q) in theNN sector can then b
written in the form given in Eq. (71), where the LECsCi are related to the relativisti
couplingsgi via

C1−5 = Λχ

2mN

g1–5, (A.3)

C̃1–5 = g̃1–5 + Λχ

2mN

g1–5, (A.4)
C6 = g̃6 − Λχ

2mN

g6. (A.5)
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We thus have a total of ten PV LECs describing PV short-distanceNN physics. For the
purpose of characterizing PV operators in theNN system throughO(Q), these ten con
stants are sufficient.

Appendix B. Corrections to V PV
−1,LR

There are subleading corrections to OPE that arise from Fig. 4, where the strong
comes from subleading PC operators in Eqs. (102), (103). In fact, when theν = 1 opera-
tors from Eq. (102) are inserted in Fig. 4, the resulting PV potential is naively ofO(Q0).
However, with

v · q = q0 = �p2
1i − �p2

1f

2mN

∼O
(
Q2/mN

)
, (B.1)

with i (f ) denoting the initial (final) nucleon, we have

V PV
1a,LR = i

gAh1
πNN

4
√

2m2
NFπ

(
τ1 × τ2

2

)
3

( �p2
1i − �p2

1f )�σ1 · ( �p1f + �p1i ) − (1↔ 2)

�q2 + m2
π

, (B.2)

whereq = p2f − p2i = p1i − p1f . Thus, this contribution enters atO(Q) and must be
included for consistency.

Similarly, the second and third operators from Eq. (103) are nominallyν = 2 but lead
to corrections that areO(Q3), since they contain two kinetic operators fromv · D or v · A.
However, the insertion of the first, fourth and fifthν = 2 operators from Eq. (103) in Fig.
lead to contributions atO(Q). We list these terms below. The contribution from the fi
operator in Eq. (103) reads

V PV
1b,LR = �q2

8m2
N

V PV
−1,LR. (B.3)

The contribution from the fourth operator in Eq. (103) is

V PV
1c,LR = −i

gAh1
πNN

8
√

2m2
NFπ

(
τ1 × τ2

2

)
3

( �p2
1i + �p2

1f )�σ1 · �q + (1 ↔ 2)

�q2 + m2
π

. (B.4)

Finally, the contribution from the fifth operator in Eq. (103) reads

V PV
1d,LR = i

gAh1
πNN

4
√

2m2
NFπ

(
τ1 × τ2

2

)
3

× (�σ1 · �p1f )(�q · �p1i ) + (�σ1 · �p1i )(�q · �p1f ) + (1 ↔ 2)

�q2 + m2
π

. (B.5)

Now consider the operators associated withd̂16−19. In the isospin-symmetric limit, to
leading order in the chiral expansion we have

S · A〈χ+〉 ∼ m2
π

F 2
π

S · A, 〈S · Aχ+〉 ∼ 0,
[S ·D, χ−] ∼ m2
π

F 2
π

S · A,
[
S ·D, 〈χ−〉]∼ m2

π

F 2
π

S · A. (B.6)
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As a consequence, the LECsd̂16,18,19 simply renormalize the bareπNN coupling constan
g0

A at orderO(Q2) while LEC d̂17 does not contribute. Up to the truncation orderO(Q)

the corrections from these LECs to PVNN potential are automatically taken into accou
as long as we use the renormalized (or physical)gA in Eq. (118).

Another possible source of corrections to the long-range PV potential is the inser
subleading PV operators in Fig. 3. As pointed out in the Section 5, the PV vector op
does not contribute due to vector-current conservation. The axial-vector operator in
two pions and leads to loop corrections atO(Q2). The contribution from the remainin
PV operator proportional tok1a

πNN has been discussed extensively in the main body o
paper.

Many chiral loops exist at this order, from self-energy and PC- and PV-vertex co
tions. The chiral loops do yield contributionsO(Q). However, these effects are includ
in the renormalization ofgA [82] and ofh1

πNN [32].

