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Abstract

We reformulate the analysis of nuclear parity violation (PV) within the framework of effective
field theory (EFT). ToO(Q), the PV nucleon—nucleonV(V) interaction depends on five a priori
unknown constants that parameterize the leading-order, short-range four-nucleon operators. When
pions are included as explicit degrees of freedom, the potential contains additional medium- and
long-range components parameterized by AVN coupling. We derive the form of the correspond-
ing one- and two-pion-exchange potentials. We apply these considerations to a set of existing and
prospective PV few-body measurements that may be used to determine the five independent low-
energy constants relevant to the pionless EFT and the additional constants associated with dynamical
pions. We also discuss the relationship between the conventional meson-exchange framework and the
EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing
nuclear PV.
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1. Introduction

The cornerstone of traditional nuclear physics is the study of nuclear forces and, over the
years, phenomenological forms of the nuclear potential have become increasingly sophis-
ticated. In the nucleon—-nucleoi (V) system, where data abound, the present state of the
artis indicated, for example, by phenomenological potentials such as Av18 that are able to
fit phase shifts in the energy region from threshold to 350 MeV in terms 4 parame-
ters [72]. Progress has been made in the description of few-nucleon systems [1], but such a
purely phenomenological approach is less efficient in dealing with the components of the
nuclear interaction that are not constrained\ay data. At the same time, in recent years a
new technique—effective field theory (EFT)—has been used in order to attack this problem
by exploiting the symmetries of QCD [2]. In this approach the nuclear interaction is sepa-
rated into long- and short-distance components. In its original formulation [3], designed for
processes with typical momenta comparable to the pion ngassm,, the long-distance
component is described fully quantum medicatty in terms of pion exchange, while the
short-distance piece is described in terms of a number of phenomenologically determined
contact couplings. The resulting potential [4,5] is approaching [6,7] the degree of accuracy
of purely phenomenological potentials. Even higher precision can be achieved at lower
momenta, where all interactions can be taken as short ranged, as has been demonstrated
not only in the NN system [8,9], but also in the three-nucleon system [10,11]. Precise
(~ 1%) values have been generated also for low-energy, astrophysically important cross
sections of reactions such ast p — d + y [12]. Besides providing reliable values for
such quantities, the use of EFT techniques allows for a realistic estimation of the size of
possible corrections.

Over the past nearly half century there lso developed a series of measurements
attempting to illuminate the parityiolating (PV) nuclear interaction. Indeed, the first
experimental paper was that of Tanner in 1953], shortly after the experimental con-
firmation of parity violation in nuclear betéecay by Wu et al. [14]. Following the seminal
theoretical work by Michel in 1964 [15] and that of other authors in the late 1960s [16-18],
the results of such experiments have geiebeen analyzed in terms of a meson-exchange
picture, and in 1980 the work of Desplangu®onoghue, and Holste(DDH) developed
a comprehensive and general meson-erghdramework for the analysis of such inter-
actions in terms of seven parameters representing weak parity-violating meson—nucleon
couplings [19]. The DDH interaction has become the standard setting by which hadronic
and nuclear PV processes are now analyzed theoretically.

Itis important to observe, however, that the DDH framework is, at heanhdelbased
on a meson-exchange picture. Provided one is interested primarily in near-threshold phe-
nomena, use of a model is unnecessary, and one can instead represent the PV nuclear
interaction in a model-independent effective-field-theoretic fashion. The purpose of the
present work is to formulate such a systematic, model-independent treatmentdiNPV
interactions. We feel that this is a timely goal, since such PV interactions are interesting not
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only in their own right but also as effects entering atomic PV measurements [21] as well
as experiments that use parity violation lecromagnetic interactions to probe nucleon
structure [23].

In our reformulation of nuclear PV, we consider two versions of EFT, one in which the
pions have been “integrated out” and the other including the pion as an explicit degree
of freedom. In the pionless theory, the PV nuclear interaction is entirely short-ranged,
and the most general potential dependseatling order on five independent operators
parameterized by a set of five a priori unknown low-energy constants (LECs). When ap-
plied to low-energy Ecm < 50 MeV) two-nucleon PV observables—such as the neutron
spin asymmetry in the capture reactiont- p — d + y—it implies that there are five
independent PV amplitudes, which may be determined by an appropriate set of measure-
ments. We therefore recover previous results obtained without effective field theory by
Danilov [24] and Desplanques and Missimer [25]. Making contact with these known re-
sults is an important motivation for us to consider this pionless EFT. Going beyond this, in
next (non-vanishing) order in the EFT, there aeveral additional independent operators.

By contrast, the DDH meson-exchange framework amounts to a model in which the short-
range physics is codified into six independeperators. On one hand, the heavy-meson
component of the DDH potential is a redundant representation of the leading-order EFT.
On the other, it does not provide the most complete parameterization of the short-ranged
PV N N force to subleading order, because it isé@don a truncation of the QCD spectrum
after inclusion of the lowest-lying octet of vector mesons. It may, therefore, not be entirely
physically realistic, and we feel that a more general treatment using EFT is warranted.

When we are interested in observables at higher energies, we need to account for pion
propagation explicitly, simultaneously removing its effects from the contact interactions.
Inclusion of explicit pions introduces a long-range component into th&/B\Vinteraction,
whose strength is set at the lowest order by thedRWN Yukawa couplingh}[NN. This
long-range component, which is formally of lomerder than shorter-range interactions,
is identical to the long-range, one-pion-exchange (OPE) component of the DDH poten-
tial. However, in addition, inclusion of pions leads to several new effects that do not arise
explicitly in the DDH picture:

e A medium-range, two-pion-exchange (TPE) component in the potential that arises at
the same order as the leading short-range potential and that is also proportional to
hleNN. This medium-range component was considered some time ago in Ref. [18] but
could not be systematically incorporated into the treatment of nuclear PV until the
advent of EFT. As a result, such piece has not been previously included in the analysis
of PV observables. We find that the two-pion terms introduce a qualitatively new aspect
into the problem and speculate that their inclusion may modif)hﬂ}@N sensitivity
of various PV observables.

o Next-to-next-to-leading-order (NNLO) P¥ NN operators. In principle, there exist
several such operators that contribute to the ¥’’N interaction at the same order as
the leading short-range potential. In practice, however, effects of all but one of the
independent NNLO P\if NN operators can be absorbed via a suitable redefinition
of the short-range operator coefficients dij;q,N. The coefficient of the remaining,
independent NNLO operatork%“NN—must be determined from experiment. Addi-
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tional terms are generated in the potentiaD&) by higher-order corrections to the
strongr N N coupling (hereQ denotes a small momentum or pion mass). These terms
have also not been included in previous treatments of theVAVinteraction. Their
coefficients are fixed by either reparametation invariance or measurements of other
parity-conserving pion—nucleon observables.

e A new electromagnetic operator. For PV observables involving photons, the explicit
incorporation of pions requires inclusion of a PMNxy operator that is entirely ab-
sent from the DDH framework and whose strength is characterized by a co@igtant

In short, for the low-energy processes ofeirgst here, the most general EFT treatment
of PV observables depends in practice on eight a priori unknown constants when the pion
isincluded as an explicit degree of freedom: five independent combinatidh@df short-
range constants and those associated with the effects of thehm@p; C,,and the NNLO
PVrNN couplingki‘;\,N. In order to determine these PV low-energy constants (LECs),
one therefore requires a minimum of five indedent, low-energy observables for the pi-
onless EFT and eight for the EFT with dynamip@ns. Given the theoretical ambiguities
associated with interpreting many-body nuclear observables (see below), one would ideally
attempt to determine the PV LECs from measurements in few-body systems. Indeed, the
state of the art in few-body physics allows one perform ab initio computations of few-body
observables [1], thereby making the few-body system a theoretically clean environmentin
which to study the effects of hadronic PV. At present, however, there exist only two mea-
surements of few-body PV observablaﬁ.”, the longitudinal analyzing power in polarized
proton—proton scattering, am{"‘, the longitudinal analyzing power fgia scattering. In
what follows, we outline a prospective program of additional measurements that would
afford a complete determination of the PV LECs throdt0).

Completion of this low-energy program would serve two additional purposes. First,
it would provide hadron structure theorists with a set of benchmark numbers that are in
principle calculable from first principles. This situation would be analogous to what one
encounters in chiral perturbation theory fiseudoscalar mesons, where the experimental
determination of the ten LECs appearing in t8¢Q*) Lagrangian presents a challenge
to hadron-structure theory. While many of ti¥ Q%) LECs are saturated bychannel
exchange of vector mesons, it is not clear a priori that the analogowé/¥P\¢onstants are
similarly saturated (as is assumed implicitly in the DDH model). Moreover, analysis of the
PV NN LECs involves the interplay of weak and strong interactions in the strangeness-
conserving sector. A similar situation occursArs = 1 hadronic weak interactions, and
the interplay of strong and weak interactions in this case is both subtle and only partially
understood, as evidenced, e.g., by the well-kn@awn= 1/2 rule enigma. The additional
information in theA S = 0 sector provided by a well-defined set of experimental numbers
would undoubtedly shed light on this fundamental problem.

The information derived from the low-energy few-nucleon PV program could also pro-
vide a starting point for a reanalysis of PV effects in many-body systems. Until now, one
has attempted to use PV observables obtained from both few- and many-body systems in
order to determine the seven PV meson—nucleon couplings entering the DDH potential,
and several inconsistencies have emerged it blatant is the vastly different value for
ht,  obtained from the P\y-decays oft®F and from the combination of thep asym-
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metry and the Cesium anapole moment. Although combinations of coupling constants can
be found that fit partial sets of experiments (see, e.g., Ref. [20]), it seems difficult to de-
scribe all experiments consistently with the@sge, e.g., Ref. [21] and references therein).
The origin of this clash could be due to any one of a number of factors. Using the operator
constraints derived from the few-body program as input into the nuclear analysis could
help clarify the situation. It may be, for example, that the medium-range TPE potential or
higher-order operators relevant only to nuclear PV processes play a more significant role in
nuclei than implicitly assumed by the DDH framework. Alternatively, the treatment of the
many-body system—such as the truncation of the model space in shell-model approaches
to the Cesium anapole moment—may be the culprit. (For an example of the relevance of
nucleon—nucleon correlations to parity violation in nuclei, see Ref. [22].) In any case, ap-
proaching the nuclear problem from a more systematic perspective and drawing upon the
results of few-body studies would undoubtedly represent an advance for the field.

In the remainder of the paper, then, we aése in detail the EFT reformulation of
nuclear PV and the corresponding program of study. In Section 2, we briefly review the
conventional, DDH analysis and summarize ey differences with the EFT approach. In
particular, we write down the various components of the PV EFT potential here, relegat-
ing its derivation to subsequent sections. In Section 3, we outline the phenomenology of
the low-energy few-body PV program, providjillustrative relationships between various
observables and the five relevant, independent combinations of short-range LECs. We em-
phasize that the analysis presented in Section 3 is intended to demohetraee would
go about carrying out the few-body program rather than to give precise numerical formulas.
Obtaining the latter will require more sophisticated few-body calculations than we are able
to undertake here. Section 4 contains the derivation of the PV potential in the EFT without
explicit pions. We then extend the framework to include pions explicitly in Section 5. In
Section 6 we discuss the relationship between the PV LECs and the PV meson—nucleon
couplings entering the DDH framework, and illustrate how this relationship depends on
one’s truncation of the QCD spectrum. Section 7 contains some final observations. Various
details pertaining to the calculations contained in the text appear in the appendices.

2. Nuclear PV: old and new

The essential idea behind the conventional DDH framework relies on the fairly suc-
cessful representation of the parity-conservlily interaction in terms of a single meson-
exchange approach. Of course, this requires the use of strong-interaction couplings of the
lightest vector p, w) and pseudoscalat | mesons /),

Hst= —iguynNysT - TN — gpzv(yﬂ +i22—”Noka)f PN

Zi(ﬂwN o,wk”)w“N, 1)

_ng<Vu +i

whose values are reasonably well determined. The DDH approach to the parity-violating
weak interaction utilizes a similar meson-exchange picture, but now with one strong and
one weak vertex—cf. Fig. 1.
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Fig. 1. Parity-violatingN N potential generated by meson exchange.

Table 1
Weak N N M couplings as calculated in Refs. [19,28,29]. All negns are quoted in units of the “sum rule” value
g7 =3.8x 1078

DDH [19] DDH [19] DZ [28] FCDH [29]

Coupling Reasonable range “Best” value

hlon 030 +12 +3 +7
h9 30— —81 -30 —22 —-10
h% ~-1-0 -05 +1 -1
h? —20— —29 -25 -18 —-18
n9 15— —27 -5 -10 -13
nl 5> -2 -3 -6 -6

We require then a parity-violating N M Hamiltonian in analogy to Eq. (1). The process
is simplified somewhat by Barton’s theorem, which requires that in the CP-conserving
limit, which we employ, exchange of neutral pseudoscalars is forbidden [26]. From general
arguments, the effective Hamiltonian with fewest derivatives must take the form

hl

Hwk = ZYN N (7 x 7)3N

N

2

h
WOt . ot + hiph + —= 3t3,0“—t~,0“) 5N
( P pF3 2\/6( 3 ) YV
ok’

— N (h3e" + hlrae'™)y,ysN + 1IN (1 x ,0“)32m—
N

=

ysN. (2)

We see that there exist, in this model, seven unknown weak couplthgs, /9, ....

However, quark model calculations suggest ttﬁ%ﬁs quite small [27], so this term is usu-
ally omitted, leaving parity-violating observables described in terms of just six constants.
DDH attempted to evaluate such PV couplings using basic quark-model and symmetry
techniques, but they encountered significant theoretical uncertainties. For this reason their
results were presented in terms of an allblearange for each, accompanied by a “best
value” representing their best guess for eaohpling. These ranges and best values are
listed in Table 1, together with prediotis generated by subsequent groups [28,29].

Before making contact with experimental results, however, it is necessary to convert
the NN M couplings generated above into a parity-violatiigy potential. Inserting the
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strong and weak couplings, defined above, into the meson-exchange diagrams shown in
Fig. 1 and taking the Fourier transform, one finds the DDH parity-violaking potential

. hlyveamny (tuxTm\ - . p1— P2
Voo (F) = i =M ( ) (01 +02) [ ,wn(r)}
3

ﬁFﬂ 2 2mN
3.3
0 1{T1t+ 12 2(3751752 —1T1-12)
fnen(253) e
x ((61—62)-{”12;;’2,%(0}

. - - _)l_ _)2 ‘E1+T2
+i(l+ xp)o1 % 02" pep cw,(r) | ) = go| h + L[ ——=
2my 2 3

x ((31—52)~{p12r;1572,ww(r)}

+i(1+ x0)01 X G2 - [pl P2 ww(r)D
2mN

2

. TLX T2 o - ﬁl—ﬁZ
—ei(252) Grvan [P0, )

1 1\[TL— T2 - - ﬁl_ﬁZ
—(gwhw—gphp)< )3(Ul+02)'{m,wp(r)}

where p; = —i%i, %i denoting the gradient with respect to the coordinatef the ith
nucleony = |x1 — X2| is the separation between the two nucleons,
exp(—m;r)

w;(r) = T (4)

is the usual Yukawa form, and the strongv N coupling g yy has been expressed in
terms of the axial-current couplingy using the Goldberger—Treiman relatiafy;yy =
gamy/Fr, with F, =924 MeV being the pion decay constant.

Nearly all experimental results involvinguclear parity violation have been analyzed
using VSE\,/H for the past twenty-some years. At presdrowever, there appear to exist dis-
crepancies between the values extracted for the various DDH couplings from experiment.
In particular, the values df}r NN andhg extracted fronp p scattering and the decay of
18F do not appear to agree with the corresponding values implied by the anapole moment
of 133Cs measured in atomic parity violation [30].

These inconsistencies suggest that the DDH framework may not, after all, adequately
characterize the PW N interaction and provides motivation for our reformulation using
EFT. The idea of using EFT methods in order to study parity-violating hadie= 0
interactions is not new [31,80]. Recently, a flurry of activity (see, for example, Refs. [32—
38]) has centered on PV processes involving a single nucleon, such as

ep—¢€p, yp—vyp, yp—nut, et
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There has also been work on tiéN system, with pion exchange treated perturba-
tively [39,40] or non-perturbatively [41]. However, a comprehensive analysis has yet to
take place, and this omission is rectified ire tstudy described below, wherein we gen-
erate a systematic framework within which to address¥PN reactions. We utilize the
so-called Weinberg formulation [3], wherein the pion, when included explicitly, is treated
fully quantum mechanically while shorter-distance phenomena—as would be produced by
the exchange of heavier mesons suclpas, etc.—are represented in terms of simple
four-nucleon contact terms. The justification for the non-perturbative treatment of (parts
of) pion exchange has been discussed in a recent paper [42].

