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Abstract

The anapole form factor of the nucleon is calculated in chiral perturbation theory to sub-leading order. This is the lowest
order in which the isovector anapole form factor does not vanish. The anapole moment depends on counterterms that reflect
short-range dynamics, but the momentum dependence of the form factor is determined by pion loops in terms of parameters
that could in principle be fixed from other processes. If these parameters are assumed to have natural size, the sub-leading
corrections do not exceed ;30% at momentum Q;300 MeV. q 2000 Published by Elsevier Science B.V.

Parity-violating electron scattering has long played
a role in understanding electroweak interactions, and
has more recently been explored as a tool for the
study of nucleon structure. The SAMPLE collabora-
tion has carried out electron scattering measurements
at a momentum transferred of Q2 s0.1 MeV 2 on

w x w xboth the proton 1 and the deuteron 2 , for a
Ž s .simultaneous extraction of the strange magnetic GM

Ž e.and the axial form factor of the nucleon G .A

One quantity that contributes in electron scatter-
ing as Ge is the anapole form factor, which is anA

extension for Q2 )0 of the anapole moment. The
anapole is a parity-violating electromagnetic moment

w xof a charge particle with spin 3 . Recently the effect
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of the nuclear anapole moment in atomic parity
violation was measured precisely in 133Cs transitions
w x4 , and a discrepancy with theory found. Parity
violation in this case is enhanced by nuclear medium
effects. No such enhancement is present in parity-
violating electron scattering off the proton and
deuteron; however, the anapole form factor could
still be visible. Using previous estimates of the

w xanapole moment 5,6 , the proton data implies a
s w xpositive value for G 1 , in disagreement with mostM
Ž w x.theoretical predictions for a summary, see Ref. 7 .

w xExperiments of current interest 1,2,8–10 are per-
formed at finite Q2 syq2. For Q-M , whereQCD

M ;1 GeV is the characteristic QCD mass scale,QCD

we are deep in the non-perturbative regime of QCD,
where currently the only possible systematic calcula-

Ž .tions are in terms of hadrons. At Q;O m thep

photon can resolve the pion cloud around the non-
relativistic nucleon, and calculations are possible in
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Ž .Chiral Pertubation Theory ChPT , which involves
pions, nucleons, and delta isobars, and which has
been successfully applied to hadronic and nuclear

w xsystems 11,12 . The first anapole calculations were
2 w xlimited to Q s0 in leading 5,6 and sub-leading

w xorders 6,13 . Recently, the full form factor of the
w xnucleon was calculated in leading order 14,15 . In

this order the form factor comes entirely from the
pion cloud and is purely isoscalar, while experiments

w xare most sensitive to the isovector component 7 .
Here we report results of sub-leading contributions
to the nuclear anapole form factor, where the isovec-
tor part first appears.

In the framework of ChPT, QCD symmetries are
used as a guide to build the most general effective
Lagrangian. The number of terms in the Lagrangian
is not constrained by symmetries, which demands a
power counting argument to order interactions ac-
cording to the expected size of their contributions. In
order to fullfill chiral symmetry requirements, pions
couple derivatively in the chiral limit; this derivative
coupling brings to the amplitude powers of pion
momentum or powers of the delta-nucleon mass

Ž .difference comparable to the pion mass . Chiral
symmetry breaking terms involve quark masses, so
they bring into the amplitude powers of the pion

Ž .mass. Thus one has a chiral index D available to
Ž .Dorder the Lagrangian terms, LLsÝ LL . ForD

strong interactions, the index counts powers of
QrM , and it is given by Dsdqnr2y2, whereQCD

n is the number of fermions fields and d counts the
numbers of derivatives, powers of the pion mass, and
of the delta-nucleon mass difference. In the presence
of electromagnetic interactions, it is convenient to
include in d powers of the charge e as well. Weak
interactions, on the other hand, bring powers of a
very small factor G f 2, where G is the FermiF p F

constant and f the pion decay constant. Since wep

count these factors explicitly, negative indices ap-
pear.