Appendix C. Loop corrections to V PV
1,SR

The contact PV interactions in Fig. 6 appear atO(Q). From a simple counting of th
chiral order of vertices , propagators, and loops, it is clear that loop corrections to the
LECs, shown in Fig. 14, first appear atO(Q3), which is beyond our truncation order.

Potentially more important are the loop corrections to the contact PC interactions,
one vertex is the PV Yukawa coupling of the pion to the nucleon. The relevant Fey
diagrams are shown in Fig. 7.

Take theCS NN contact interaction as an example. For diagram (a-1), the amplitu
nominallyO(Q), and reads

iMa1 ∼ h1
πNN

CS

2

√
2gA

Fπ

∫
dDk

(2π)D

i(S1 · k)

v1 · (p′
1 + k) + iε

i

v1 · (p1 + k) + iε

i

k2 − m2
π + iε

= −h1
πNNCS

√
2gA

Fπ

S
µ
1

∞∫
0

s ds

1∫
0

du

∫
dDk

(2π)D

× kµ

[k2 + sv1 · k + s(1− u)v1 · p′
1 + usv1 · p1 + m2

π ]3 , (C.1)

wheres has the dimensions of mass, and where we have Wick-rotated to Euclidea
menta in the second line. From this form it is clear thatiMa1 ∝ S1 · v1 = 0. The same
argument holds for diagrams (a-2)–(a-4).

For diagram (b-1), the amplitude reads

iMb1 ∼ h1
π

CS

√
2gA

∫
dDk i(S2 · k) i

′
i

2 Fπ (2π)D v2 · (p2 + k) + iε v1 · (p1 + k) + iε k2 − m2
π + iε
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= −h1
πCS

√
2gA

Fπ

S
µ
2

∞∫
0

s ds

1∫
0

du

∫
dDk

(2π)D

× kµ

[k2 + sv1 · k + s(1− u)v · p2 + usv · p′
1 + m2

π ]3 = 0, (C.2)

where we have used the fact thatv1 = v2 = v = (1, �0) for low-energyNN interaction.
Similarly, (b-2)–(b-4) vanish atO(Q).

There remains a third class of diagrams, (c-1)–(c-4). These are 2PR diagrams and th
amplitudes do not vanish atO(Q). For example, the amplitude corresponding to diag
(c-1) reads

iMc1 ∼ h1
π

CS

2

√
2gA

Fπ

∫
dDk

(2π)D

i(S2 · k)

v2 · (p′
2 − k) + iε

i

v1 · (p′
1 + k) + iε

i

k2 − m2
π + iε

.

However, only the 2PI part of these diagramsshould be included. In other words, the co
tribution from the two-nucleonintermediate state should be subtracted from the amplitude
This can be done in old-fashioned time-ordered perturbation theory. Alternatively, we
use the following identity to accomplish the subtraction easily:

i

−v · k + iε
= − i

v · k + iε
+ 2πδ(v · k). (C.3)

The second term corresponds to the two-nucleon pole, while the first term is free of
frared enhancement discussed earlier. After subtracting the two-nucleon-pole contri
the modified amplitude for diagram (c-1) becomes

iM̃c1 ∼ −h1
π

CS

2

√
2gA

Fπ

∫
dDk

(2π)D

i(S2 · k)

v2 · (k − p′
2) + iε

i

v1 · (p′
1 + k) + iε

i

k2 − m2
π + iε

= 0.

Similarly, the 2PI parts of diagrams (c-2)–(c-4) vanish. We see that diagrams (c-1)
can be generated from the PCO(Q0) CS,T contact potential and leading-order PV OP
potential by iteration in the LS equation.
Fig. 14. Possible chiral corrections to PVNN contact interactions.
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In summary, the chiral-loop corrections to the PV short-range potential occur atO(Q2)

or higher.

Appendix D. Derivation of V PV
1,MR

Of course, a consistent calculation in EFT must include all loop diagrams pres
a given order. In this appendix we give some details of the evaluation of the diagra
Figs. 8, 9, 10. We use dimensional regularization for simplicity.

Let us consider first the triangle diagrams in Fig. 8.