Although a fully self-consistent procedure would involve use of EFT to compute both
the PV operatorandfew-body wavefunctions, equally accurate results can be obtained by
drawing upon state-of-the art wave functions obtained from a phenomenological, strong-
interactionN N potential, including PV effects pertoatively, and using EFT to system-
atically organize the relevant PV operators. Such a “hybrid” approach has been followed
with some success in other contexts [2] and we adopt it here. In so doing, we truncate
our analysis of the PV operators at ordgfA,, whereQ is a small momentum char-
acteristic of the low-energy PV process ang = 4x F,; ~ 1 GeV is the scale of chiral
symmetry breaking [86,88]. Since realistic wave functions obtained from a phenomeno-
logical potential effectively include strong-interaction contributions to all orde@/in
the hybrid approach introduces some inconsistency at higher ord@r&in. For the low-
energy processes of interest hefg < 50 MeV), however, we do not expect the impact
of these higher-order problems to be significant. We would not, however, attempt to apply
our analysis to higher-energy processes (e.g., the TRIUMF 221 Me®xperiment [43])
where inclusion of higher-order PV operators would be necessary.

With these considerations in mind, it is useful to compgkg,, with the leading-order
PV NN EFT potential. In the pionless theory, this potential is entirely short ranged (SR)
and has coordinate space form

. 2 1+ 12
Vf\s/R(r) = F{ |:C1 + (C2+ C4)< 5 )3 + C3t1- 12+ ZabCSTffzb]
X

X (61— 62) - {—iV, fu(")}

1+ 12

+ |:él+(€2+64)( ) +@311~T2+Zab65ffff]
3

X (31 % 52) - [—iV, fu(r)]

1—12

+(C2—C4)< ) G1+62) - {=iV, fu()}
3

+C6ie“b3tfr§(3l+5z) . [—i%,fm(”)]}, (5)
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where the subscript “1” in the potential denotes the chiral index of the opefators

10 O
I:(O 1 0), (6)
00 -2

and f,,, (¥) is a function that

(i) is strongly peaked, with width- 1/m aboutr =0, and
(i) approaches® (¥) in the zero-width 2 — o0o) limit.

A convenient form, for example, is the Yukawa-like function

2
fu(r) = m—exp( mr). (7)

Herem is a mass chosen to reproduce the appropriate short-range efteetsi( in the
pionful theory, butn ~ m,, in the pionless theory). Note that, since the terms containing
C, andC4 are identical VSR nominally contains ten independent operators. As we show
below, however, only five combinations of these operators are relevant at low-energies.
For the purpose of carrying out actual calculations, one could just as easily use the
momentum-space form dflPSR, thereby avoiding the use of, (¥) altogether. Neverthe-
less, the form of Eq. (5) is useful when comparing with the DDH potential. For example,
we observe that the same set of spin-sgawkisospin structures appear in bdftlﬁ\S/R and
the vector-meson exchange termsli§y,,, though the relationship between the various
coefficients meSR is more general. In particular, the DDH model is tantamount to taking
m~m,, My and assuming

Ci1 Co
—=_—==1 , 8
C1 Cy + Xo ( )
C3 64 C~'5

— =1 , 9
C3 Ci s X ©

assumptions which may not be physically rei#didn Section 6, we give illustrative mech-
anisms which may lead to a breakdown of these assumptions.

When pions are included explicitly, one abts in addition the same long-range (LR)
component induced by OPE asWy,,,

hlynvgamy (i xw\ . . p1
VPY L (F) =i -ZNN ( (61 +02) -
1,LR \/_Fn 2 3

wherew, (r) is given by Eqg. (4). Note that, as we will explain in Section‘Bj’l’LR is

two orders lower thaiv;"{z—in contrast to the strong potential where the short- and long-
range components first arise formally at the same order. (Even though Eq. (10) has the

P2 s (r)}, (10)
2my

1 Roughly speaking, the chiral index corresponds to the order of a given operator @Iy the expansion. A
precise definition is given in Section 5 below.
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same form as a term in Eq. (5), it has no suppression by powers, adr other heavy
scales. Therefore, it appears at lower order.)

Furthermore, two new types of contributions to the potential arise at the same order as
Eqg. (5): (a) along-range component stemming from higher-ordeN operators, and (b) a
medium-range (MR), two-pion-exchange (TPE) contributigfiyis. At O(Q), the TPE
potential is proportional t(thN and involves two terms having the same spin—isospin

structure as the terms i Vlf‘S/R proportional toC»> and Cg but having a more complicated
spatial dependence. In momentum space

VEMR(ED
1
_ A3{c2 @4

where the function€'%" () andCé’T (¢), defined below in Eq. (121), are determined by the
leading-ordetr NN couplings. Again, it is more convenient to compute matrix elements
of Vf%R using the momentum-space form, and we defer a detailed discussion of the latter

until Section 5 below. We emphasize, however, the presenﬁz’{’m2 introduces a quali-
tatively new element into the treatment of nuclear PV with pions not present in the DDH
framework.

The NNLO long-range contribution to the potential generated by the nevw RW
operator is

VPV ikjlrl}\,NgA(rlxm)
1LR
2A, F? 2 )5
x {eabcafof{vz, [VIVE we ()]} + Ao 2)} +o (12)

whereV, is the gradient with respect to the relative coordinéte- X, and where the

- denote long-range, NNLO contributions proportionahﬁgVN that are generated by
NNLO effects at the strong N N vertex (see Appendix B).

As we discuss in Section 3, a complete pagrof low-energy PV measurements in-
cludes photo-reactions. In the DDH framewgddl¥/ electromagnetic (EM) matrix elements
receive two classes of contributions: (a) thasmiving the standard, parity-conserving EM
operators in combination with parity-mixing in the nuclear states, and (b) PV two-body EM
operators derived from the amplitudes of FI@. Explicit expressions for these operators
in the DDH framework can be found in Ref. [21]. In the case of EFT, the two-body PV
EM operators associated with heavy-mesxchange in DDH are replaced by operators
obtained by gauging the derivatives‘i’tﬁ’\s’R as well as by explicit photon insertions on ex-

ternal legs. The two-body operators associated wﬁ[ﬁ Lg are identical to those appearing

in DDH, while the PV currents associated WMfMR and V1 LR are obtained by gauging
the derivatives appearing in the potential and by inserting the photon on all charged-particle
lines in the corresponding Feynman diagraitie foregoing two-body currents introduce

Z
2/ (61 % 52) -G+ CZ (q)ie" 3t 12 (51 + 52) .47}, (11)

2 The derivation of the medium-range two-body operatovslires an enormously detailed computation, which
we defer to a later publication.
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no new unknown constants beyond those already appearing in the potential. However, an
additional, independent pion-exchange thdy operator also appears at the same order
as the short-range PV two-body currents:

= 2
V284Cam? e id i1+

J(F1.%2.§) = ~—=5 S 1551 % G52 Fha(r) + (1> 2), (13)
AXF,,
where
exp(— 1
() = & m,,r>(1+ ) (14)
Myt Myt

andC, is an additional LEC parameterizing the leading RWr y interaction. Any pho-
toreaction sensitive to the short-range PV potential will also deper@,;amhen pions are
included explicitly.

ThroughO(Q), then the phenomenology of neelr PV depends on five unknown con-
stants in the pionless theory and eight when pions are included explicltly,(, k2%, .,
andC, in addition to the contact interactions). As we discuss below, an initial low-energy
program will afford a determination of the five constants in the pionless theory. Additional
low-energy measurements in few-body systems would provide a test of the self-consistency
of the EFT at this order. Any discrepancies could indicate the need to including pions as
explicit degrees of freedom, thereby necessitating the completion of additional measure-
ments in order to determine the pion contributiongx@)). As we discuss below, there
exists a sufficient number of prospective measurements that could be used for this purpose.
Given the challenging nature of the experiments, a sensible strategy would be to first test
for the self-consistency of the pionless EFT with a smaller set of measurements and then
to complete the additional measurements needed for EFT with pions if necessary.

3. Parity violation in few-body systems
There exist numerous low-energy experiments that have attempted to explore hadronic

parity violation. Some, like the photon amynetry in the decay of a polarized isomeric
state of'80Hf,

A, =—(1.66+0.18) x 1072 [44], (15)
or the asymmetry in longitudinally-polarized neutron scattering®ba,
A, =(9.55+0.35 x 102 [45], (16)

involve F—P shell nuclei wherein the effects of hadronic parity violation are large and
clearly observed, but where the difficulty of performing a reliable wave function calcula-
tion precludes a definitive interpretation. For this reason, it is traditional to restrict one’s
attention to S—D shell or lighter nuclei. Here too, there exist a number of experiments, such
as the asymmetry in the decay of the polarized first excited stafFof

Ay(37, 110keV) = —(8.5+2.6) x 107> [46]
=—(6.8+1.8) x107° [47], (17)
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wherein a clear parity-violating signal is observed, or those such as the circular polarization
in the decay of excited levels Ne,

P (37, 2789 MeV) = (24+24) x 107 [48]
=(3+16) x 107*  [49], (18)

or of 18F,

P, (07, 1.081 MeV) = (—7+20) x 10°*  [50]

=((3+6)x 104 [51]
=(-10+18 x 104 [52]
=(2+6)x107* [53], (19)

wherein a nonzero signal has not been seen, but where the precision of the experiment
is high enough that a significant limit can pé&aced on the underlying parity-violating
mechanism.

The reason that a 1@ experiment can reveal information about an effect which is on
the surface at the level

Grm% (pr/my) ~ 1075,

where pr ~ 270 MeV is the Fermi momentum, is that the nucleus can act as an PV-
amplifier. This occurs when there exist a pdictnse-by levels having the same spin but
opposite parity]J*). In this case the parity mixing expected from lowest-order perturba-
tion theory,|y+) >~ |J*) £ €| JF), can become anomalously large due to the smallness of
the energy differenc& ;+ — E ;- in the mixing parameter
o W Hwead ) (20)
EJ+ - EJ—

Indeed, when compared with a typical level splitting~efL MeV, the energy differences
exploited in1%F (AE = 110 keV),%!Ne (AE = 5.7 keV), and8F (AE = 39 keV) lead
to expected enhancements at the level of 10, 100, and 25, respectively. However, when
interpreted in terms of the best existing nuclear shell-model wave functions, there exists a
serious discrepancy between the values ofAlle= 1 pion coupling required in order to
understand thé°F or 2INe experiments and the upper limit allowed by #E result.

Such matters have been extensively reviewed by previous authors [54-56], and we do
not intend to revisit these issues here. Instead we suggesitttiat present timany de-
tailed attempt to understand the parity-violatiMg/ interaction must focus on experiments
involving only the very lightest-& N, Nd, Na—systems, wherein our ability to calculate
the effects of a given theoretical picture are under much better control. As we demonstrate
below, there exist a sufficient number of such experiments, either in progress or planned, in
order to accomplish this task for either themless EFT or the EFT with dynamical pions.
Once a reliable set of low-energy constants are in hand, as obtained from such very-light
systems, theoretical work can proceed on at least two additional fronts:
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(i) experimental results from the heavier nuclear systems—involving P, S-D, and F-P
shells and higher levels—can be revisited and any discrepancies hopefully resolved
with the confidence that the weak low-energy constants are correct, and

(i) one can attempt to evaluate the size of the phenomenological weak constants starting
from the fundamental quark—quark weakeraction in the Standard Model.

This scheme mirrors the approach that has proven highly successful in chiral perturba-
tion theory (ChPT) [57], wherein phenomenological constants are extracted purely from
experimental results, using no theoretical prejudices other than the basic (broken) chiral
symmetry of QCD. In the meson sector [58], the phenomenologically determined counter-
terms L1, Lo, ..., L1p have already become the focus of various theoretical programs
attempting to predict their size from fundamental theory. Note that our approach to nu-
clear parity violation is similar in spirit to the one advocated in a prescient 1978 paper by
Desplanques and Missimer [25] that builds on ideas put forward by Danilov [24]. In sub-
sequent work, this approach was superseded by the use of the DDH potential. In our study,
then, we are in a sense recasting the ideas &f.R&4,25] in the modern and theoretically
systematic framework of EFT.

3.1. Amplitudes

We now consider the first part of the program—elucidation of the basic weak cou-
plings. We argue that, provided one is working in a region of sufficiently low-energy, the
parity-violatingN N interaction can be described in terms of jfigereal numbers, which
characterize S—P wave mixing in the spin s@tgind triplet channels. The argumentsin this
section borrow heavily from the work of Danilov [24] and Desplanques and Missimer [25].
The following sections will show how to interpret this phenomenology within EFT.

For simplicity we begin with a parity-conserving system of two nucleons. TheN ffie
scattering matrix can be expressed purely in terms of S-wave scattering at low energies and
has the phenomenological form [24]

My, ki) = (k¢|T|k;) = mq (k) Py + my (k) Po, (21)
where
1 N 1 .o
P1=Z(3+01-62), Po=Z(1—61-62)

are spin-triplet and spin-singlet projection operators. All other partial waves can be ne-
glected. We can determine the form of the functiemgk) by using the stricture of
unitarity,

2ImT =717 (22)
In the S-wave sector this becomes
2
Imm; (k) = k|m; ()], (23)

whose solution is of the familiar form

1 .
m; (k) = Ee'&'(") sing; (k). (24)
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Since at zero energy
lim m; (k) = —a; 25
kl—>0ml( ) ai (25)
wheregq; is the scattering length, it is clear that unitarity can be enforced by the simple

modification
—a;

i(k) = , 26
m; (k) 1+ ika; ( )
which is the lowest-order effective-range result. The scattering cross section is found via
do a?
— =TrMM=—L—, 27
ds 14 k2a? &7)
so that at the lowest energy we have the familiar form
. dog; 2
[ — = . 28
kinO Te) |, ( )
The associated scattering wave functions are given by
R = my eiklFi=r'l R
1//£+) (r) — elk r__ 7 d3r/ ~ — V(r /)wg'f') (r /) X
k 4 |r —r’| k
- L o eikr
= [ 4 M90S 29)
r

wherey is the spin wave function. In the simple Born approximation, then, we can repre-
sent the wave function in terms of an effective local potential

- 4 .
Vet ") = Pyt as Po)s ), (30)

as can be confirmed by substitution into Eq. (29).

Parity mixing can be introduced into this simple representation, as done by Danilov [24],
via generalization of the scattering amplitude to include parity-violating structures. Up to
laboratory momenta of 140 MeV or so, we can omit all but S- and P-wave mixing, in which
case there exist five independent such amplitudes:

() d;(k), representingS;—P; mixing;
(i) a®Y2(k), representingSo—3Po mixing with A7 = 0, 1, 2, respectively; and
(iii) ¢/ (k), representingS;—2P; mixing,

and, after a little hought, it becomes clear that the loweggy scattering matrix in the
presence of parity violation can be generalized to

My, ki) =my (k) P+ my (k) Po
+[(d2() Q1 + d2(k) Q14+ + d2(k) Q2) (ki - (51 — G2) P
+ Pk (61— 52)) + dy (k) (ki - (61— G2) Po + Pok s - (51— 52))]
+ (k) Q1- (51 + G2) - (ki PL+ Piky), (31)
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where we have introduced the isovector and isotensor operators

1 1
01-=z(11—12)2 Q1+ = E(Tl +12)2,

2
1
=— (311,79, — 71 - T2), 32
02 2\/6( 1272 — T1° T2) (32)
and isospin projection operators
1 . o 1 . -
Qo= ;(1-772), O1=;3+17-%). (33)

Each of the new pieces is indeed odd under spatial inversipn>(s; and I?f,lzi —
—k s, —k;) and even under time reversa} (~ —o; andk; - (61 — 62) Pj <> Pjky - (61 —
02)).