Based on this power counting argument the inter-
actions relevant to our problem are the following.

w xThe parity-conserving terms are well known 11 :

21 1Ž0. 2 2LL s D p y m p qNiÕPDNŽ .strr em m p2 2

g A
y N tPSPDp Nq . . . , 1Ž . Ž .

fp

1 2Ž1. 2LL s N ÕPD yD NŽ .strr em 4mN

g A � 4q i N SPD ,tPÕPDp N
2m fN p

i
m n sw xy N S ,S 1qk

4mN

Õq 1qk t NF q . . . . 2Ž . Ž .3 mn

Here p denotes the pion field with f s93 MeV thep

pion decay constant; N represents the heavy nucleon
m m Žfield of four-velocity Õ and spin S in the nucleon

m Ž . m Ž ..rest frame Õ s 1,0 and S s 0,sr2 ; A is them

photon field and F is the photon strength field;mn

Ž .D s E y ieQA is the covariant derivative, withm m m
Žp . ŽN . Ž .Q syi´ for a pion and Q s 1qt r2ab 3ab 3

for a nucleon; and ‘ . . . ’ stands for other interactions
with more pions, nucleons and deltas. The pion-
nucleon coupling g and the magnetic photon-A

nucleon couplings k Ž s. and k ŽÕ. are not determined
Ž .from symmetry but expected to be O 1 ; indeed, one

finds g s1.267, k Ž s.sy0.12, and k ŽÕ.s5.62A
w x11 .

The relevant parity-violating terms were discussed
w xin Ref. 6 :

hŽ1.
p NNŽy1.LL sy N t=p Nq . . . , 3Ž . Ž .3weak '2

2
Ž . Ž .Ž0. m 1 2LL sy NS h qh tŽ .½weak A A 32fp

= 2 2p=E p qeA p ypŽ . Ž .m m 33

qhŽ2. p=t E p NŽ . 53A m 3

1
4 1Ž . Ž .0 2q N h q h tPÕPDpŽ .V V3 2fp

Ž .2y2h t ÕPDp Nq . . . , 4Ž .V 3 3

2
Ž2. mnLL s N a qa t S NE F q . . . . 5Ž .˜ ˜Ž .weak 0 1 3 m n2mN

Here hŽ1. , hŽ1,2. and hŽ0,2. are, respectively,p NN A V

Yukawa, axial-vector and vector parity-violating
pion-nucleon couplings, with superscripts referring
to isospin DIs0,1 and 2. On the basis of naive
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Ž1. Ž 2 .dimensional analysis, h f ;O G f M , andp NN p F p QCD
Ž1,2. Ž0,2. Ž 2 .h ;h ;O G f . Also, a are short-range˜A V F p 0,1

contributions to the anapole moment, expected to be
Ž 2 2 . Ž Ž .2 .of O eG f rm sO eG r 4p .F p N F

The current-current electron-nucleon interaction
has the form

X Xm niTsyiee k g e k D q N p J q N p ,Ž . Ž . Ž . Ž . Ž . Ž .mn an

6Ž .

Ž . Ž Ž .. Ž .where e k N p is an electron nucleon spinors
Ž .of momentum k p , ye is the electron charge,

Ž . 2iD q syih rq is the photon propagator withmn mn
2 Ž X.2 2q s pyp 'yQ -0, and the nucleon anapole

current iJ m readsan

2
Ž . Ž .m 0 2 1 2J q s a F yq qa F yq tŽ . Ž . Ž .an 0 A 1 A 32mN

= S mq2 ySPqq m , 7Ž .Ž .

where a and a are the isoscalar and isovector0 1
Ž0.Ž 2 . Ž1.Ž 2 .anapole moments, and F yq and F yqA A

their corresponding form factors.
The diagrams contributing to the nucleon anapole

Ž .form factor in next-to-leading order NLO are shown
in Figs. 1, 2, 3. We classify them according to the
combination of couplings that appear.

The NLO diagrams of Fig. 1 are built from the
leading interactions in LL Ž0. and LL Žy1., plus onestrr em weak

insertion of an operator from LL Ž1. . This insertionstrr em
Ž .can be i a kinetic correction – either in the nucleon

propagator or in the external energy – to the leading
Ž . w x Ž .order LO diagrams computed in Ref. 15 ; or ii a

Ž .sub-leading magnetic photon-nucleon interaction.
Ž 2 Ž .2 .The size of these diagrams is O eG Q r 4p .F

Ž Ž .2 .Indeed, LO contributions are O eG M Qr 4pF QCD
w x Ž . Ž15 , and NLO is of relative size O QrM . ForQCD

example, the diagram 1e has a kinetic insertion of
Q2rm and an extra propagator 1rQ compared toN

. Ž . Ž .the corresponding LO diagram. Diagrams c , g
Ž .and j do not contribute to the anapole form factor

because they are proportional to Õ m and the diagram
Ž .d vanishes because it is proportional to SPÕs0.