Flavor-conserving case
In this case the initial and final state on each nucleon line are the same, i.e., a

remains a proton and a neutron remains a neutron. Diagrams (c) and (d) are mirror di
of (a) and (b) in Fig. 8. We focus on (a) and (b). The sum of their amplitudes reads

iM(a)+(b) = −
√

2gAh1
π

4F 3
π

∫
dDk

(2π)D

N̄1τ
1
3v1 · (2k − q)N1N̄21S2 · (2k − q)N2

v · (p2 + k)(k2 − m2
π)[(k − q)2 − m2

π ]

= −
√

2gAh1
π

4F 3
π

{
16

1∫
0

dx

∞∫
0

dy

∫
dDk

(2π)D

× (v1 · k)(S2 · k)

[k2 − y2 − m2
π − x(1− x)�q2]3

+ 8(S2 · q)

∞∫
0

y dy

1∫
0

dx(1− 2x)

∫
dDk

(2π)D

× 1

[k2 − y2 − m2
π − x(1− x)�q2]3

}
= 0. (D.1)

After momentum integration the first term contains a factorv1 · S2 = 0. The second term
vanishes due to thex integration, since the integrand is a total derivative.

Flavor-changing case:n ↔ p

In this case the sum of the amplitude for diagram (a) and (b) reads

iM(a)+(b) =
√

2gAh1
π

4F 3
π

∫
dDk

(2π)D

(p̄v1 · (2k − q)n)(n̄S2 · qp)

v · (p2 + k)(k2 − m2
π )[(k − q)2 − m2

π ]

= −i

√
2gAh1

π

Λ2
χFπ

L(q)(p̄n)(n̄S2 · qp), (D.2)

where the functionL(q) is defined as in Eq. (122). The sum of the amplitude for diag
(c) and (d) is, likewise,

√

iM(c)+(d) = i

2gAh1
π

Λ2
χFπ

L(q)(n̄p)(p̄S2 · qn). (D.3)
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Note thatS2 · q ≈ −1
2 �σ2 · �q.

Summing the four diagrams and converting to momentum-space operators we ge

L(q)

2
√

2

gAh1
π

Λ2
χFπ

εab3(N†τaN
)(

N†τb �σ · �qN
)
. (D.4)

Clearly the sum of triangle diagrams has the same Lorentz, isospin structure asC6
contact term.

Consider now the crossed-box diagrams in Fig. 9.

Flavor-conserving case:pp → pp, nn → nn

In Fig. 9, contributions from diagrams (c) and (d) are equal to (a) and (b). Forpp → pp

the sum of (a) and (b) leads to

i4
√

2L(q)
g3

Ah1
π

Λ2
χFπ

(
p†[S1 · q,S

µ
1

]
p
)(

p†S2
µp
)
. (D.5)

Note that, forpp → pp, initial particles are identical. The operator form will gener
both (a), (b) and their mirror diagrams simultaneously.

For thenn → nn channel, there is an extra minus sign from PV Yukawa vertex.

√
2L(q)

g3
Ah1

π

Λ2
χFπ

εijk
(
n†qiσ jn

)(
n†σkn

)
. (D.6)

Combining bothpp → pp andnn → nn channels, we get

−L(q)√
2

g3
Ah1

π

Λ2
χFπ

εijk
(
N†τ3q

iσ jN
)(

N†σkN
)
,

−L(q)√
2

g3
Ah1

π

Λ2
χFπ

εijk
(
N†qiσ jN

)(
N†τ3σ

kN
)
. (D.7)

Flavor changing case:n → p,p → n

The sum of diagrams (a)–(d) leads to

+3
√

2

16

[−3L(q) + H(q)
] g3

Ah1
π

Λ2
χFπ

εab3(N†τaN
)(

N†τb �σ · �qN
)
, (D.8)

whereH(q) is defined as in Eq. (122).