Now consider what constraints can be placed on the fa§ii3, ¢; (k). The requirement
of unitarity reads

Imd; (k) = k[m (k)d; (k) + d} (k)ym , (k)] (34)
wherem; (k), m (k) are the scattering amplitudes in the S-, P-wave channels connected by
d; (k). Eq. (34) is satisfied by the solution

di (k) = |d; (k)| expi[8; (k) + 8, (k)]. (35)

i.e., the phase of the transition amplitude is simply the sum of the strong interaction phase
shifts in the incoming and outgoing channels.

Danilov [24] suggested that, on account oé tthort-range of the weak interaction, the
energy dependence of the weak couplidg#) should be primarily determined, up to say
50 MeV or so solely by the strong interaction dynamics. Since at very low energy the
P-wave scattering can be neglected, he suggested the use of the forms

ci(k) = pme(k),  di(k) =rme(k),  di(k) = Aimg(k), (36)

which provide the parity-mixing amplitudes in terms of the five phenomenological con-
stants:p;, Ar, AL

We can understand the motivation behind Danrs assertion by writing down the sim-
plest phenomenological form for a weak low-energy parity-violafing potential. To do
S0, one may start with the momentum-space form’@gR givenin Eq. (5):

VISR, P)
= —%{—[(Cl +C3)01+ (C1—3C3) Qo+ (C2+ C4) Q14 — \/gCSQZ]
X (01— 02) - p
+ [(él +C3)Q1+ (C1—3C3) Qo+ (C2+ Ca) Q14 — \/gésgz]
X i(01 X 02) -

+[C2— C4]Q1-(61+62) - p+ Coi(T1 X T2):(61+062) - ¢ } (37)
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wherep =[(p1 — p2) + (p} — pp)1/2 andg = [(p1 — p2) — (p] — p)1/2.
The change in the wave function generated/lf)gRG) is understood to involve the full
strong-interaction Green'’s function and wave functions

Sy ) = / 43 G (7, 7Y VEERE D (), (38)

and the connection between the weak PV poterlt’%gR(?) and the scattering matrix
Eqg. (31) can be found via

di(k)”— (< c OV + (0O VPRl ™)), (39)

Now, if we are at very low energy, we may use the plane-wave approximation for the P
wave,

e () = jadkr), (40)
and we can approximate the S wave by its asymptotic form
1 .
Y2 (r) = e ® sin(kr + 8 (k)) 422 O sing; (k). (41)
r

where we have used the experimental fact thiat |ka;| > k/m where ¥ m is maximum
range set by the integration. Then, we can imagine calculating a generic parity-violating
amplituded; (k) via Eq. (39):

]

di<k>~47”ci f drr Jl(kr)[ fm<r>] "% ® sing; (k)
0

1 . .
E)Li%e“si sing; = A;m; (k), (42)

with C; symbolically indicating the appropriate combination of PV constants appearing in
Vl srand

© 00
4 d 4 d
Ai ™~ —nCl'/dr rji(kr) Jm () ~ —”C,‘/drr2 fm(r)’ (43)
k dr 3 r
0 0

which is the basic form advocated by Danifon analogous relationship holds foy.
At low energy then it seems prudent to explicitly include the appropriate S-wave scat-
tering length in expressing the effective weak potential, and we can define

lim ms () = —as.e, WM ei(k), ds k), dy (k) = —pyar, —Mag, —rear. (44)

As emphasized above, the real numb@:s\i, A:—which can in turn be related to the ef-
fective parameter§;—completelycharacterize the low-energyiitg-violating interaction

3 Note that this argument is not quitercect quantitatively. Indeed, sincg/& is much smaller than the range
of the NN interaction (in the pionful theory), we should Hgause interior forms of the wave functions. How-
ever, when this is done, the same qualitative resulbiml, but the simple relationship in Eq. (43) is somewhat
modified.
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and can be determined experimentally, as we shall discuss below. Alternatively, we use an
isospin decomposition

1
AP =304l 4 =32

NG
2
)an — )\0 _ 7)‘3’
am =20 —aly TAE, (45)

to write things in terms of the appropriatléN quantities. Now, the explicit connection
between the S-matrix elements, p, and the weak interaction parametérs C; in our
effective Lagrangian must be done carefully using the Eq. (39) and the best padésible
wave functions. This work is underway, but is not yet completed [59]. In the meantime, we
may obtain an indication of the connection by using the following simple arguments:
When we restrict ourselves to a model-space containing only the low-energy S, P am-
plitudes noted above, then several of the operators in Egs. (5), (37) become redundant. For
example, thel, amplitude involves & = 0 — T = 0 transition, so only the terms propor-
tional to Qg contribute. In this case, the spin-space operatfrs- o2) - p andi (o1 x 62) - ¢
yield identical matrix elements up to an ovitcanstant of proportionality. This feature can
be seen by considering the coordinate space potential, which contains the fufyotion
times derivatives acting on the initial and final states. In the short range limit and in the
absence of th&/ N repulsive core, both the P-wave and first derivative of the S-wave van-
ish at the origin, whereas the product of the S-wave and first derivative of the P-wave are
non-zero. Thus, only the componentsgofind p that yield derivatives of the P-wave at
the origin contribute, leading to identical matrix elements of these two operators (up to
an overall phase). Of course, corrections to this statement occur yhen is smeared
out over some short rangel/m. Since Ym « 1/typical momentum- a, wherea is the
scattering length, at low energy such corrections are higher-order in our power counting,
going ask?/m?, whereK ~ M(E + V) with V ~ 50 MeV representing some aver-
age depth of thev N potential characterizing the interior region. Similarly, the operators
(01 — 02); and(G1 x 62), each transform a spin-triplet ine spin-singlet state, and vice
versa. Hence, one may absorb the effect of the term proportiori@lita- C3) into the
corresponding term proportional t€'1 + C3) by a suitable redefinition of the constants.
Related arguments allow one to absorb the remaining terms proportional @ -thas
well as the term containinge—into the terms involvingC1 — 3C3) P1, (C2 + C4) Q1+,
(C2 — Cy)Q1-, andCs Q> for a net total ofiveindependent operators, which in turn gen-
erate the five independent low-energy PV amplitubgsil, 22, A,, p;. In the zero-range
limit, then, we have

h 0 (C1 = 3C3) — (C1 - 3Ca),
20 o (C1+ C3) + (C1+ Ca),
Ay o< (C2+ Ca) + (C2+ Ca),
2% o —/8/3(Cs + Cs),
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1
pr ox 5(C2 = Ca) = Ce. (46)

However, going away from strict threshold values and the use of more realistic wave
functions will modify these expectations somewhat, as illustrated by a simple, didactic
discussion in Appendix E. We emphasize, however, that what is needed at the present time
is a purely empirical evaluation in terms of five independent and precise experiments, and
that is what we shall discuss next.

3.2. Relation to observables

The next step of the program—contact between this effective parity-violating inter-
action and experimental observables—wasated by Desplanques and Missimer [25].
Before quoting these results, we sketch the manner by which such a confrontation is per-
formed. In doing so, we emphasize that the following analysis doerely on definitive
computations employing state-of-the art few-body wave functions—carrying out such cal-
culations goes beyond the scope of the present study. Indeed, obtaining precise values for
the A; andp; will require a concerted effort on the part of both experiment and few-body
nuclear theory. What we provide below is intended, rather, to serve as a qualitative roadmap
for such a program, setting the context forathve hope will be future experimental and
theoretical work.

For simplicity, we begin with an illustrative example of scattering, for which the
Pauli principle demands that the initial state at low energy must be pt®lyOne can
imagine longitudinally polarizing a neutron of momentgnand measuring the total scat-
tering cross section from an unpolarized target. Steg is odd under spatial inversion,
the cross section can depend on helicity only if parity is violated, and via trace techniques
the helicity-correlated cross section can easily be found. Using

M kg, ki) = my (k) Po+ d™[k; - (51— 52) Po + Pok s - (61— 52)] (47)

we determine
- -1 L. I
oi=/df2fTrM(kf,k,‘)§(1:|:al-ki)MT(kf,ki)
= 45t |my (k)| > Tr Po + 87 Rem* (k)d™" (k) Tt Po(61 — 52) - ki (L 51 - ki) + -

= 4r|my (k) |* + 167 Rem* (k)d™ (k) + - - - (48)

Defining the asymmetry via the sum and difference of such helicity cross sections and
neglecting the tiny P-wave scattering, we have then
_op—o_ _ 4kRemik)d]" (k)]

Ar = —
L et o (k)2

~ dpam, (49)

Thus the helicity-correlatedh asymmetry provides a direct measure of the parity-violating
parameten”. Note that, since the total cross section is involved, some investigators have
opted to utilize the optical theorem via [60—62]

Imdn" (k)

Ap =4k ,
L Imm (k)

(50)
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which, using our unitarized forms, is completely equivalent to Eq. (49).

Of coursepnn scattering is currently just a gedanken experiment, and we have discussed
it merely as a warm-up to the real problepu scattering, which introduces the complica-
tions associated with the Coulomb interaction. In spite of this complication, the calculation
proceeds quite in parallel to the discussabove with obvious pdifications. We find

_op—o_ _ 4Rdmi(k)al’ (k)]
N oy +o- - |ms(k)|2

AL ~ 4,ALP (51)
In the next section we show how this can be obtained straightforwardly within an EFT
approach.

On the experimental side, such asymmetries have been measured both at low energies
(13.6 and 45 MeV) as well as at higher energies (221 and 800 MeV). It is only the low-
energy results

AP (13.6 MeV) = —(0.934 0.20+ 0.05) x 1077 [63],
AP (45 MeV) = —(1.504+0.22) x 107 [64], (53)

that are appropriate for our analysis, and from these results we can extract the experimental
number for the singlet mixing parameter as
Ar (45 Me
(APP)SP = —L(TV) = —(4.0£0.6) x 1078 fm, (54)
where 4 ~ 0.88mn,y. Note that this Eq. (54) is consistent with that of Desplanques and
Missimer [25]
AL (45 MeV) _
AP LTS TR o (4140.6) x 1078 fm. 55
(A7) B = ) (55)

In a corresponding fashion, as described by Ref. [25], contact can be made between
other low-energy observables and the effecparity-violating interaction. Clearly, we
require five independent experiments in ortteidentify the five independent S—P mixing
amplitudes. As emphasized above, we consiady PV experiments on systems with=
4 or lower, in order that nuclear-model dependence be minimized. We utilize here the
results of Desplanques and Missimer [25], but these forms should certainly be updated
using state-of-the-art few-body computatiofkere exist many such possible experiments
and we suggest the use of

(i) low-energypp scattering, for which

pp(136 MeV): AP = —0.48 my,
pp(45 MeV): AP = 0.8 my; (56)

4 Note that the 13.6 MeV Bonn measurement is fully consistent with the earlier but less precise number
APP (15 MeV) = —(1.7+0.8) x 10~ [65] (52)

determined at LANL.
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(i) low-energypa scattering, for which
1 1
pa(46 MeV): AP = [—0.48</\f” + EAf") — 1-07(,0t + Ektﬂm;\;; (57)
(i) thresholdnp radiative capture, for which there exist two independent observables:

circular polarization: P, = (0.63x, — 0.162;")my,

photon asymmetry: A, = —0.107p,m y; (58)
(iv) neutron spin rotation frorfiHe,
d¢"™* 1 1 rad

Inverting these results, we can determine the five S—P mixing amplitudes via

myAP? = —1.22A£p(45 MeV),
myp;r =—9.35A,(np — dy), (60)
myAl" =1.6 AP (45 MeV) — 3.7A7% (46 MeV) + 37A, (np — dy)
—2P,(np — dy),
myi; = 0.4A£p(45 MeV) — 0.7A€°‘(46 MeV) +7A, (np — dy)
+ P,(np — dy),

d no
myAM" =0.83 j

— 3334, (np — dy) — 0.69A7” (45 MeV)
Z

+1.184%%(46 MeV) — 1.08P, (np — dy). (61)

At the present time only two of these numbers are known definitively—the longitudinal
asymmetry inpp, Eq. (53), and irpa scattering,

AP (46 MeV) = —(3.3+£0.9) x 1077 [66]. (62)

However, efforts are underway to measure the photon asymmetry in radigtivapture
at LANSCE [67] as well as the neutron spin rotationéte at NIST [68]. These measure-
ments are also proposed at the neutron beamline at the Spallation Neutron Source (SNS)
under construction at Oak Ridge National Ladtory. An additional, new measurement
of the circular polarization imp radiative capture would complete the above program, al-
though this is very challenging because of tlifialilty of measuring the photon helicity.
Alternatively, one could consider the inverse reaction—the asymmefiy in> np—and
this is being considered at Athens [69] and at HIGS at Duke [70].

To the extent that one can neglect inclusion of thas an explicit degree of freedom,
one could use this program of measurements to perform a complete determination of the
five independent combinations©f Q), PV LECs. Nonetheless, in order to be confidentin
the results of such a series of measuremetitsuiseful to note that other light systems can
and should also be used as a check of the consistency of the extraction. There are various
possibilities in this regard, including
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(i) pd scattering

A{d(15 MeV) = (—0.21p; — 0.074;” — 0.13%; — 0.04r)" )m (63)
(ii) radiativend capture
A, = (1.42p, + 0.597" + 1.18%; + 0.5 )my, (64)
(i) neutron spin rotation ol
do™ rad
jz = (1.26p, — 0.631; + 1.81" + 0.4515" + 0.450)" )my o (65)

Note that possible follow-ups of the LANSCE and NIST experiments include the last three
processes [71].

We emphasize that the above results have been derived under the assumption that the
spin-conserving interactiop, is short-ranged—an assumption applicable at energies well
below the pion mass. On the other hand, for the 46 MeMneasurement, the proton mo-
mentum is well above:,, so integrating out the pion may not be justified. In this case,
inclusion of the pion will lead to modification of the above formulas, introducing a depen-
dence ol \, k34, ., andC,. Thus, a total of eight low-energy few-body measurements
would be needed to determine the relevant set of low-energy constants. In the foregoing
discussion, we have identified eight few-body observables that could be used for this pur-
pose. Additional poshilities include the PV asymmetryinear-threshold pion photo- or
electro-production [37,38,73] or deuteron photodisintegration [74]. At present, we are un-
able to write down the complete dependence of the few-body PV observabléﬁ\,g,n
ki‘;\,N, andC,, since only the effects of the LO @PV potential (and associated two-
body currents) have been included in previous few-body computations. Obtaining such
expressions is a task requiring future theiwsad effort. In any case, it is evident from our
discussion that there exists ample motivation for several new few-body PV experiments
and that a complete determination of the relevant PV low-energy constants is certainly a
feasible prospect.

4. EFT without explicit pions

Although the foregoing analysis relied onditional scattering theory, it is entirely
equivalent to an EFT approach. In the following two sections, we present this EFT treat-
ment in greater detail, considering first only processes where the momehtal external
particles are much smaller than the pionasidn this regime, the detailed dynamics under-
lying the NN interaction cannot be resolved, and interactions are represented by simple
delta-function potentials. As with any EFT, this approximation is justified by a separa-
tion of scales. In this case, one has scales set by tescattering lengths-«; ~ —20 fm,

a; ~ 5 fm—that are both much larger than thel/m, range of the pion-exchange compo-
nent of theN N strong interaction [8,9]. Because of this separation of scales, the deuteron
can be described within this pionless EFBrEexample, one can calculate the deuteron
form factors at momenta up to the pion mass [9]. This pionless EFT is limited in energy,
but it is very simple (since all interactions among nucleons are of contact character) and
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high-order calculations can be carried out. Therefore, although its expansion parameter is
not particularly small, high precision can be reached easily.

In this very-low-energy regime the EFT of the two-nucleon problem is not much more
than a reformulation of the analysis in Section 3. The full benefits of an EFT framework
will, however, be evident when we consider the regime of momenta comparable to the pion
mass in the next section.

4.1. Effective Lagrangian

Nucleons with momenta much smaller th&e pion mass are non-relativistic, and in
this case, it is convenient to redefine the nucleon fields so as to eliminate the term propor-
tional tom y from the Lagrangian. In so doing, one obtains an infinite tower of operators
proportional to powers gf/my <« 1. This widely-used heavy-fermion formalism [75,76],
is nothing but a Galilean-covariant expression of the usual non-relativistic expansion. Since
the non-relativistic EFT must match the relativistic theoryfor m y, Lorentz invariance
relates various terms in the tower @f/m y)*-suppressed effective operators. Thus, one
way to construct the effective Lagrangian is to write the most general rotational-invariant
non-relativistic Lagrangian, then to relate parameters by imposing this matching condition,
or “reparameterization” invariance [77].t&rnatively, we can simply write a relativistic
Lagrangian and then take the non-relativistic limit.