Ž .Diagram i gives a pure isovector contribution, but
Ž .it gets cancelled by the isovector part of diagram k .

Therefore, the sum of all diagrams in Fig. 1 is a
purely isoscalar result.

Fig. 1. Diagrams contributing to the nucleon anapole form factor
in sub-leading order coming from one insertion of an LL Ž1.

strr em

operator. Solid, dashed and wavy lines represent nucleon, pions
Ž .and virtual photons, respectively; squares represent the parity-

violating vertex from LL Žy1.; single filled circles stand for inter-weak

actions from LL Ž0. and double circles represent interactionsstrr em

from LL Ž1. . For simplicity only one possible orderings arestrr em

shown here.

The diagrams in Fig. 2 have axial-vector vertices
from LL Ž0. . They have both isovector and isoscalarweak

parts. To evaluate the size of the contributions repre-
sented by these diagrams, one takes, for example, the
diagram 2a: it has a parity-violating two pion-nucleon
axial vertex of the order G Q, a photon-pion vertexF

Ž .of O eQ , two pion propagators each one of
Ž 2 . Ž 4 Ž 2 ..O 1rQ , and the loop integration of O Q r 4p .
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Fig. 2. Diagrams contributing to the nucleon anapole form factor
in sub-leading order coming from one insertion of the axial-vector
couplings in LL Ž0. , represented by a double square. Other sym-weak

bols are as in Fig. 1.

Ž 2Diagrams of this type are then also of O eG Q rF
Ž .2 .4p .

In Fig. 3, diagrams contain vector couplings com-
ing from LL Ž0. . Since the parity-violating vectorweak

Ž .coupling is O QrM smaller than the LOQCD

Yukawa coupling, these contributions are clearly
Ž 2 Ž .2 . Ž . Ž .also O eG Q r 4p . Diagrams b and d areF

proportional to Õ m and do not contribute to the
Ž . Ž .anapole form factor. Diagrams a and c give a

purely isovector contribution.
Finally, there are short range contributions from

LL Ž2. depicted in Fig. 4. From the size of a , we˜weak 0,1
Ž 2see that these contributions are also O eG Q rF

Ž .2 .4p .
Note that to this order there are no contributions

w xfrom the delta isobar 13 . Deltas would contribute at

Fig. 3. Diagrams contributing to the nucleon anapole form factor
in sub-leading order coming from one insertion of the vector
couplings in LL Ž0. , represented by a double square. Other sym-weak

bols are as in Fig. 1. For simplicity only one of two possible
orderings are shown here.

Fig. 4. Diagram contributing to the nucleon anapole moment in
sub-leading order coming from LL Ž2. , represented by a quadrupleweak

square. Other symbols are as in Fig. 1.

this order through intermediate states of diagrams
with one pion loop, e.g. diagram 1c with one nu-
cleon propagator replaced by a delta: at least there
would be one p ND vertex, either parity conserving
or violating, and both kinds of vertices have the
same ig structure, which vanishes in the framework5

of ChPT. The first non-vanishing delta contribution
shows up in an order higher than we are considering
here.

Let us first discuss the isoscalar component, which
w xdid not vanish in leading order 15 ,

eg hŽ1. m2
A p NN NLOa s . 8Ž .0 ' m48 2 p f pp

As the final contribution represented by the diagrams
in Fig. 1 is isoscalar, we add it to the isoscalar
contribution of the diagrams in Fig. 2, and find for
the anapole moment in next-to-leading order,

Ž . Ž .2 1 1em g h f hN A p NN p ANLOa sa m q y qŽ .˜0 0 2 2 'ž /32 m4p fŽ . Np

=
m2

ln , 9Ž .2ž /mp

with

Ž . Ž .2 1 1em g h f hN A p NN p A
a m sa q y qŽ .˜ ˜0 0 2 2 'ž /32 m4p fŽ . Np

=
1

q1ygq ln4pž /´

Ž . Ž .1 11 g h f 2hA p NN p A
y y q , 10Ž .'ž /3 32 mN
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where m is the renormalization scale and gs
0.5772157 is the Euler constant. As usual in ChPT,
the only term that can be calculated explicitly is
non-analytic in the pion mass; it has the expected