Finally, we discuss the box diagrams. As in Appendix C, we have to subtract the c
bution from the two-nucleon intermediate state. The corresponding time-ordered dia
are shown in Fig. 10. After the subtraction the 2PR part, we find:

Flavor-conserving case:p → p andn → n

Fornp → np the sum of all diagrams leads to

3 1
i4
√

2L(q)
gAhπ

Λ2
χFπ

(
n†[S1 · q,S

µ
1

]
n
)(

p†S2
µp
)
. (D.9)
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Note that, forpn → pn, there is an extra minus sign from the PV Yukawa vertex,

−i4
√

2L(q)
g3

Ah1
π

Λ2
χFπ

(
p†[S1 · q,S

µ
1

]
p
)(

n†S2
µn
)
. (D.10)

Combining both channels, we get

L(q)√
2

g3
Ah1

π

Λ2
χFπ

εijk
(
N†τ3q

iσ jN
)(

N†σkN
)
,

−L(q)√
2

g3
Ah1

π

Λ2
χFπ

εijk
(
N†qiσ jN

)(
N†τ3σ

kN
)
. (D.11)

Flavor-changing case:n ↔ p

The sum of all diagrams leads to the same result as in the crossed-box case,

3
√

2

16

[−3L(q) + H(q)
] g3

Ah1
π

Λ2
χFπ

εab3(N†τaN
)(

N†τb �σ · �qN
)
. (D.12)

In summary, the sum of one-loop, TPE diagrams is

L(q)

2
√

2

gAh1
π

Λ2
χFπ

εab3(N†τaN
)(

N†τb �σ · �qN
)

+ 3
√

2

8

[−3L(q) + H(q)
] g3

Ah1
π

Λ2
χFπ

εab3(N†τaN
)(

N†τb �σ · �qN
)

− √
2L(q)

g3
Ah1

π

Λ2
χFπ

εijk
(
N†qiσ jN

)(
N†τ3σ

kN
)
, (D.13)

which leads to the medium-range potential (120).

Appendix E. Illustrative estimates

Having a form of the weak parity-violating potentialV PV(r) it is, of course, essentia
to complete the process by connecting with the S-matrix—i.e., expressing the pheno
logical parametersλi, ρt defined in Eq. (36) in terms of the fundamental ones—Ci , C̃i

defined in Eq. (37). This is a major undertaking and should involve the latest and beNN

wave functions such as Argonne V18. The work is underway, but it will be some time
this process is completed [101]. Even after this connection has been completed, the
will be numerical in form. However, it is very useful to have an analytic form by wh
to understand the basic physics of this transformation and by which to make simp
merical estimates. For this purpose we shall employ simple phenomenologicalNN wave
functions, as described below.

Examination of the scattering matrix Eq. (31) reveals that the parametersλs,t are as-

sociated with the short-distance component whileρt contains contributions from the both
(long-distance) pion exchange as well as short distance effects. In the former case, since the
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interaction is short ranged we can use this feature in order to simplify the analysis.
we can determine the shift in the deuteron wavefunction associated with parity vio
by demanding orthogonality with the3S1 scattering state, which yields, using the sim
asymptotic form of the bound state wavefunction [102,103]

ψd(r) = [1+ ρt (�σp + �σn) · (−i �∇) + λt (�σp − �σn) · (−i �∇)
]√ γ

2π

1

r
e−γ r , (E.1)

whereγ 2/M = 2.23 MeV is the deuteron binding energy. Now the shift generate
V PV(r) is found to be [102,103]

δψd(�r) �
∫

d3r ′ G(�r, �r ′)V PV(�r ′)ψd(r ′)

= − M

4π

∫
d3r ′ e−γ |�r−�r ′|

|�r − �r ′| V PV(�r ′)ψd(r ′)

� M

4π
�∇
(

e−γ r

r

)
·
∫

d3r ′ �r ′V PV(�r ′)ψd(r ′), (E.2)

where the last step is permitted by the short range ofV PV(�r ′). Comparing Eqs. (E.2) an
(E.1) yields then the identification√