The most general Lagrangian involving two nucleon figddsV and a photon fieldi,
that is invariant under Lorentz, parity, time reversal &1d) gauge symmetries is

(. 1 v
ﬁN,pczN{w.DJr Zm—N((v : D)2—D2) + [Su, Su1[D*, D”]

+meuvaﬂvaSﬁFuv+...}N, (66)
my
wherekp («1) is the isoscalar (isovector) anomalous magnetic moméngnd S are
the nucleon velocity and spin# = (1, 0) andS* = (0, 3 /2) in the nucleon rest frame),
D, =9, +ieQnA, is the electromagnetic covariant derivative, withy = (1+ 7;)/2 the
nucleon charge matrix, anbl** = 9* A” — ¥ A*. Here, as in the following Lagrangians,
“...” denote terms with more derivatives, which give rise to other nucleon properties such
as polarizabilities.

When we relax the restriction of parity invariance, we can write additional terms, such
as

Lypy= mizzv(ao +a1t) S, No, F*™ +- -, (67)
N
whereag (a1) is the isoscalar (isovector) anapole moment of the nucleon. These terms were
discussed in Refs. [33,34]; they appear in PV electron scattering but not in the processes
we focus on here.
For the two-nucleon system, we need to consider contact term$owithucleon fields.
The simplest parity-conserving (PC) interactions are

1 - - _ _
‘CPC,NN:_ECSNNNN‘FZCTNSMNNSMN—{—~-~’ (68)
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whereCyg, Cy are dimensional coupling constants first introduced in Ref. [3]. Their pro-
jections onto the twav N S-waves are
Cos = Cs — 3Cr, Co=Cs+Cr. (69)

These parameters are related to the respective scattering lengths, while higher-derivative
operators give rise to additional parameterg;h as S-wave effective ranges and P-wave
scattering volumes [8].

For future reference, it is also uséfto write down the first-quantized N potential
arising fromLpc nn. To orderO(Q), we have

Vsd(G, p) = Cs + Créy - 52. (70)

Similarly, we can construct PV two-nucleon contact interactions. A detailed derivation
appears in Appendix A and leads@t Q) to

1 .- , ‘
Lpv.n = A—B{—ClNTNNTo -iD_N+C1NTiD' NNTo'N
X

— C1ie/*NTiD\ 6;NNTo* N
—CyN'NNT36 -iD_ N+ CoNTiD! NNT3o' N
— Coie"*NTiDL 6NN 30k N
—C3N"t*NNTt% - iD_N 4+ C3N't% D' NNTt%'N
— C3ie* NT29i D o; NNTe96 N
— CaNTt3NNTG - iD_N + C4NTw3i D' NNTo'N
— Cai€’*NT3i D' o, NNTo¥ N
— CsZupNTt*NNT6 - iD_N + CsZ,, Nt D. NNTtP6' N
— CsZupie’*NT24iDl o, NNTeb ok N
— Coie"*NTt*NNTe?G iDL N} +---, (71)
where we have introduced the short-hand notation
N'iDEN = (iD*N)'N + NT(i D N) (72)

(in momentum space‘,Dit andi D" give rise to the difference and sum, respectively, of
the initial and final nucleon momenta). The effects of the weak interaction are represented
by the LECsC;. We have normalized the operators to a scale= 47 F, ~ 1 GeV, as
would appear natural in a pionful theory. One might then anticipate thai;thee of order
GFA)Z( ~ 107, In fact, as discussed in Section 5, naive dimensional analysis (NDA) sug-
gests that these quantities have the magnitde (AX/F,,)Zg,,, whereg, =3.8x 108
sets the scale for non-leptonic weak interactions. One may also attempt to predict such
constants using models (see Section 6) and compare with the experimentally determined
linear combinations discussed above.

The O(Q) LagrangianCpy yn gives rise to the potential in Eqg. (5), which generates
energy-independent S—P wave mixing as discussed earlier. Higher-derivative PV operators
lead both to energy-dependence in the S—P mixing amplitudes as well as mixing involving
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higher partial waves. Given the levaflcomplexity aleady appearing &(Q), we will not
consider these higher-order terms.

4.2. Amplitudes

In processes involving a single nucleon, amplitudes can be expanded in loops. The situ-
ation is more subtle when two or more nucleons are present [3]. This is due to the fact that
intermediate states that differ from initial states only by nucleon kinetic energies receive
O (my/p) enhancements. A resummation then mesperformed, leading, e.g., to nuclear
bound states, and it is not immediately obvious that such resummations can be done while
maintaining the derivative expansion necessary to retain predictive power order by order.
The large values for th& N scattering lengths, however, provide justification for such a
procedure [8,9]. Before considering PV effects, it is helpful to review what resummation
technique yields for the case of the stra¥¢y interaction.

In lowest order, the S-wav®¥ N interaction can be represented via a contact term

Toi = Coi (1). (73)

Including the rescattering corrections, the flilmatrix is found to be

T;(K) = Cor(1) + Cor (10)Go(k) Cor (1) + -+
Cow  __ 41 1

= : (74)

— Ch: 4 .

1 COl (M)Go(k) mpy _WJSI(M) e ik

where
d3s 1 my
Go(k) = lim Go#,7) = =—— ik 75
o) = IM,Gor-T= | GrE @ — 2 T g W (75)
mpy mpy

is the zero-range Green'’s function, which displays the large nucleon mass in the numerator.
Identifying the scattering length via

1 47
- 76
aj my Coi (1) a (76)
and using the relation
mi(k) = — 22T (k) (77)
Vb4
connecting the scattering affdmatrices, we find
1 i
mi(k) = . (78)

1 ik Ltike;

Itis important to note here that sinagis a physical quantity, it cannot depend on the scale
parametey: and this invariance is observed in Eq. (76), whereinittaependence of the
Green'’s function is canceled by the corresponding scale dependende jim y Co; (i).

We observe that the resummation is at this order completely equivalent to the unitariza-
tion that lead to Eq. (26), and one can show similarly that inXhé system inclusion



S.-L. Zhu et al. / Nuclear Physics A 748 (2005) 435-498 459

of higher-derivative operators reproducegher powers of energy in the effective-range
expansion [8,9].

It is straightforward to generalize the above calculation to account for electromagnetic
interactions. As shown in Ref. [78] (see also Ref. [79]) the unitarzedcattering ampli-
tude has the form

my Cos (1)CE(n+(k))e

= T ConGe) (79)
whereny (k) = Ma/2k,
2
C2(x) = 627”7‘”1 - (80)

is the usual Sommerfeld factarg = argl'(¢ + 1 + in4(k)) is the Coulomb phase shift,
and the free Green’s functidafig(k) has also been replaced by its Coulomb analog

d3  C?(ny(k))

Ge(k) = . 81
c (k) @GP o (81)
my my
Remarkably, this integral can berf@med analytically, yielding
m
Get =~ |-t mua(H(ins @) ~tog L~ ¢ | (62)
T MNTQ
Here¢ is defined in terms of the Euler constant via ¢ = 27 — yg and
1
H(x)=v%(x)+ — —logx. (83)
2x
The resultant scattering amplitude has the form
() CH (14 (k))e?' 0
U it —r—mwve[Hn ) —log i — ¢]
_ C2- (k))e?70 @
— o= —myafh(n () —log e — ¢ ] — ikC2(n4 (k)
where we have defined, as before,
1 47
_ S —u, 85
aos() | MCo,) (89)
and
h(n+ (k) = ReH (in+ (k). (86)

The experimental scattering length; in the presence of the Coulomb interaction is
defined via

o1 +mNa<Iog i —g“), (87)
acs aos (1) MNTA
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in which case the scattering amplitude takes its traditional lowest-order form

C (. (k))e?0
—L —myaH(ing k)

acs

mg(k) = (88)

Of course, Eq. (88) requires that the Coulomb-corrected scattering length be different from
its non-Coulomb partner, and comparison of the experimenptaktattering length-«,, =
—7.82 fm—uwith itsnn analog—e,,, = —18.8 fm—is roughly consistent with Eq. (87) if a
reasonable cutoff is chosen (e.g..~~ 1 GeV).

Having unitarized the strong scatteringitude, we can now proceed analogously for
its parity-violating analog. The lowest-order S—P mixing amplitude is

Tosp= Wosp(11). (89)

Inclusion of S-wave rescattering effectsilemeglecting P-wave scattering and Coulomb
contributions yields the result

Wosp(i)
Tsp(k) = W W, Go(k)Co; = 90
sp(k) osP(it) + Wosp(n) Go(k)Coi (1) + 1= GoloCo (1) (90)

Writing Eq. (90) in the form

my VZO;P(#)
di k) = 7 Tspll) = ———200 —
d “mnCotn M Ik
A
=TI _ =xim;(k), (91)
we identify thephysical(x-independent) S—P wave mixing amplitude via
W
= OSP(M)' (92)
Coi (1)

Similarly, including the Coulomb interaction, we find for the unitarized weak amplitude
Wosp(11) C2 (1 (k))e! 0+ AgeCln+ (k))e! 7o)

Tosp= = , 93
(1= Cos ()G (k)) — e —myaacs H(ing (k) ®3)
where we have again neglected the P-wave scattering, and have identified
Wosp(it)
pp _ TSR 94
S Cos () ©9

as the physical mixing parameter.
Having obtained fully unitarized forms, wean now proceed to evaluate the helicity-
correlated cross sections, finding, as before, at the very lowest energies,

oy —o_ _ 4kRe(d;(kym{" (k)
o +o | (k)|2

Somewhat more involved, of course, are processes involving more than two nucleons.
Besides the inherent calculational difficulty, interesting new physics arises when three nu-
cleons can overlap. When pions are integrated out of the theory, three-nucleon interactions

AL ~ 4APP . (95)
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become significant. In fact, it has been shown [11] that its strong running requires that the
non-derivative contact three-body force be includelbatlingorder in the EFT, together

with the non-derivative contact two-body forces considered above. This three-nucleon
force acts only on the 1% channel, and provides a mechanism for triton saturation. The
existence of one three-body parameter in leading order is the reason behind the phenom-
enological Phillips line. Note that most three-nucleon channels are free of a three-nucleon
force up to high order, and can therefore edicted to high accuracy with two-nucleon
input only [10]. Similar renormalization might also take place in the four-nucleon system.

It remains to be seen whether the same phenomenon also enhances PV few-body forces.
We defer a detailed treatment af> 3 PV forces and related renormalization issues to a
future study.

5. EFT with explicit pions

For processes in which ~ m,, it is no longer sufficient to integrate the pions out of
the effective theory. Incorporation of the pion as an explicit degree of freedom requires use
of consistent PV chiral Lagrangian, which we develop in this section.

5.1. Effective Lagrangian

Chiral perturbation theoryxPT) provides a systematic expansion of physical observ-
ables in powers of small momenta and pion mass for systems with at most one nucleon [58,
76]. The interactions obtained frogPT can be used to build four-nucleon operators aris-
ing from pion exchange, though care must be taken to avoid double-counting the effects
of multi-pion exchange in both operators and wave functions (see below). In the approach
we follow here, pionic effects are generally included non-perturbatively. Strandnter-
actions are derivative in nature, and thus scale as powepg4f. As a result, one can
include them while maintaining a systematic derivative expansion [57]. By contrast, weak
7 N interactions need not involve derivativesitthe small scale associated with hadronic
weak interactionsg; ) implies that one needs at most one weak vertex. In addition, explicit
chiral symmetry-breaking effects associavgth the up- and down-quark masses also en-
ter perturbatively, since:; <« A,. To incorporate all these effects, we require the most
general effective Lagrangian to a given ordepigontaining local interactions parameter-
ized by a priori unknown low-energy constants (LECs). The corrections from quark masses
and loops are then included order by order.

We give here the basic ingredients to our discussion. (For a review, see Ref. [82].) The
nucleon masszy is much larger than the pion mass;, so we continue to employ a
heavy-nucleon field. The pion fields’, a = 1, 2, 3, enter through

£ = exp(iyzr;r“ ) (96)

whereF,; =924 MeV is the pion decay constant [83]. This quantity allows us to construct
chiral vector and axiavector currents given by
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Ve=>(EDuE" +£TD,E),

NI =

i D
Au:_%(gDusT_gTDug) == ;71

T

+0(73),

respectively.
Chirally-symmetric strong interaction pionic effects can be incorporated into the pion-
less Lagrangian by substituting,, — D,,, where the chiral covariant derivative is

Dy,=D,+V,, (97)

and by adding interactions involvirg,,.. On the other hand, the quark mass matvik=
diagim,, my) generates chiral-symmetry breaking that can be incorporated via

xe=ETxET £Ex4TE, (98)
where
x =2B(s+ip), (99)

with B a constant with dimensions of mass, ang representing scalar and pseudoscalar
source fields. In the present applicatios M and p =0, and in the following, we work

in the isospin-symmetric limitp,, = my = m. Isospin-breaking effects will generate small
(< 1072) multiplicative corrections to the tiny PV effects of interest here, so we safely
neglect them. In this case, to leadingler in the chiral expansion we have

X+ =2Bii+0(7?),  x-= 2Bm;—” +0(73). (100)
b8

The building blocks for including a field in the Lagrangian can be found in Ref. [84].
For simplicity we here integrate out isobars. It is straightforward but tedious to use these
building blocks to extend the results of our paper by including expliciffects.

We group terms in Lagrangia#$®’ labeled by the chiral index=d 4 f/2 — 2, where
d is the number of derivatives and powers of the pion massfatite number of fermion
fields. We only display terms that are relevant for the arguments that follow.

Parity-conservingr N Lagrangian
We then arrive at
L pe=N[iv-D+2g35- AIN, (101)
with the lowest index. Similarly, we have for the next to leading order (NLO) Lagrangian

@ 15 2 _ 2
ENN,PC:Zm—NN{(v-D) — D+ [Su. Sy][D*. D"]

—2ig%(S-Dv-A+v-AS-D)
+ 2(ko + K173)€pvapv® SP FFVIN + - - (102)

and the next-to-next-to-leading order (NNLO) terms
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_ go gO
ﬁz(rzz)v,Pc:N{—A[D“,[DwSA]] — 24 ). DS - Av-D

4n112v Zm%,
g?x 82 2
— - ({S-D,v-A}v-D+hc)— —4-(S-AD” + h.c)
2my, 4ms,
0
— 54 (5-DA-D+hc)+2d16S - Alxs)
2m7y,

+2d17(S - Axy) +idiglS - D, x_1+id1g[S - D, (x-)] }N +---. (103)

Here the ellipses denote counter-terms notvaléin our present calculation, a complete
list of which is given in Ref. [85]. The superscript “0” igy and uy indicates that these
guantities must bempended by the correspondiloop contributiongn order to obtain the
physical (renormalized) axial coupling and nucleon magnetic moment.

Parity-conservingV N Lagrangian

For nuclear systems, we require the PC Lagrangian involving more than two nucleon
fields. Here we will only need the lowest index £ 0) terms, containing four nucleon
fields. The relevant Lagrangian has the same form as Eq. (68),

0 1o S
ﬁﬁV}V,PC=—ECSNNNN+2CTNSMNNSMN+-~-, (104)

but hereCg, Cr are constants whose numerical values are different from the ones in the
pionless theory. This is because we are rmemoving soft-pion ontributions from the
counter-terms, and including them explicitly.

The NLO four-nucleon corrections occuriat 2, which will not be used since in this
work we truncate the chiral expansion of the PV potenti&@éf). Likewise, six-nucleon
PC interactions first appear at= 1 so their contribution to PV observables will be at
higher order in loop diagrams.