Ž . LOsize, that is, it is O m rM smaller than a .p QCD 0

This result for the anapole moment agrees with that
w x Ž1.of a previous calculation 13 . The term in hA

w xagrees with Ref. 6 .
The total isoscalar form factor reads

F LOqNLO Q2Ž .0

LOa0 LO 2s1q F Q y1Ž .0LO NLOa qaŽ .0 0

1 em2
N

q 2LO NLOa qaŽ . 3 4p fŽ .0 0 p

=

Ž .1g h fA p NN p NLO1 2F Q y1Ž .½ '2 mN

Ž1.2hA NLO2 2y F Q y1 , 11Ž .Ž . 53

LO Ž 2 .where F Q is the leading-order form factor0
w xgiven by 15

2 2°3 2m 2mp pLO 2 ~F Q s y q q1Ž .0 2 2ž / ž /¢2 ( (Q Q

=

2¶(2m Qp •arctan , 12Ž .
2 ß2m(Q p

NLO1Ž 2 .F Q comes from the diagrams in Fig. 1,

22mpNLO1 2F Q sy3 q2Ž . ž /Q

=

22mp
1q q1(2 ž /Q1 2mp

1y 1q ln , 13Ž .( ž / 22 Q 2mp
1q y1( ž /Q

NLO2Ž 2 .and F Q comes from the diagrams in Fig. 2,

22mpNLO2 2F Q sy3 q1Ž . ž /Q

=

22mp
1q q1(2 ž /Q1 2mp

1y 1q ln . 14Ž .( ž / 22 Q 2mp
1q y1( ž /Q

As in lowest order, the momentum dependence is
fixed by the pion cloud, and therefore the scale for
momentum variation is determined by 2m . Becausep

there are several contributions to the form factor, for
which we follow the conventional normalization to
1, the exact form depends also on the coupling
constants that contribute to the anapole moment.
Unfortunately these are currently not well deter-
mined by other data; once they are, one can plot the
form to this order. Here we can only study ‘reasona-
ble’ estimates of the momentum dependence. Assum-

w x Ž .ing 6 a L s0 where L ;4p f is the˜0 x SB x SB p

chiral symmetry breaking scale, we rewrite

F LOqNLO Q2Ž .0

3m L2
p x SBLO 2,F Q q 1yr lnŽ .Ž .0 2ž /p m mN p

=
mpLO 2 NLO1 2F Q y1 q F Q y1�Ž . Ž .0

p mN

NLO2 2y2 r F Q y1 , 15Ž .4Ž .
Ž1. Ž1.'where rs 2 m h r3g f h ;1r3. In Fig. 5N A A p p NN

LO Ž 2 . LOqNLOŽ 2 .we show F Q and F Q for several0 0

values of r.
From the form factor is easy to extract closed

forms for the mean square radius. We find

LOqNLO2r² :0

3 1
s 2 LO NLO10m a qaŽ .p 0 0

=

Ž .2 12 em 4 g h fN A p NN p Ž .LO 1a y yh ,0 A2 'ž /2 m3 4p fŽ . Np

16Ž .
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Ž . Ž .Fig. 5. The isoscalar anapole form factor F as function of Q in x PT: leading order LO and next-to-leading order NLO for a few0
1 1'reasonable values of parameters expressed by the ratio rs 2 m h r3g f h .N A A p p NN

Using the same estimates as for the form factor,

3 6mLOqNLO p2r , 1q 1yr² : Ž .0 2 p m10m Np

=
L 2mx SB p

ln y1 y . 17Ž .ž /m p mp N

For r ranging from y2 to 2, r 2 LOqNLO
ranges² :0

from 3 to 1=10y5 MeVy2 .
The isovector anapole moment aNLO comes from1

contributions represented by the diagrams in Figs. 2,
3. We find

2emN 4Ž . Ž . Ž .NLO 2 0 2a s 2h qg h q hŽ .1 A A V V326 4p fŽ .p

=
m2

ln qa m , 18Ž . Ž .˜12ž /mp

where

2emN 4Ž . Ž .2 0 Ž2.a m sa q 2h qg h q hŽ .˜ ˜ Ž .1 1 A A V V326 4p fŽ .p

=
1

2q1ygy q ln4p . 19Ž .3ž /´

Again, our result has the expected size and agrees
w x Ž2. w xwith Ref. 13 . The term in h agrees with Ref. 6 .A