γ

2π
λtχt ≡ i

M

16π
ξ

†
0

∫
d3r ′ (�σ1 − �σ2) · �r ′V PV(�r ′)ψd(r ′)χtξ0, (E.3)

where we have included the normalized isospin wave functionξ0 since the potential in
volves�τ1, �τ2. When operating on such an isosingletnp state the PV potential can be writte
as

V PV(�r ′) = 2

Λ3
χ

[
(C1 − 3C3)(�σ1 − �σ2) · (−i �∇fm(r) + 2fm(r) · (−i �∇)

)
+ (C̃1 − 3C̃3)(�σ1 × �σ2) · �∇fm(r)

]
, (E.4)

wherefm(r) is the Yukawa form

fm(r) = m2e−mr

4πr

defined in Eq. (7). Using the identity

(�σ1 × �σ2)
1

2
(1+ �σ1 · �σ2) = i(�σ1 − �σ2) (E.5)

Eq. (E.3) becomes√
γ

2π
λtχt

� 2M

16πΛ3
χ

4π

3
(�σ1 − �σ2)

2χt

∞∫
0

dr r3

[ ]

× −2(3C3 − C1)fm(r)

dψd(r)

dr
+ (3C̃3 − 3C3 − C̃1 + C1)

dfm(r)

dr
ψd(r)
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=
√

γ

2π
· 4χt

1

12

2Mm2

4πΛ3
χ

× 2m(6C3 − 3C̃3 − 2C1 + C̃1) + γ (15C3 − 3C̃3 − 5C1 + C̃1)

(γ + m)2
(E.6)

or

λt � Mm2

6πΛ3
χ

2m(6C3 − 3C̃3 − 2C1 + C̃1) + γ (15C3 − 3C̃3 − 5C1 + C̃1)

(γ + m)2 . (E.7)

In order to determine the singlet parameterλ
np
s , we must use the1S0 np-scattering wave

function instead of the deuteron, but the procedure is similar, yielding [102,103]

d
np
s (k)χs ≡ i

M

48π
ξ

†
1

∫
d3r ′ (�σ1 − �σ2) · �r ′V PV(�r ′)ψ1S0

(r ′)χsξ1, (E.8)

and we can proceed similarly. Inthis case the potential becomes

V PV(�r ′) = 2

Λ3
χ

[
(C1 + C3 + 4C5)(�σ1 − �σ2) · (−i �∇fm(r) + 2fm(r) · −(i �∇)

)
+ (C̃1 + C̃3 + 4C̃5)(�σ1 × �σ2) · �∇fm(r)

]
, (E.9)

and Eq. (E.8) is found to have the form

d
np
s (k)χs = 2M

48πΛ3
χ

4π

3
(�σ1 − �σ2)

2χs

∞∫
0

dr r3
{

2[C1 + C3 + 4C5]fm(r)
dψ1S0

(r)

dr

+ [C1 + C̃1 + C3 + C̃3 + 4(C5 + C̃5)
]dfm(r)

dr
ψ1S0

(r)

}

= −12χs
1

36

2Mm2

4πΛ3
χ

eiδs

{
1

(k2 + m2)2

×
[
cosδs

[
4k2(C1 + C3 + 4C5)

+ (C1 + C̃1 + C3 + C̃3 + 4(C5 + C̃5)
)(

k2 + 3m2)]
+ 2m

k
sinδs

[
(C1 + C3 + 4C5)

(
m2 + 3k2)

+ (C1 + C̃1 + C3 + C̃3 + 4(C5 + C̃5)
)
m2]]}, (E.10)

which, in the limit ask → 0, yields the predicted value forλnp
s :

λ
np
s = − 1

a
np
s

lim
k→0

d
np
s (k)

= M

6πa
np
s Λ3

{
3
[
C1 + C̃1 + C3 + C̃3 + 4(C5 + C̃5)

]

χ

− 2ma
np
s

[
2C1 + C̃1 + 2C3 + C̃3 + 4(2C5 + C̃5)

]}
. (E.11)
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Similarly, we may identify

λ
pp
s = − 1

a
pp
s

lim
k→0

d
pp
s (k)