Parity-violatingz N Lagrangian
The lowest-indexi{ = —1) PV interaction arises from theN N Yukawa interaction,

Wi
-1  _ NN 3
EnN,PV =—T2INX°N

2V2
=—ihlyy(pnaT —AprT) -, (105)
where
X3 =gT% — g%, (106)
and the “..” denote the terms in this operator containing additional (odd) numbers of

pions. Atv = 0 there exist also PV vector and axial-vectoN N interactions, detailed
expressions for which can be found in Refs. [31,32]. However, as discussed in Ref. [38],
the effects of the vector operators can be eliminated thrdd@h) by using the equations
of motion and by suitably redefining the constént (defined below). Ta PV axial-vector
couplings involve two or more pions, and, as pointed out in Ref. [32], such couplings
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renormallzethN at O(Q3). Consequently, their contribution to the RVN potential
appears aD(Q?), via loop effects.
At NNLO (v = 1) we find several new P% N N operators that will contribute to the
PV NN potential atO(Q). In principle, these operators can be expressed in terms of the
quantitiesXy . defined in Ref. [31], thereby allowing one to determine the full, non-linear
dependence on the pion fields. For our purposes, however, it is sufficient to truncate the ex-
pansion of these operators at one power of the pion field, since terms containing additional
pion fields only contribute to the PW N interaction beyon@(Q). After implementing
the strictures of reparagterization invariance, we obtain the Lagrangian
2ik7:l%aNN Na 0= >\ RV, B
['JTNN PVE L — =€ N D" (T x T)3D"v* SPN
X+t
1 1c 2

k ) k
aNN A g - nNN T
—=NN N[D* Dy, N + ZNNT T N N
+ AP [D*D;., (T x 7)3] A Fr (T x 7)3N +-

(107)

where we have chosen a normalization such that the contﬂ%@_g‘s ought to be of order
a few timesg, according to naive dimensional analysis (see below) and where tHe
indicate terms involving more than one pion field.

Nominally, then, there exist three new, ip@adent operators that contribute to the PV
NN potential al0(Q). A proof of their independence under reparameterization invariance,
following the arguments of Ref. [87], will appear in a forthcoming publication and we
do not reproduce the full arguments here. Heuristically, however, the existence of these
operators can be seen from theirespondence with the independéntQ?) scalars that
can be formed from the independent momenta, nucleon spin, and pioR? ag§:s - p x
7', (p — p)?, andm?. Naively, then, one would have expected four independ&i@?)
operators, rather than just three as given in Eq. (107), with the operator corresponding to
p’ - p given by

ND*(Z x 7)3DsN. (108)

However, in a relativistic formulation of the theory, the corresponding operator can be

rewritten in terms ol (T x 7)3N andN[D* Dy, (T x )3]N through suitable integrations

by parts and application of the LO equations of mottorpnsequently, it cannot exist

as an independent operator in the heavy baryon formulation. Indeed, similar arguments

eliminate an analogous terV,D*S - AD; N, from the parity conserving Lagrangian. In

contrast, the remaining terms E%NN.PV cannot be eliminated in the relativistic theory

via such arguments and, thus, must exist as independent terms in the non-relativistic case.
We also note that in order for EFT With non-relativistic nucleon fields to match the fully

relativistic theory, the coefﬁuenﬂq} in general receive contrutions proportional to

hnNN that arise from a non- relat|V|st|c reduction of the LO RW N Yukawa interaction

in addition to contributions that represdtna fide®(Q?) effects. This situation is analo-

gous to what occurs for th@(0?) nucleon magnetic moment operator, whose coefficient

5 The presence of the single pion field leads to a pseudoscalar interaction with the nucleon.
6 We thank Vincenzo Cirigliano for discussions on this point.
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uy = Qn + ky receives a contribution (the Dirac teyiinat is dictated by relativity and

that is proportional to th€)(Q) constant Q) and a genuine, a priori unknowf(Q?)
contribution (the Pauli term) parameterized by the anomalous magnetic moment. In the
present case, onkéfl\’,’;\, receive contributions proportional @NN as dictated by relativ-

ity:

1 1
klaNN:h”NNM kl”NNz_h”NN AxFx (109)
" 42 M: " 8v2 M%
where the ¢- " indicate the unconstraine®(Q?) contributions.

In practical terms, only two of the operators in Eq. (107) are likely to be experimentally
distinguishable. In momentum space, thessetand third terms can be written as indepen-
dent linear combinations @f — p')?+m2 andm?. The latter acts like a chiral correction
to h}TNN, so toO(Q) in the EFT, it cannot be resolved experimentally. When inserted into
the PV NN potential, the former cancels the pion propagator, leading effectively to an
O(Q) contact operator that is indistinguishable from the SR operator proportiongl to
In contrast, the effects of the remaining operator invol\lq‘;ﬁ‘gN cannot be absorbed into
the LOxm exchange potential or any of the short-rai@@) operators. Its contribution to

the potential has been given in Eq. (12).

Parity-violatingy = N Lagrangian
Finally, there exists also a contacy NN interaction ab = 1 [38],

Cr
Ay Fy

1 . -
'Cz(r;N,PVZ —ie po" Fyunr™ +H.c. (110)

Parity-violating NN Lagrangian andys NN Lagrangian

Thev =1 PV four-nucleon terms have the same form as in Eq. (71) but with the gauge-
covariant derivatived,, replaced byD,, the gaugeand chiral covariant derivatives. In
this case, the coefficien, C; will differ numerically from those appropriate to the pio-
nless theory, since in the latter case, the effects of pion exchange are incorporated into the
operator coefficients.

5.2. Power counting

Throughout this work we use power-counting arguments to guide us in the task of iden-
tifying the most significant contributions to PV observables. Power counting is carried out
under an implicit assumption about the size of the couplings of the EFT. It is assumed that
the couplings are neither particularly small nor particularly large compared with “naive
dimensional analysis” (NDA) [86], in which LECs scale wifh and A, as

Dﬂ d T P NN 112 2
— — Ay F. " 111
(5 () () e inme sy
whered, p, f = 2k, k andn are positive integers and
GFF?
~2En . 38x10°8, (112)

8n 2\/2



466 S.-L. Zhu et al. / Nuclear Physics A 748 (2005) 435-498

In the absence of weak interactioms=£ 0), the LECs scale with a large mass scale as
(A,)™", wherev =d + f/2 — 2 is the chiral index defined earlier. Hence, one obtains
the ordering of operators i@ /A, described earlier. At enewgg that are small compared
with the mass oW and Z bosons, weak interactions have a strength given by the Fermi
constantG r = 1.16639x 10-° GeV2. The effective operators they entail are proportional
to (powers of) the Fermi constant times the square of a mass scale. A natural scale is
the pion decay constant, so we assume thaktloperators have coefficients of order of
Gr Fﬁ ~1077. In Eq. (112), we usg, = 3.8 x 10~8 because this scale appears naturally
in quark-model estimates as in Ref. [19].

Here we limit ourselves ta = 1. Up to two derivatives, then, we have one RW N
Yukawa couplingi? -, three NNLO PVt NN couplingsk14, ten short-distance LECS

C;, C;, and one additional independent PV LEG if we consider PV photo-reactions. As
emphasized earlier, only five independent combination afndC; are relevant to low-
energy PV observables in few-body systems, while the effects of all but one of the NNLO
PV 7 N N operators can be absorbed into other terms in the potential. In practice, then, the
inclusion of pions leads to a total of eight independent LECs. From Eq. (111), the expected
size of the relevant PV couplings is

A
hann ™~ <_X)gn» (113)
Fr
2
~ A
Ci,Ci ~ (F—X> 8x» (114)
s
ki Cr=gn. (115)

The most challenging part of the power counting is to order the strong-interaction ef-
fects. Here we count powers ¢f, where as abov@ denotes a small quantity such as the
pion massn,, an external momentum, or the electric charge, For example, the strong
7NN vertex is counted a®(Q), the PV Yukawa vertex i€ (Q0), the pion propagator is
O(0~?), and the four-nucleon vertices proportionald r are also counted a(09).

In the one-nucleon system, a loop integfai“k can be simply counted a8(Q%). If
there are two or more nucleons, this naive counting breaks down. The reason is that within
nuclei nucleons are nearly on-shell. Thus, instead of béin@), theq® component of the
pion four-momentum in the one-pion-exchange (OPE) diagram shown in Fig2@2$),
since

q°=pY —pP~ : (116)
wherei, f label initial and final states. This simply means that in first approximation OPE
is static. Now consider the loop diagram generated by the exchange of two pions between

two nucleons, and focus on thig? integral, which is, schematically,

dqo 1 1 ( L )2
2 %+qo_%+l€%—qo—£_i/+l6 (QO)Z_az_m%_}_ie

i ( ! )2+ (117)
E—q—z—l—ie 672+m]2T ’
my
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Fig. 2. Parity-conserving iterated opeén-exchange diagram. A solid (desl) line represents a nucleon (pion).
The dotted line indicates the cut line which picks out the two-nucleon intermediate state.

where E ~ O(p?/my) is the nucleon kinetic energy. The-*” are contributions from
the pion poles, which scale according tovepower counting, and other small terms.
Yet, the term shown explicitly, stemming from the nucleon pole, represer@Xap / Q)
enhancement over naive counting.

This enhancement is more geal than the specific diagm considered above. It is
presentin any diagram that represents a timeing displaying an intermediate state with
nucleons only. Such an intermediate state differs from the initial state only by a difference
of nucleon kinetic energies, which is smaéldause of the heavy nature of the nucleons.
This type of intermediate state already appeared in the pionless EFT, and led to the resum-
mation (74), which is equivalent to unitarization of the potential, i.e., to the solution of the
Schrédinger equation.

To carry out the resummation in the presence of explicit pions, two approaches have
been proposed, which differ in the treatment of pion effects relative to the contact interac-
tions. In the simplest approach [89], pion interactions are assumed to be small compared
to the non-derivative contact interactions, and only the latter are resummed. Unfortunately,
this assumption does not converge for &IN channels at momenta of the order of the
pion mass [90]. In the other approach [3], non-derivative contact interactions are assumed
to be comparable to OPE, and both interaigs are resummed. In its original form, Wein-
berg’s approach was proposed as an expansion of the potential. This approach appears to
be successful in accounting for a broad array of nuclear observables [2], but it, too, has
problems: iteration of the chiral-symmetry-breaking piece of OPE leads to inconsistent
renormalization [42,89].

Progress has been made recently in the unaeding of the power counting relevant
for NN scattering atQ ~ m, [42]. If an expansion is made around the chiral limit, the
aforementioned problems are in principle resolved, and one obtains an expansion that is
both consistent and converges. More work is necessary to test the new power counting, but
at this stage we can see the reason for its success. The iteration of OPE in the chiral limit,
together with the non-derivative contact interactions, make&'theamplitude numerically
similar to Weinberg’s original proposal. Tiefore, while unnecessarily resumming higher-
order terms, Weinberg'’s power counting can still be used to organize the potential.

With this scheme, we separate Feynman diagrams into two classes: two-particle re-
ducible (2PR) and two-particle irreducible (2PI). Only 2PR diagrams lead to the anomalous
enhancement factor after loop integration discussed above. The 2Pl diagrams, in contrast,
do not contain shallow poles, so they have the same power counting as the one-nucleon
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system. With this classification in hand, one can use effective field theory to organize the
calculation order by order. The sum of 2P| diagrams yields the potential, which is the ker-
nel for the Lippmann—Schwinger (LS) equation. Through iterations the 2PR diagrams are
generated. Solving the LS equation, or eqlaadly the Schrédinger equation, one arrives
at the amplitude from which scattering cha calculated, and whose poles are My
bound states.

In this work we will follow Weinberg's formalism and derive the RWN potential up
to O(Q). Only the 2PI PV diagrams are included in the PV potential. All 2PR diagrams
can be generated when the PV potential is inserted in the LS equation. In practice, the PV
potential is much smaller than the strong potential so it can be treated as a perturbation.
One can treat it as a PV operator and calculate the PV matrix element using the wave
function from LS equation with the strong potential. The connection with the expansion of
Ref. [42] is easily made by further expanding in powerm@f.

5.3. The PWN potential

Using the above power counting we construct the PV potential, classifying terms ac-
cording to their size. We truncate the chiral expansion of PV potenti@( &), although
the procedure can be carried out to higher orders in similar fashion. The PC potential has
been derived t@(Q*) in Ref. [4].

At O(Q~1), the only contribution comes from OPE diagrams of Fig. 3, where the
PV vertex is the LO Yukawa interaction and the strong vertex arises from the operator
in Eq. (101). These diagrams give rise to a long-range potemﬁgi(l?):

. (G1+52) -k

1
ah -
yPv g INN i (71 X Tol3~—=
k2~|—m721

_ (k) = —S2_INN
(=1,LR) 2J2F,

where the—1 subscript denotes the chiral indeitloe corresponding amplitude and where
k= p1— py=p;— p2

Subleading corrections arise from severmalizes. First, there are corrections to the
long-range potential from corrections at the PC vertex (see Fig. 4). As discussed in Appen-
dix B, the corrections involvinéle,lg,lg amount to a renormalization of the bare coupling

(118)

(a) (b)

Fig. 3. OPE diagram that contribstéo the long-range part of the PV potential. The filled circle indicates the PV
7 NN Yukawa coupling.
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(a) (b) (©

Fig. 4. Corrections to the long-range RPWN potential from insertions ofa), (b) higher-order P@ N N terms,
which are denoted by the unfilled circle, and (c) loops.

(@) (b) ©)

Fig. 5. Corrections to the long-range RWN potential from insertions ofa), (b) higher-order PVt NN terms,
which are denoted by the circled filled circle, and (c) loops.

gg while the term containing17 does not contribute. The remaining terms in Eqgs. (102),
(103) are proportional tg4 and do not introduce any new unknown constants into the PV
potential. Since their contributions areclissed in Appendix B, we do not reproduce them
here.

Qualitatively new corrections arise &(Q) from long-, medium-, and short-range ef-
fects, Vi /s, Vi Mg @NdV{ &g, respectively. The NNLO long-range contributions arise from
inserting the operators in Eqg. (107) in the OPE diagrams (see Fig. 5). As noted in above,
the effects of the operators proportionakﬂ;@;‘}\, can be absorbed in the potential through
a suitable redefinition Oﬁzlfzvzv and Cs. The momentum space form associated with the

remaining operator is

1a - - - =/ - o -
. - gakyn (TLx T2\ [01: Py X p1o2-q1
VItR(PL. ... Po) = =
1,LR\PL, - -5 P2
3

> +(1(_)2)}+"'a
AXFjg 2 qu_—}-m]ZT
(119)

wherep; (p!) is the initial (final) momentum of th&th nucleong; = p; — p;, and the * . .”

denote the&)(Q) contributions generated by corrections to the strongV vertex through
NNLO (see Egs. (102), (103)). Taking the Fourier transform of Eq. (119) leads, after some
algebra, to the coordinate space potential in Eqg. (12). In a similar way, one may evaluate
the contributions td/lf’\L/R generated by orde@® contributions to the parity conserving

w NN vertex.
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Fig. 6. PV N N contact interactions that contribute to the PV short-range potential.

(a-1) (a-2) (a-3) (a-4)

(b-1) (b-2) (b-3) (b-4)

(c-1) (c-2) (c-3) (c-4)

Fig. 7. Possible PV chiral corrections to AQV couplingsCs 7.

The short-range patly

arises from
(i) the PV NN contact interactions in Fig. 6 and
(ii) possible chiral corrections to PEN operatorLs 7, as shown in Fig. 7.

The contact interactions have exactly the same form as Eq. (5), so we do not reproduce
the expression here. Of course, the values of@dh&; differ from those in the pionless
theory, where they effectively account for the effects of low-energy pion exchanges. In
principle, one would expect these couplings to be renormalized lopp effects, as in the
case ofil . As we show in Appendix C, however, such loop effects vanis®(@).
Similarly, PV loop corrections to the leading-order PC operators—illustrated in Fig. 7—
generate no corrections to the short-range couplings at this order.

The medium-range paﬂt’,\ﬁ}{ arises from the two-pion-exchange (TPE) diagrams, in-
cluding

() the triangle diagrams in Fig. 8,
(ii) the crossed diagrams in Fig. 9, and
(i) the box diagrams in Fig. 10.
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Fig. 8. PV TPE triangle diagrams theontribute to the medium-range RVN interaction atO(Q).

Fig. 9. PV TPE crossed diagrams that contribute to the medium-rangeéPVhteraction atO(Q).

.

e f g h

Fig. 10. PV TPE box diagrams thadmtribute to the medium-range PVN interaction atO(Q).