Contrary to the isoscalar part, the isovector
anapole form factor first appears in next-to-leading
order and reads

em2 1NNLO 2F Q s1yŽ .1 2 NLOa9 4p fŽ . 1p

= 4Ž . Ž . Ž .2 0 22h qg h q hŽ .A A V V3

= NLO2 2F Q y1 . 20Ž .Ž .
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Fig. 6. The isovector anapole form factor F NLO as function of Q in ChPT, for a few reasonable values of parameters expressed by the1

regularization scale m that parametrizes the size of the counterterm, and by s that states the sign of the counterterm.

Again, for illustration we consider some representa-
Ž . Ž . Ž .tive values of a m : a L s0, a L s˜ ˜ ˜1 1 x SB 1 x SB

2 2 Ž . Žy2 a ln L rm , a 550 MeV s 0, a 550˜ ˜Ž .x SB p 1 1
2 2.M eV s y 2 a ln 550 M eV rm , withŽ .Ž .p

42 2 Ž2. Ž0. Ž2.Ž .a s em r6 4p f 2 h qg h q h andŽ .N p A A V V3

they all are summarized as
2m

22 y1 NLO2 2F Q ,1qs ln F Q y1 ,Ž . Ž .1 3 2ž /mp

21Ž .
Ž . Ž .where ssy1 for a m s0 and ss1 for a m s˜ ˜1 1

Ž 2 2 .y2a ln m rm , ms0.55,1.2 GeV. Fig. 6 showsp
NLOŽ 2 .F Q for these four cases of s and m.1

The isovector mean square radius is

1 em2
NLO N2r s² :1 2 2NLO10m a 4p fŽ .p 1 p

= 4Ž . Ž . Ž .2 0 22h qg h q h . 22Ž .Ž .A A V V3

Ž .Again, using the estimated form factor 21 we have

26 mNLO2 y1r ,s ln . 23² : Ž .1 2 ž /m10m pp

2 NLO ŽFor m s L one obtains r s s 370² :x SB 1

.y2 2 NLO ŽMeV and for ms550 MeV, r ss 298² :1

.y2MeV , where ss"1.
We have thus for the first time calculated the

momentum dependence of the anapole form factor in
next-to-leading order in ChPT. Using dimensional
analysis to estimate currently unknown parameters,
we see that the variation with momentum is ;20%
at Q;300 MeV in both isoscalar and isovector
channels. The overall size of the anapole contribu-
tion to electron scattering is thus likely not very
different than that given by the anapole moment
itself. We can compare our result for the isovector
component to the forthcoming SAMPLE measure-
ment. The SAMPLE collaboration will extract an
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axial contribution as seen by the electron,
eŽ 2 . w xG 0.1 MeV 7 . If this value is very different fromA

the tree-level result, it can only be assigned to the
anapole form factor if the parameters are substan-
tially larger than the naive dimensional expectation.
Using our previous estimate,

4Ž .Ž2. 0 Ž2.2h qg h q hŽ .A A V V3

2 26G 4p f LŽ .F p x SBy1sy lnŽ1. 2 ž /mhF QŽ . pA

= e 2 2 s 2G Q qG Q yG Q , 24Ž .Ž . Ž . Ž .A A A

2' Ž . Ž .where hs8 2 par 1y4sin u s3.45, G 0 sW A
sŽ . Ž 2 . Ž . Ž 2 .1.267, G 0 s y0.12, G Q s G 0 rD Q ,A A A

sŽ 2 . sŽ . Ž 2 . Ž 2 . 2 2G Q sG 0 rD Q , D Q s1qQ rM , andA A A
eŽ 2 .M s1.061 GeV. For example, G 0.1 MeV ;A A

4Ž2. Ž0. Ž0. y5Ž .0.25 requires 2h qg h q h ;y10 , aA A V V3

hundred times larger in magnitude than dimensional
analysis estimate. This is very unlikely, especially
considering a recent estimate in the chiral quark

w xmodel 16 .
In any case, in the future, when parity-violating

pion-nucleon parameters are determined from other
processes, one can use the results reported here to
make firmer predictions for the anapole contribution
at various transferred momenta.
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