= M

6πa
pp
s Λ3

χ

{
3
[
C1 + C̃1 + C2 + C̃2 + C3 + C̃3 + C4 + C̃4 − 2(C5 + C̃5)

]
− 2ma

pp
s

[
2C1 + C̃1 + 2C2 + C̃2 + 2C3 + C̃3 + 2C4 + C̃4 − 2(2C5 + C̃5)

]}
,

λnn
s = − 1

ann
s

lim
k→0

dnn
s (k)

= M

6πann
s Λ3

χ

{
3
[
C1 + C̃1 − C2 − C̃2 + C3 + C̃3 − C4 − C̃4 − 2(C5 + C̃5)

]
− 2mann

s

[
2C1 + C̃1 − 2C2 − C̃2 + 2C3 + C̃3 − 2C4 − C̃4

− 2(2C5 + C̃5)
]}

. (E.12)

In order to evaluate the spin-conserving amplitudeρt , we shall assume dominance of t
long range pion component. The shift in the deuteron wave function is given by

δψd(�r) = ξ
†
0

∫
d3r ′ G0(�r, �r ′)V PV

LR (�r ′)ψd(r ′)

= − M

4π
ξ

†
0

∫
d3r ′ e−γ |�r−�r ′|

|�r − �r ′| V PV
LR (�r ′)ψd(r ′)χtξ0 (E.13)

but now with8

V PV
LR (�r) = hπgπNN√

2M

1

2
(τ1 − τ2)z(�σ1 + �σ2) · (−i �∇wπ(r)

)
. (E.15)

Of course, the meson which is exchanged is the pion so the short range assumptio
permitted the replacement in Eq. (E.2) is not valid and we must perform the integ
exactly. This process is straightforward but tedious [100]. Nevertheless, we can get a
estimate by making a “heavy pion” approximation, whereby we can identify the con
ρt via√

γ

2π
ρtχt ≈ −i

M

32π

∫
d3r ′ (�σ1 + �σ2) · �r ′V PV

LR (�r ′)ψd(r ′)χtξ0 (E.16)

which leads to [105]√
γ

2π
ρtχt ≈ − 1

32π

4π

3
(�σ1 + �σ2)

2χt

h1
πNNgπNN√

2

∞∫
0

dr r3dfπ (r)

dr
ψd(r)

1

m2
π

=
√

γ

2π
8χt

1

96π

hπgπNN√
2

γ + 2mπ

(γ + mπ)2
. (E.17)

8 Here we have used the identity
(�τ1 × �τ2) = −i( �τ1 − �τ2)
1

2
(1+ �τ1 · �τ2). (E.14)
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We find then the prediction

ρt = gπNN

12
√

2π

γ + 2mπ

(γ + mπ)2h1
πNN . (E.18)

At this point it is useful to obtain rough numerical estimates. This can be done b
of the numerical estimates given in Table 2. To make things tractable, we shall use th
values given therein. Since we are after only rough estimates and since the best va
sume the DDH relationship—Eq. (9) betweenthe tilded and non-tildedquantities, we shal
express our results in terms of only the non-tilded numbers—a future complete evaluat
should include the full dependence. Of course, these predictions are only within a m
but they has the advantage of allowing connection with previous theoretical estima
this way, we obtain the predictions

λt = [−0.092C3 − 0.014C1]m−1
π ,

λ
np
s = [−0.087(C3 + 4C5) − 0.037C1

]
m−1

π ,

λ
pp
s = [−0.087(C3 + C4 − 2C5) − 0.037(C1 + C2)

]
m−1

π ,

λnn
s = [−0.087(C3 − C4 − 2C5) − 0.037(C1 − C2)

]
m−1

π ,

ρt = 0.346hπm−1
π , (E.19)

so that, using the best values from Table 2 we estimate

λt = −2.39× 10−7m−1
π = −3.41× 10−7 fm,

λ
np
s = −1.12× 10−7m−1

π = −1.60× 10−7 fm,

λ
pp
s = −3.58× 10−7m−1

π = −5.22× 10−7 fm,

λnn
s = −2.97× 10−7m−1

π = −4.33× 10−7 fm,

ρt = 1.50× 10−7m−1
π = 2.14× 10−7 fm. (E.20)

Again we emphasize that in arriving at the foregoing expressions, we have used the
relationships between theCi and C̃i . In the more general case, one should obtain
pressions containing roughly the linear combinations given in Eqs. (46). A similar c
applies to the expressions below.