471
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The evaluation of these diagrams is somewhat involved, and we give a detailed dis-
cussion in Appendix D. Here, however, we note a few salient features of the calculation.
First, the explicit form of the TPE potential is linked to the definition of OPE and the
procedure to subtract the iterated OPE from the box diagrams. The slanted box diagrams
are meant here as a representation of the full box diagram with the iterated static OPE
subtracted (according to the procedure expdiin Appendix D). Relativistic corrections
(beyond those in OPE) appear at higher orders. Next, we regulate the loop integrals us-
ing dimensional regularization. The regulator-dependence is removed by the appropriate
counter-terms, which in general have the form given in Eq. (5). The remaining, finite parts
of the integrals contain terms “regular"—or polynomial—in momentamapdand “irreg-
ular”, or non-analytic, terms. The former are indistinguishable from operators appearing in
Eqg. (5) (and higher-order parts of the potential), whereas the latter are uniquely identified
with the loop integrals. In principle, one mahoose to retain explicitly any portion of the
regular terms and absorb the remainder into the short-range LECs appearing in Eq. (5). The
meaning of theC;, C; is, thus, scheme-dependent. Here, we adopt a scheme in which all
of the regular terms are absorbed into the correspon@ing;, leaving only the irregular

contributions explicitly inV; viz:

. 1 (- T L L
V(F{YMR)<q)=—A—3{C§”<q) 52iG1x 52§
X
+c§ﬂ<q>ie“b3[ax?213<a—1+62>-q}, (120)
where
Co(q) = &2rg3ht yn L),
C% (q) = —~2wgahtyyL 3v2 3L(g)— H 3pl 121
& (@)= gahann L@+ — 7[3L(g) — H(q)]g3h>, (121)
and
\/4m2 +g2 \/4m2 +q2+1g] 4m?
L(g) = il In ™ , H(g)= ——2=_L(g). (122
(@) 7l - (@) o (@). (122)

Thus, the PV TPE amplitudes produce contributions with the same spin—isospin struc-
ture as the contact interactiofs, Cs. In fact, since the regulator-dependent and regular
parts of the amplitudes can be absorbed iﬁgg’ , we would not expect any new spin—
isospin dependence to emerge from the dieatd PE amplitudes. The spatial-dependence
of the finite, non-analytic part, however, is djtetively different. We discuss this differ-
ence below.

Finally, we observe that there is no PV three-nucleon forc@¢@). In connecting a
third nucleon via a pion-exchange interaction, one increases the order of a given diagram
by the same amount as if one added an addititm@p. Consequently, the ingredients
given in Section 5.1 allow a®(Q) only tree-level three-nucleon diagrams that involve the
leading order PC vertices and the PV Yukawaaupling. However, these diagrams cancel
against recoil terms in the iteration of the two-nucleon potential. In fact, the situation here
is analogous to thé(Q?) PC three-nucleon force, whem similar cancellation occurs
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[3,5]. As a result, if one employs an energy-independent potential (as is usually more con-
venient in few-body calculations), one may omit these three-nucleon diagrams. Non-trivial
three-nucleon PV effects should appear only&0?), which is beyond the order of our
truncation here.

5.4. EFT PV potential: qualitative features

As shown above, the PWN potential toO(Q) is given by Egs. (37), (118), (119),
(120). The corresponding coordinate-sp&¢# (r) can be obtained straightforwardly by
taking the Fourier transform of these expressions. On the basis of the power counting, one
would expect the OPE potentiﬂﬂ/’LR to dominate in those channels where it contributes,

unIessh}TNN is anomalously small compared with the NDA estimate in Eq. (113). This
potential is, of course, not new [16]. Several contributions arise with chiral index.
Although they are all formally of the same order in power-counting, their effects may
nevertheless be distinct due to the differeperator structures and spatial ranges. The
SR potential has already been discussed extelysin the treatment of the pionless EFT.
Qualitatively, the only impact on the SR potential of including the pion as an explicit degree
is that the numerical values of relevant combinations of@heand C; will differ for the
theory with pions.

The two-pion exchange contributioﬁfMR also appears at(Q). The result in
Eqg. (120) appears to be the first analytic expression for the PV TPE potential that is model-
independent and consistent with the symmetries of QCD. Although studies of PV TPE
effects have appeared previously in the literature (see, e.g., Ref. [18]), direct comparison
with our treatment is difficult. First, we have not been able to find an analytic expression
in the literature. Second, two terms in th€ PPE amplitudes that depend strongly on the
cutoff would have appeared explicitly had we not used dimensional regularization. This
regulator, or cutoff, dependence requires is@n of short-range counter-terms in order to
guarantee that physical observables are regulator-independent. In the analysis of Ref. [18],
however, no mention is made of the counter-terms, and we suspect that the correspond-
ing TPE potential is not cutoff-independefihird, the component of the TPE amplitude
unigue to the loop diagrams is determined by chiral symmetry, and it is notoriously difficult
to maintain this symmetry without usingPT (see Ref. [5] for an illustrative example in the
parity conserving three-nucleon sector). The situation for PV interactions closely mirrors
the developments in the PC TREN potential, whose first derivation in accordance with
chiral symmetry was given within EFT [4]nd whose form was recently clearly identified
in a phase-shift analysis &f N data [91].

The PV TPE contributes two spin—isospin operators. One,

O = i[T1 X T2]3(61 + 62) - G, (123)

appears also i PY o, but C2""°*P() is not a simple Yukawa function. The structure is

also the same as tlh%/ term in the DDH potential, where it is usually neglected. The other
spin—isospin structure,

2 2

~ L2 7 I
0> = 12 21(0‘1XO‘2)-6], (124)
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Fig. 11. Components of the PWN potential (in units ofg;10~4 MeV—Z) as function of the momentum
transferred (in MeV): OPE (thick solid lineXg component of TPE (long-dash linef;, component of TPE
(short-dash line)Cg component of DDH (thin solid line)> component of DDH (dotted line).

has the structure of thigl -term in the DDH potential. In Fig. 11 we plot the momentum-
dependence of the coefficients of the operai@gs(Eq. (123)) and0; (Eq. (124)) for
VlF.’MR, in comparison with the corresponding componentB’B}fLR and the DDH poten-
tial using DDH best values from Table 1.

As expected on the basis of power counting, the OPE potential gives the largest ef-
fect forqg ~ m . As g increases, the TPE potential grows and eventually overcomes OPE.

This feature can be understood simply from the more singular nature of TPE:MB}?L&\R
scalesag ! atlargeg (orr—2 atsmallr), Vi scales ag* (or r—*). In comparison with

isovectorw-exchange term in DDH, thé, component o’y has qualitatively similar
behavior at lowg (up to an overall phase). The rise withs more rapid, however, indicat-

ing a longer effective range than ferexchange. As pointed out above, g component

at distances < 1/m; is missing in DDH, while it is not particularly small iﬁfMR. This
component will generate an additional emyedependence in the same channels OPE con-
tributes. Presumably, the conventional practice of neglecting the TPE component leads to
inconsistency in the analysis of experiments that probetheperator at different scales.

We see no theoretical justification to neglect TPE.

It may, perhaps, be surprising that the TPE contribution§4g become numerically
non-negligible compared to the OPE effect at relatively low-momentum. For example,
wheng is of the order of typical Fermi momentum for nuclei Q00 MeV), the TPE
contribution toOg is roughly one third the OPE contribution. One may wonder, therefore,
whether the EFT converges too slowly to justify truncatio®d). One should keep in
mind, however, that TPE effects always appear in tandem with short-range components of
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the same order and that the latter properly compensate for the most singular part of the
TPE contribution.

New long-range, single pion-exchange terms also arise at subleading order. The struc-
ture of the operator associated witb"NN—shown in Eq. (12)—is distinct from those
appearing invFY| o, VPV andVi¢s as well as from the operators appearing in the DDH
potential. Additional structures are induced by relativistic corrections to ther RAW
Yukawa interaction, which are neglected in the DDH approach (see Appendix B). A con-
sistent power counting, however, requires that one include them along with the SR and MR
operators.

Finally, one might also worry that we have not include@obar contributions explicitly
sincem, — my is comparable ton,. Indeed, in our treatment effects are implicit
in the LECs. Had we kept thé as an explicit degree of freedom, it would contribute
to the two-body PVN N interaction solely via loops. Because the RW A interaction
vertices are of D-wave character, loops that contain this new PV interaction are generically
two orders higher than the correspondingy loops containing the PV Yukawa coupling.
Similarly, there would also be contributions to the renormalization 6t appearing in
VfXLR. Since experiments are sensitive only to the renormalized Yukawa couplings, the

treatment ofA loops will only affect the interpretation df: and not its extraction from
experiment (see the last article in Ref. [38]). The only new contributions fror tteethe

PV NN interaction would be in the TPE potential where theappears between two PC
7N A vertices! There would also be three-nucleon diagrams that are the PV version of
the leading PC three-nucleon force [5]. The c#dtion of these effects is straightforward,
and they introduce no new, a priori unknown PV couplings. We leave the “improved”
version of the PV EFT containing these effects for the future when it may be required by
phenomenological considerations.

5.5. Currents

As discussed earlier, any experimental program aimed at determining the PV low-
energy constants will likely include electromagnetic processes. In order to maintain gauge
invariance, one must include the appropriate set of meson-exchange-current operators.
Typically in nuclear physics, one expresses the requirements of gauge invariance through
the continuity equation

V.-J=1[H,pl, (125)

whereJ* = (p, J). For the long- and medium-range components of the potential, a min-
imal set of current operators satisfying Eq. (125) can be obtained by inserting the photon
on all charged lines in one- and two-pion-exchange diagrams. The meson exchange cur-
rent (MEC) operator correspondingtthLR, Fig. 12, is given in Ref. [21]. The operators
associated witlv{ 'z andVy Y- are more involved (see Fig. 13(a)—(d)). In particular, con-

struction of the MEC operator associated V\MﬁMR is technically arduous, as one must

7 In the two-nucleon PV interaction, these aragiams analogous to those in Figs. 9, 10 but with the
substituted for a nucleon on the line without a filled circle.
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(2) (®) (© ()

Fig. 12. Long-range PV meson-exchange curremtsading order. A wavy lines represents a photon.

- - - :x: /\X WV\%
(©) () ©

(@) (b)

Fig. 13. Corrections to PV meson-exchange currents: OPE from minimal substitution in the sub-leading (a) PC
and (b) PVa NN vertices, (c) TPE, (d) short-range contribution from minimal substitution in the PV contact
interaction, and (e) OPE from newr N N vertex. Not all ordering and topologies are displayed.

evaluate a large number of Feynman diagrams—a task which goes beyond the scope of the
present study. Thus, we defer a derivation of these MEC operators to a future publication.

The foregoing set of MECs constitute a minimal, model-independent set required to en-
sure that Eq. (125) is satisfied. In addition, one may consider MECs that satisfy Eq. (125)
independently from the terms in the potential.tQ), we find that there exists one such
MEC that is not determined frori®V by gauge invariance. This operator is obtained by
OPE with an insertion of the operator from Eq. (110) (Fig. 13(e)), leading to the momen-
tum space two-body current

i _i[x/ignzvzv@n ]r+52'6?2 (q1+G2) x 61
mNAXFn 622+m72[

+(1le2) (126)

and to Eq. (13) in coordinate space.

6. Short-distance archeology: correspondence with DDH and beyond

In the ideal situation, a systematic EFT treatment would use experimental low energy
measurements in order to determine the counter-tartr,ns?’l’z, Ot hleNN, k}r"NN, and
C entirely from data. As emphasized earlieert exists in principle a program of low-
energy few-body measurements which will yield at least five linear combinations of these
constants. Alternately, one would ultimatéiope to gain a theoretical understanding of
the values of these constants (and their linear combinations) probed by experiment. How-
ever, obtaining reliable theoreticalgaictions is complicated, since the P\ interaction
involves a non-trivial interplay of weak and non-perturbative strong interactions. Indeed,
carrying out a first-principles calculation of the PV LECs is not yet possible, since lattice
QCD techniques are not yet sufficiently advanced to address this problem. Consequently,
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in order to say anything about the LECs beyond NDA estimates, theorists have of necessity
relied on model approaches. In this section we illustrate how the PV LECs can in principle
be estimated from details of the short-range dynamics.

Before proceeding further, it is useful to comment on the correspondence with, and
difference from, the conventional DDH formalism in the treatment of short-distance PV
physics.

(i) The EFT approach is systematic and model-independent. No assumption is made
about the dynamics underlying the short-range interactions in the EFT, whereas the
DDH formalism relies on a light pseudoscalar- and vector-meson-exchange picture as
indicated in Fig. 1.

(i) The LECs C1— have a straightforward correspondence with the DDH PV meson—
nucleon coupling&2?, K%1-2. In the EFT framework, howeve€:—s could deviate
strongly from the DDH values, as we illustrate below.

(i) In terms of the DDH meson-exchange language we have the constraints

¢DDH  ~DDH
ﬁ:@:jﬂ}‘x@, (127)

~DDH ~DDH ~DDH
5 Ch o

where x, ., denotes the ratio between tensor and vector couplings ef meson—
nucleon interaction. In our EFT approach, howewat,s constitute five LECs whose
values need not be related@a—s as in the DDH picture.

(iv) The DDH parametehjol is generally discarded since its “best value” is tiny. In EFT,

on the other hand/p1 contributes toCg, but Cg need not be small since it can re-
ceive a contribution, e.g., frompy meson exchange. Moreayalthough the operator
accompanying’s has the same spin—isospin structure as PV pion exchange, these
interactions have different ranges and may in principle be distinguished as long as a
sufficient range of energies is probed.

6.1. Resonance saturation

One popular model approach—which we adbete for purely illustrative purposes—
assumes that the short-distance dynamics is governed by the exchange of light meson res-
onances. This “resonance saturation” apgtohas some theoretical justification from the
standpoint of the larg@¥. expansion, wher&/, denotes the number of colors in QCD [92].

Itis also supported by several phenomenological studies. Itis well known, for example, that
in the O(Q*) chiral Lagrangian describing pseudoscalar interactions, the low-energy con-
stants are well described by the exchange of heavy mesons [93]. In particular, the charge
radius of the pion receives roughly a 7% longtdince loop contribution, while the re-
maining 93% is saturated bychannel exchange of the. Similarly, in the baryon sector,
dispersion-relation analyses of the isovector and isoscalar nucleon electromagnetic form
factors indicate important contributions from the lightest vector mesons [94]. Finally, the
primary features of th&/ N PC potential seem to be well described in such a picture [95].
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Thus, it seems reasonable to assume that low-lying-meson exchange may play an important
role in the short-distance physics associated with the PV LECs.

With these observations in mind, we invoke resonance saturation to arrive at illustrative
estimates for the PV LECs. The relevant Feamdiagram is the same as in Fig. 1, where
the exchanged bosons include all possible heavy mesons with appropriate quantum num-
bers. Here, parity violation enters through one of the meson—nucleon interaction vertices.
While the DDH framework includes only the lowest-lying vector mesons to describe the
short-distance P\W N interaction, we also consider the exchange§®80), a1(1260
and f1(1285, as well as the radial excitations of these systems. Of course, the PV LECs
receive additional contributions from highersonances, correlated meson exchaatye,
However, we limit our consideration to this set, as it already suffices to illustrate to what
extent the short-distance PN N interaction can differ from the predictions of the DDH
model.

In order to estimate specific values of LECs in the framework of the meson-exchange
model we require the corresponding PC and PV meson—nucleon Lagrangians:

Vector-meson exchange
The parity-conserving vector-meson—nucleon interaction Lagrangian reads

v Xp .
‘CEI%N = g,ONNN|:ylL + 2 £ laﬂqui|r : IOMN’ (129)
my

LoSN = ngNN[Vu + zi—wiawq”]wﬂN, (130)
N

Loy = g¢NNN|:Vu + 22—"’ia,wq”]¢“N- (131)
N

The parity-violating vector-meson—nucledrif N) interaction Lagrangian is given in
Ref. [19]:

2
EEX/N =NyH VS[hO; fom hppu 2}1/_(37,'3[)# —T- pu)]N
/1 _
~ o V@ X B quysN. (132)
LYy = Ny"ysw, [ + hi )N, (133)
LEyn =Ny"yspu[hd +hjrs]N. (134)

Note that we have adopted the conventionjfgifollowing Ref. [96], which isdifferent
from that used in Ref. [19].

To our knowledge, the following contributions to the PMV short-distance interaction
have not been discussed elsewhere in the literature.

ao(980-meson exchange
EE(S\,N = guoNNNT - aoN, (135)
‘C'S(}/NN = huoNl)/5('r X do)3N. (136)
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a1(1260-meson exchange
ﬁEfNN = guunNNyuyst - al'N. (137)

Note that the structurtyio,,q" (7 - Zz’l‘)y5N is analogous to the weak-electricity form
factor of nuclear beta decay; it is paritpreserving but CP violating and hence is not
included. The PV Lagrangian is

2

h
R = R, af 4 i 5 B — ) |

5

- 10g 3 4 ay
N i p3 1. h 3r3a1h — 7 -a!) [N, 138
+ 2mn |: a T al + alo 2\/6( T3d1g — T al):| ( )

Wherea? is the neutral component af meson.

f1(1289-meson exchange

LOS N =8N Nyuvsfi'N, (139)
Lo N = Nyu [ '+ h Ar PN, (140)

In principle, one may also include in such a model exchange of the radial excitations of
0,w,$,ap, a1, f1 mesons is also allowed.

6.2. LECs with DDH framework and beyond
With these couplings in hand, we can identify our predictions for the various low-energy

constants.
If we consider only vector-meson exchange a la DDH, we have

ﬂ:lﬂm i=12 e =14y, i=3-5
CPoH ’ » & CDDH P>
cPM=-a,n0, PP =—a.nl,  c§PH=—a,n0,
cPPH = _4, hl CPPH = 2/3)_}’5’ COPH —Apgpzvzvh/pl,
where we have defined
A5
Ay = D) (141)

However, within the context of resonance saturation, these LECs could also receive
contributions from radial excitations of rho and omega mesons, and dgm1-, f1-
meson exchange. Hence we have, more generally,

C3—5 CDDH + CRadlaI+ C C3—5 CDDH + CRadlal_I_ C3_5,
CG — CDDH + CRadlal_I_ C6 , (142)
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where

lelz—AflgleNh(}l, C{lz—AflgleNh}cl,

C3' = —AalgalNNhgl, 6‘31 = —Ag 801NN (hf}l + h?;l)
C)t= _AalgalNNhil, Czl = —Au 841NN (hil + hﬁl),
A ~ A
ap __ ‘a1 2 ap __ ai 2 5
C5 = Z—JégalNNhalv C5 = _Z—JégalNN (hal + hal)’

CP = — Agohag. (143)

Similar relations will hold for the radial excitations.
6.3. Estimates fo€1—¢, C1-5

As noted above, arriving at reliable theoretical predictions for the PV LECs, even within
the context of a model framework, is a formidable task, and one which certainly goes
beyond the scope of the present work. Nevertheless, it is useful to have in hand educated
guesses for their magnitudes and signs, if for no other reason than to provide benchmarks
for comparison with experiment. To that end, we quote below both expectations based on
naive dimensional analysis and values ataifrom correspondence with the DDH model.
Future work could include, for example, computing the weak couplings entering Eq. (143),
thereby providing model estimates for the departures otthandC; from their NDA or
DDH values.

There exist various values for the parity-conserving couplifgsy, x,. Sonn, andye
quoted in the literature [97—-99]. Ronately, the combinatiog, vy (1+ x,) takes roughly
the same value in different approachgsiyy (1+ x,) =~ 21. Likewise various approaches
consistently yield a very small value fag,. It is thus reasonable to use the valygs=
6, gony =3 0r x, =3.7, g,nn = 4.5. A word of caution is in order here. The proper
accounting of chiral symmetry in multi-pion contributions might affect the extractions of
strong couplings. For example, the effeciupbxchange inV N scattering is significantly
reduced when correct TPE is considered [943 we emphasized earlier, the estimates
here should be considered to yield only an educated guess for the order of magnitude of
the LECs. The theoretical uncertainty from this exchange model is much larger than the
choice of x, andg,y~. Here, we simply use, = 3.7, g,yn = 4.5, xo = —0.12, and
goNN = 14 to make our best guess. Results are given in Table 2 and should be used with
due caution.

7. Conclusions

In summary, we have performed a systematic study of the parity-nonconserving
nucleon—nucleon potential, and have suggested ways by which the present confused ex-
perimental situation can be resolved. We have proposed breaking this program into two
separate pieces:
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Table 2

Estimates of ranges and best values for PV coupling constants C1_s (in units of g; = 3.8 x 10‘8)
LECs Naive dimensional analysis Best values Range
C1 +158 32 —95— 172
C1 +158 28 —84— 151
Cy +158 17 13- 32
Co +158 15 11> 28
C3 +158 63 —63—171
Cs3 +158 296 —296—> 803
Cy +158 95 —289— 520
Cy +158 1 01
Cs +158 —-11 —13— -8
Cs +158 —-51 —61—> —28
Ce +158 - -

(i) Since the low-energy parity-violating potential involves five S—P wave mixing ampli-
tudes, we have constructed a simple local effective potential in order to reliably extract
such quantities from experiments involving only tNeV, Nd, or Na systems. We
have also suggested the critical experinsehtat are needed in order to successfully
complete this task and have given explicit formulas which will express the mixing am-
plitudes in terms of experimental observables. We have also suggested a two-phase
experimental program, where phase one would include six (or possibly seven) mea-
surements needed to test the consistency of the pionless EFT and phase two would
involve additional measurements needed ttedeine the pion-related parameters if
necessitated by the results of phase one.

(i) A second important facet of this program is to confront the extracted phenomeno-
logical potential with theoretical expectations. For this task, we have systematically
constructed a parity-violating nucleon—-nucleon potenii8V (7) within the frame-
work of effective field theory using the Weinberg counting scheme up to the order
O(Q). The correspondence with, and difference from, the conventional DDH poten-
tial were discussed.

In order for this scheme to come to fruition additional work is required on several fronts.
Experimentally it is critical to complete the key experiments, resulting in a confirmed
and reliable set of low-energy phenomenot@jiparameters. Once these parameters are
known, it is important to use them in order to analyze the heavier nuclear systems and
resolve the various existing conflicts. Doing so could have important implications for the
applicability of EFT to other electroweak processes in heavy nuclei, such as neutrinoless
doubles-decay [81]. Future work is also neededunderstand the relation between the
underlying effective weak potentialPV(¥) and the effective phenomenological parame-
terspr, As, xf; and should involve the best available nuclear wave functions. What should
result from this program is the resolution of the presently confusing experimental situation
and a reliable form for the parity-violating nuclear potential, which we hope will set the
standard for future work in this field.
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Appendix A. ThePV NN contact Lagrangian

Since we employ the heavy-fermion formalism, one can build the most general PV
operators by using heavy-baryon fields directly. This approach, however, yields redundant
operators, which then have to be eliminatedilmposing reparametiation invariance.
Alternatively, we can obtain the relevant operators starting from the relativistic theory, then
performing a non-relativistic expansion. We ugg, vy for the relativistic nucleon field
and N, NT to denote the nucleon field after non-tlistic reduction. In general, there
exist twelve possible PV and CP conserviNgV-interaction terms up to one derivative,
which we write as

1 - ~ 81 .. -
Or= I lywin Ly ystn,  Ou=Sinlioug bninly vev,
X X
82 - - A 82 .. oy T
Oz = A—ZWN]-V;LWNWNTSVuVSWN, Oz = A—SlﬂNllU,wq YUNYNTIVLVSYN,
X X

3 - - ~ 8 < . -
O3 = %wa“VulﬂNlﬂNT“VuVSWN, O3 = %wa“lﬁuuqvlﬂNlﬂNf“mVSIﬂN,
X X

84 7 7 Ao 84 . .
O4= ﬁ!/fNT:J,VuwNwN 1yuys¥n, Os= F!”NWGWCIWNWNWMVWN,
X X
85 ab 7 -
Os = A_ZI YNTaYuUNUNTHYVLYEYN
X
i

@5 = A3 IablﬁNTaig;quwN 1ﬁN"fb)/uVM/fN s
X

6
Oﬁ_g_eab3

=12 YN T NN THIVSYN,
X
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Op = j_géaw‘pNTaVuwNWNTbiO';quVSWNa (A.1)
X
whereZ is defined in Eq. (6). In writing down these PV operators, we have assumed that
all the isospin violation arises from the weak interaction, thus neglecting isospin violation
from up and down quark mass difference anec&lomagnetic interactions, since correc-
tions from such effects are typically around a few percent and negligible for our purposes.
The isospin content of the above terms is transparent: therl:  terms conserve isospin,
the piece withZ? carriesAl = 2, and all remaining pieces change isospin by one unit.
In order to understand the constraints that relativity imposes, we consider a simple
example—the expansion 6f; andO1. Up to O(Q) we have

1 N N . .
O1= 52— [-N"INN'15 - iD_N + NTLDI NNT16'N
AX 2my
— i€ N1 D o; NNT16F N,
Oy = —%ieikaTliD;ojNNTlo"N. (A2)

X

Note that thetwo relativistic structures?; and O together yieldthree distinct non-
relativistic spacetime forms. However, only two linear combinations of these forms are
independent according to the strictures of tiglty. On the other hand, if we had started
from the non-relativistic theory and tried to e the most general effective Lagrangian,
we would have naively identified each of thekeee structures as being independent and
would have mistakenly postulated three, rather than two, LECs. The requirements imposed
on the independence of various non-relatigcisperators which follow from consistency
with the relativistic theory is known as reparameterization invariance. Physically, this in-
variance amounts to stating that the non-relativistic theory should not contain more physics
(e.g., LECs) than the relativistic one. Analogous situations occur in heavy-quark EFT and
in the non-relativistic expansion of the rleon kinetic operator in heavy-nucleon EFT.

Similar results follow for the operatof@, 5 andO,_s in that each setO;, @i} gener-
ates twandependentombinations of non-relativistic op&tors and, thus, two independent
LECs. On the other hand, after non-relativistic reducti©®g,and Og yield exactly the
sameform up to O(Q). Hence, these structures yield omdgeindependent LEC in the
non-relativistic theory even though there are two different LECs in the original, relativistic
theory. The new LEC is a linear combinationgfandgs.

The full PV contact heavy-nucleon LagrangiancatQ) in the NN sector can then be
written in the form given in Eq. (71), where the LECS are related to the relativistic
couplingsg; via

A
Ci5="g15, (A.3)
2mN
3 i A
Cis=381-5+ 2—Xg1—5, (A.4)
my
5 A
Co=g6— (A.5)

2m 86-
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We thus have a total of ten PV LECs describing PV short-distavwephysics. For the
purpose of characterizing PV operators in & system throughO(Q), these ten con-
stants are sufficient.

Appendix B. Correctionsto VFY o
There are subleading corrections to OPE that arise from Fig. 4, where the strong vertex

comes from subleading PC operators in Egs. (102), (103). In fact, whan-thk opera-

tors from Eq. (102) are inserted in Fig. 4, the resulting PV potential is naiveiy(¢f°).

However, with

Py — Pl
v.qzqo_IZmiN (Qz/mN), (B.1)

with i (f) denoting the initial (final) nucleon, we have
. 8ahiyy (n x r2> (P2 — P3p)o1- (Pif + pu) — (1< 2)

i\ 2 )y G2 +m?2
whereq = pay — p2i = p1i — p1y. Thus, this contribution enters &(Q) and must be
included for consistency.

Similarly, the second and third operators from Eq. (103) are nomimaty2 but lead
to corrections that ar@(Q%), since they contain two kinetic operators framD or v - A.
However, the insertion of the first, fourth and fifth= 2 operators from Eq. (103) in Fig. 4
lead to contributions a(Q). We list these terms below. The contribution from the first
operator in Eq. (103) reads

_.

Vlb LR — 8m V l LR- (B'3)
N

The contribution from the fourth operator in Eq. (103) is

Vla LR = ,  (B.2)

. gAhzerN T1 X T2 (pll +P1f)01 Q+(1<_>2)
Vlc LR = 2 (B.4)
8\/§mNFjT 2 3 q +m
Finally, the contribution from the fifth operator in Eq. (103) reads
VP ] gAhnNN (rlxr2>
1d LR = 4\/§m2 F, 2 3
(61 p17)(G - p1i) + (01 p1)(G - p1f) + (1< 2)
—»2 2 (B'S)
+mg

Now consider the operators associated Vkl]ih_lg. In the isospin-symmetric limit, to
leading order in the chiral expansion we have

m2
S A{x+) ~ =58 A, (§-Ax4)~0,

FZ
m2 m2
[S-D.x-1~ 258 A [$:-Dix)]~—FS A (B.6)
g g
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As a consequence, the LEéﬁ,lg,lg simply renormalize the bareN N coupling constant
g% at order®(0Q?) while LEC d17 does not contribute. Up to the truncation ord&(Q)

the corrections from these LECs to R¥V potential are automatically taken into account
as long as we use the renormalized (or physigalin Eq. (118).

Another possible source of corrections to the long-range PV potential is the insertion of
subleading PV operators in Fig. 3. As pointed out in the Section 5, the PV vector operator
does not contribute due to vector-current conservation. The axial-vector operator involves
two pions and leads to loop corrections@tQ?). The contribution from the remaining
PV operator proportional tb}ﬁ,\,N has been discussed extensively in the main body of the
paper.

Many chiral loops exist at this order, from self-energy and PC- and PV-vertex correc-
tions. The chiral loops do yield contributiod®( Q). However, these effects are included
in the renormalization o 4 [82] and thzlzzvzv [32].

Appendix C. Loop correctionsto V¢

The contact PV interactions in Fig. 6 appeac®tQ). From a simple counting of the
chiral order of vertices , propagators, and loops, it is clear that loop corrections to these PV
LECs, shown in Fig. 14, first appear@(Q3), which is beyond our truncation order.

Potentially more important are the loop corrections to the contact PC interactions, where
one vertex is the PV Yukawa coupling of the pion to the nucleon. The relevant Feynman
diagrams are shown in Fig. 7.

Take theCg NN contact interaction as an example. For diagram (a-1), the amplitude is
nominallyO(Q), and reads

iMalNthNﬁ\/igA dPk i(S1-k) i i
NN F, (2m)P 1. (py+k)+ievi-(p1+k)+ic k2 —m2 +ie

[ee) 1
2 dPk
:—hleNNCSIgA Sf/sds/du/—
0 0
k

F, (2m)P

X o , C.1
[k2+sv1-k—}—s(l—u)vl-p’l—i—usvl~p1+m7%]3 (€1

wheres has the dimensions of mass, and where we have Wick-rotated to Euclidean mo-
menta in the second line. From this form it is clear thaf,; o« S1 - v1 = 0. The same
argument holds for diagrams (a-2)—(a-4).

For diagram (b-1), the amplitude reads

1Cs~2g4 [ dPk i(S2-k) i i

iMpr ~h, —
P TR ] @oP v (pat k) ticvn- (P k) +iekZ—mZ tie
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0 1
1 V24 dPk
_—hﬂCSTSZ /SdS/dM/W
0 0
k

m
=0, C.2
><[k2~|—sv1-k~|—s(1—1,t)v-pz—l—l,tsv-p/l—l—m]ZT]3 (€.2)

where we have used the fact that= v, = v = (1, 6) for low-energyN N interaction.
Similarly, (b-2)—(b-4) vanish ab(Q).

There remains a third class of diagrams, Jeft-4). These are 2PR diagrams and their
amplitudes do not vanish &(Q). For example, the amplitude corresponding to diagram
(c-1) reads
1Cs V2g4 [ dPk i(S2-k) i i
T2 Fy (2m)P v2- (phy—k) +ie vy (py+k)+ie k2 —m2 +ie’
However, only the 2PI part of these diagrasim®uld be included. In other words, the con-
tribution from the two-nucleoimtermediate state should batgracted from the amplitude.

This can be done in old-fashioned time-ordered perturbation theory. Alternatively, we may
use the following identity to accomplish the subtraction easily:

iM.~h

i

i
=— 2n8(v - k). C.3
—v-k+ie v~k+ie+ oV - k) (€3)

The second term corresponds to the two-nucleon pole, while the first term is free of the in-

frared enhancement discussed earlier. After subtracting the two-nucleon-pole contribution,
the modified amplitude for diagram (c-1) becomes

i N_hlﬁ«/égA dPk i(Sz-k) i i
el T2 Fy (2m)P w2 (k— ph) +ievi- (py+k)+ieck? —m2 +ie

=0.