At this point we note, however, thatλpp
s is an order of magnitude larger than the e

perimentally determined number, Eq. (55). The problem here is not with the couplin
with an important piece of physics which has thus far been neglected—short distan
fects. There are two issues here. One is that the deuteron andNN wave functions should
be modified at short distances from the simple asymptotic form used up until this po
order to account for finite size effects. The second is the well-known feature of the Ja
correlations that suppress the nucleon–nucleon wave function at short distance.

In order to deal approximately with the short distance properties of the deuteron
function, we modify the exponential form to become constant inside the deuteron radR

[102,103]√ {
1 −γR
γ

2π

1

r
e−γ r → N

R
e , r � R,

1
r
e−γ r , r > R,

(E.21)
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where

N =
√

γ

2π

eγR√
1+ 2

3γR

is the modified normalization factor and we useR = 1.6 fm. For theNN wave function
we use [102,103]

ψ1S0
(r) =




A
sin
√

p2+p2
0 r√

p2+p2
0 r

, r � rs ,

sinpr
pr

− 1
1
as

+ip

eipr

r
, r > rs,

(E.22)

where we choosers = 2.73 fm andpors = 1.5. The normalization constantA(p) is found
by requiring continuity of the wave function and its first derivative atr = rs

A(p) =
√

p2 + p2
0 rs

sin
√

p2 + p2
0 rs

sinprs − pas cosprs

prs(1+ ipas)
. (E.23)

As to the Jastrow correlations we multiply the wave function by the simple phenom
logical form [106]

φ(r) = 1− ce−dr2
, with c = 0.6, d = 3 fm−2. (E.24)

With these modifications we find the much more reasonable values for the constantsλ
pp,np
s

andλt

λ
pp
s = [−0.011(C3 + C4 − 2C5) − 0.004(C1 + C2)

]
m−1

π ,

λnn
s = [−0.011(C3 − C4 + 2C5) − 0.004(C1 − C2)

]
m−1

π ,

λ
np
s = [−0.011(C3 + 4C5) − 0.004C1

]
m−1

π ,

λt = [−0.019C3 − 0.0003C1]m−1
π . (E.25)

Using the best values from Table 2 we find then the benchmark values

λ
pp
s = −4.2× 10−8m−1

π = −6.1× 10−8 fm,

λnn
s = −3.6× 10−8m−1

π = −5.3× 10−8 fm,

λ
np
s = −1.3× 10−8m−1

π = −1.9× 10−8 fm,

λt = −4.7× 10−8m−1
π = −6.7× 10−8 fm. (E.26)

Sinceρt is a long distance effect, we use the same value as calculated previously
benchmark number

ρt = 1.50× 10−7 m−1
π = 2.14× 10−7 fm. (E.27)

pp
Obviously, the value ofλs is now in much better agreement with the experimental
value Eq. (55). Of course, our rough estimate is no substitute for a reliable state of the art
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wave function evaluation. This has been done recently by Carlson et al. and yields, usi
the Argonne V18 wavefunctions [104]

λ
pp
s = [−0.008(C3 + C4 − 2C5) − 0.003(C1 + C2)

]
m−1

π (E.28)

in reasonable agreement with the value calculated in Eq. (E.25). Similar efforts s
be directed toward evaluation of the remaining parameters using the best moder
functions.

We end our brief discussion here, but clearlythis was merely a simplistic model calc
lation. It is important to complete this process by using the best contemporary nuc
nucleon wave functions with the most general EFT potential developed above, in or
allow the best possible restrictions tobe placed on the unknown counter-terms.
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