Similarly, the 2PI parts of diagrams (c-2)—(c-4) vanish. We see that diagrams (c-1)—(c-4)
can be generated from the R Q%) Cs.r contact potential and leading-order PV OPE
potential by iteration in the LS equation.

Fig. 14. Possible chiral corrections to P¥N contact interactions.
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In summary, the chiral-loop corrections to the PV short-range potential occur@d)
or higher.

Appendix D. Derivation of VY o

Of course, a consistent calculation in EFT must include all loop diagrams present to
a given order. In this appendix we give some details of the evaluation of the diagrams in
Figs. 8, 9, 10. We use dimensional regularization for simplicity.

Let us consider first the triangle diagrams in Fig. 8.

Flavor-conserving case

In this case the initial and final state on each nucleon line are the same, i.e., a proton
remains a proton and a neutron remains a neutron. Diagrams (c) and (d) are mirror diagrams
of (@) and (b) in Fig. 8. We focus on (a) and (b). The sum of their amplitudes reads

V2gahl [ dPk Nitgvi-(2k —q)N1N21S - (2k — q)N2
4F3 <2n>D v (p2+ k) (k2 — m2)[(k — q)% — m2]

1 ¢ D
=—\/—gAh 16/dx/dy ﬂ
4F3 (2r)P
0 0
y (v1-k)(S2-k)
(k2 — y2 —m2 — x(1 - x)g%3

iMa)+p) =—

00 1
L 8(5; - q>fydyfdx<1 2x>/ Ok
)P
0 0
1
QT —x(l—x)éZP} =0 (B-1)

After momentum integration the first term contains a faetor S = 0. The second term
vanishes due to theintegration, since the integrand is a total derivative.

Flavor-changing case: <> p
In this case the sum of the amplitude for diagram (a) and (b) reads

V2gahl / dPk (pv1 - (2k — q)n)(S2 - qp)

iMa)+p) =

4F3 ] @0 v (pa+ U2 —m2)[(k— )2 —mZ]
f hi
Af; L(g)(pm) 7Sz - qp), (D.2)

where the functiorl.(¢) is defined as in Eq. (122). The sum of the amplitude for diagram
(c) and (d) is, likewise,
1

. N2gah _
M4 ) = IS L () p) (5S2 - gn). (D.3)
AXF,T
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Note thatS, - g ~ — 352 - §.
Summing the four diagrams and converting to momentum-space operators we get
L(g) gahy
202 A2 Fr

Clearly the sum of triangle diagrams has the same Lorentz, isospin structure@s the
contact term.

eP3(NTe*N)(NTeb5 -G N). (D.4)

Consider now the crossed-box diagrams in Fig. 9.

Flavor-conserving casepp — pp, nn — nn
In Fig. 9, contributions from diagrams (c) and (d) are equal to (a) and (bpfes pp
the sum of (a) and (b) leads to

Shl
i4«/§L(q)jg; (p"[S1- 4. 547p)(p'S2p). (D.5)
X s

Note that, forpp — pp, initial particles are identical. The operator form will generate
both (a), (b) and their mirror diagrams simultaneously.
For thenn — nn channel, there is an extra minus sign from PV Yukawa vertex.

V2L(q) gA; ‘]k(aniojn)(nTokn) (D.6)

X w
Combining bothpp — pp andnn — nn channels, we get

L(Q) gA

2 A2F
_L(CI) gA n

V2 AZF,

Flavor changing casen — p, p — n
The sum of diagrams (a)—(d) leads to

3\/_ g3nk cab3
o [3L@+ H@) e

whereH (g) is defined as in Eq. (122).

SA T ijk (NTtgqujN) (NTakN),

eijk(NTqiojN)(NTtgakN). (D.7)

(NTz*N)(NT<%5 - GN), (D.8)

Finally, we discuss the box diagrams. As in Appendix C, we have to subtract the contri-
bution from the two-nucleon intermediate state. The corresponding time-ordered diagrams
are shown in Fig. 10. After the subtraction the 2PR part, we find:

Flavor-conserving casep — p andn — n
Fornp — np the sum of all diagrams leads to

Shl
i4v/2L(q) jg; (n[S1- 4. S¥1n) (p"$2p). (D.9)

X'
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Note that, forpn — pn, there is an extra minus sign from the PV Yukawa vertex,

8 b
—i4/2L(q) AF (p'[S1-q.5}]p)(n"S2n). (D.10)
X T
Combining both channels, we get
L(@) 83l ijk
2 A2F
L(Q) gA 71 ciik
V2 Aan

(NTtgqiajN) (NTUkN),

(NT¢'a/N)(NTezo* N). (D.11)

Flavor-changing case: <> p
The sum of all diagrams leads to the same result as in the crossed-box case,

St
3f[ 3L(q)+H(q)]jg; eP3(NTeN) (NP5 - GN). (D.12)

In summary, the sum of one-loop, TPE diagrams is
L(q) gahy
242 AZF,

3v2

3hl
+ 253 + H(q)]f\g—;eam(NTr“N)(NTrb& GN)
T

eP3(NTreN) (NTeb5 - GN)

—V2L(g )gA; el (Ntgial N) (N1 a0k ), (D.13)
X w
which leads to the medium-range potential (120).

Appendix E. lllustrative estimates

Having a form of the weak parity-violating potentigPV (r) it is, of course, essential
to complete the process by connecting with the S-matrix—i.e., expressing the phenomeno-
logical parameters;, p, defined in Eq. (36) in terms of the fundamental ong&—C;
defined in Eq. (37). This is a major undertaking and should involve the latest anf est
wave functions such as Argonne V18. The work is underway, but it will be some time until
this process is completed [101]. Even after this connection has been completed, the results
will be numerical in form. However, it is very useful to have an analytic form by which
to understand the basic physics of this transformation and by which to make simple nu-
merical estimates. For this purpose we shall employ simple phenomenolagicatave
functions, as described below.

Examination of the scattering matrix Eq. (31) reveals that the parameterare as-
sociated with the short-distance component whjleontains contributions from the both
(long-distance) pion exchange as well as short distance effects. In the former case, since the
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interaction is short ranged we can use this feature in order to simplify the analysis. Thus,
we can determine the shift in the deuteron wavefunction associated with parity violation
by demanding orthogonality with th&S; scattering state, which yields, using the simple
asymptatic form of the bound state wavefunction [102,103]

N o 1
Va(r) =1+ pGp+6n) - (—iV) + A (Gp — ) - (—iV)],/%;e*”, (E.1)

wherey2/M = 2.23 MeV is the deuteron binding energy. Now the shift generated by
VPV(r) is found to be [102,103]

$Ya(F) =~ f &' GFEFHYWVVE Y a ()

[F =7
=M T ey
4n |F — 7|
M V(e_yr> -/d3rl—>/VPV(r )Wd(r ), (EZ)
47r r

where the last step is permitted by the short rang&'®f(+’). Comparing Egs. (E.2) and
(E.1) yields then the identification

,/Zy AeXe = so / d3 (61— 32) - FVPVEF ) Wa (') xio, (E.3)

where we have included the normalized isospin wave fundgosince the potential in-
volvesty, 7o. When operating on such an isosingigtstate the PV potential can be written
as

2 S R
VPV = A—3[(Cl —3C3)(61—62) - (—iV fu(r) + 2fu(r) - (—iV))
X

+(C1—3C3)(G1 X 52) - V fu ()] (E-4)
where f;,, (r) is the Yukawa form
m2e="m"
Jn(r) = Ay

defined in Eq. (7). Using the identity
. o1 - e
(61 x 62)5(1+61-62) = (51— 62) (E.5)

Eqg. (E.3) becomes

[y
—A
- t Xt

oo
. 2M 471( 2 /‘d 3
_1671A3 3 (01 62)x: | drr
0

1/&1 (r) df (

[ 2(3C3 = C1) fn(r) +(3C3—3C3—C1+C1) Va(r )}
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y 1 2Mm?
27 K 1247 A3
2m(6C3 —3C3—-2C1+C) + y(15C3 — 3C3—5C1+ C1)

o T2 (E.6)

or

Mm? 2m(6C3 — 3C3—2C1+ Cl) + y(15C3 — 3C3—5C1 + C1)
6 A3 (y +m)?

(E.7)

t =

In order to determine the singlet paramet¥t, we must use th&Sy np-scattering wave
function instead of the deuteron, but the procedure is similar, yielding [102,103]

& o =i g e] [ &' G150 FVPE g 0k, E8)
and we can proceed similarly. this case the potential becomes
vPVE) = [(cl +C3+4C5) (61— 52) - (=i V fu(r) + 2fn(r) - =i V)
X
+(C1+4 C3+4Cs) (51 x 52) - V fiu ()], (E.9)

and Eq. (E.8) is found to have the form

2M  Arx
48nA§ 3

ds? (k) xs = — (01— 02) Xy/drrs{Z[C1~l—C3~l—4C5 S (r) ————— msO(r)
0

m(r)
]f

+[C1+ C1+ C3+ C3+ 4(Cs + Cs) 1ﬂso()}

12Mm . 1
12— m e“SS{

36 47 A3 (k2 +m?)?
x [cos&s [4k3(C1 + C3+ 4C5)
+ (C1+ C1+ C3+ C3+ 4(Cs 4 Cs)) (K + 3m?)]

2
+ = sind, [(C1+ C3 4 4Cs) (m? + 3¢%)
+(C1+C1+C3+C3+4(Cs+ Cs))mz]] } (E.10)
which, in the limit asc — 0, yields the predicted value faf”:

1
MNP =——" I|m a’”p(k)

M

m{3[cl +C1+ C3+C3+4(Cs + 65)]
s

— 2ma;"[2C1 + C1+ 2C3+ C3+ 4(2C5 + Cs)|}. (E.11)
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Similarly, we may identify

1
AP = ——— lim d’" (k
S aspp k[)no S ( )
M . . . . .
= —55 5 (3[C1+ C1+ C2a+ Co+ C3+ Ca+ Ca+ Ca — 2(C5 + Cs)]
6ral A3
- imafp[ch +C1+2C2+ C2+2C3+ C342C4+ C4 — 2(2Cs + Cs) ]},
A= —— lim d™ (k)
’ a k-0 °

=—{3[C1+C1—C2—C2+ C3+ C3—C4— C4—2(C5+ C
Gna?nA?({[l"i‘l 2—C2+C3+C3—Cs—Cs—2(C5+Cs)]

— Zma;m[zcl + 61 —2Co — éz +2C3+C3—2Cs—Cy

—2(2Cs + Cy)]}. (E.12)
In order to evaluate the spin-conserving amplitydewe shall assume dominance of the
long range pion component. The shift in the deuteron wave function is given by

5wd(7)=ég/d3r/Go(7 YR F)va ()

M y[F=F']
T / & YR g ko (E.13)
w F—7|
but now with?
VIR G = h%‘y %(rl —12),(31+62) - (i Vwa (). (E.15)

Of course, the meson which is exchanged is the pion so the short range assumption which
permitted the replacement in Eq. (E.2) is not valid and we must perform the integration
exactly. This process is straightforward but tedious [100]. Nevertheless, we can get a rough
estimate by making a “heavy pion” approximation, whereby we can identify the constant
0 Via

M
,/ZV put =i | 4 G+ 52)  F VR Fa ) ko (E.16)

which leads to [105]

y 1 4n h:NNETNN df (V)
,/Eptxt 3o 3(o—1+o)xt TNNOT drr3=2Z w()
0

V2
14 1 hxgann v+ 2my
= | —8yx; E.17
2 96 V2 (y+mg)? ( )

8 Here we have used the identity

- N .o .1 I
(M x 1) =—i(—T)5(1+171 7). (E.14)
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We find then the prediction

_ 87NN Y+2mg 4
12427 (y +mg)2 TNV

At this point it is useful to obtain rough numerical estimates. This can be done by use
of the numerical estimates given in Table 2. To make things tractable, we shall use the best
values given therein. Since we are after only rough estimates and since the best values as-
sume the DDH relationship—Eqg. (9) betwete tilded and non-tildedquantities, we shall
express our results in terms of only the nondiichumbers—a future complete evaluation
should include the full dependence. Of course, these predictions are only within a model,
but they has the advantage of allowing connection with previous theoretical estimates. In
this way, we obtain the predictions

(E.18)

t

A =[—0.092C3 — 0.014C1]m; L,

5P =[~0.087(C3 + 4Cs) — 0.037C1|m ",

AP =[-0.087(C3+ C4 — 2Cs) — 0.037(C1 + C2) Jm7*,

A = [-0.087(C3 — C4 — 2Cs) — 0.037(C1 — Co) |m 2,

or = 0.346h,m 1, (E.19)

so that, using the best values from Table 2 we estimate

A =—239%x 10 'm-1=—-341x 10" fm,

b
AP =-112x 10 'm;* = -1.60x 10" fm,
AP = _358x 10 'm;t=—-522x 10" fm,

b
A= _297x 10 'm;1 = —4.33x 107" fm,
o =150x 10" "m;1=214x 107" fm. (E.20)

Again we emphasize that in arriving at the foregoing expressions, we have used the DDH
relationships between th€; and C;. In the more general case, one should obtain ex-
pressions containing roughly the linear combinations given in Egs. (46). A similar caveat
applies to the expressions below.

At this point we note, however, that” is an order of magnitude larger than the ex-
perimentally determined number, Eq. (55). The problem here is not with the couplings but
with an important piece of physics which has thus far been neglected—short distance ef-
fects. There are two issues here. One is that the deuteroiy¥ ahdiave functions should
be modified at short distances from the simple asymptotic form used up until this point in
order to account for finite size effects. The second is the well-known feature of the Jastrow
correlations that suppress the nucleon—nucleon wave function at short distance.

In order to deal approximately with the short distance properties of the deuteron wave
function, we modify the exponential form to become constant inside the deuteron Radius
[102,103]

1,—yR
Y 1 —yr Ee , r§ R,
—— — N E.21
Vorr® {lew, r> R, (E-21)

r
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where
N [T
“Vor 2

is the modified normalization factor and we uBe= 1.6 fm. For theN N wave function
we use [102,103]

Sin‘/p2+p2r
AY" 00

— T <,
Y15y (r) = VPTERT (E.22)
sinpr 1 ¢irr
T T I, T

where we choose, = 2.73 fm andp,r;, = 1.5. The normalization constant(p) is found
by requiring continuity of the wave function and its first derivative at r,

2 .
V P+ P5"s  sinpry — pas cosprs
sin,/p2 + p2r,  Prs(Ltipas) '

As to the Jastrow correlations we multiply the wave function by the simple phenomeno-
logical form [106]

A(p) = (E.23)

$(r)=1—ce ", withc=06, d=3fm2 (E.24)

With these modifications we find the much more reasonable values for the congtafits
and;

AP =[-0.011C3+ C4 — 2Cs) — 0.004C1 + C2) |t

A" =[—0.014C3 — C4+ 2Cs) — 0.004(C1 — C2)|m*,

AP =[-0.01%C3 + 4Cs) — 0.004C1|m 2,

A = [—0.019C3 — 0.0003C1|m; L. (E.25)

Using the best values from Table 2 we find then the benchmark values

AP =—42%x108n 1= -6.1x 108 fm,

A= _36x108n 1= -53x 1078 fm,

AP =-13x10%n;1=-1.9x 1078 fm,

A=—47x108m1=—-6.7x 108 fm. (E.26)

Sincep; is a long distance effect, we use the same value as calculated previously as our
benchmark number

0o =150x 107" m;1=214x 10" fm. (E.27)

Obviously, the value oh?” is now in much better agreement with the experimental
value Eq. (55). Of course, our rough estimate is no substitute for a reliable state of the art



S.-L. Zhu et al. / Nuclear Physics A 748 (2005) 435-498 495

wave function evaluation. This has been doeeently by Carlson et al. and yields, using
the Argonne V18 wavefunctions [104]

AP =[~0.008(C3+ C4 — 2Cs) — 0.003(C1 + Co)|m;* (E.28)

in reasonable agreement with the value calculated in Eq. (E.25). Similar efforts should
be directed toward evaluation of the remaining parameters using the best modern wave
functions.

We end our brief discussion here, but cledHis was merely a simplistic model calcu-
lation. It is important to complete this process by using the best contemporary nucleon—
nucleon wave functions with the most general EFT potential developed above, in order to
allow the best possible restrictionstie placed on the unknown counter-terms.
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