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Abstract. This paper presents an application of Interval-valued Hidden Markoge\é to
the modelling of agent personality traits in multiagent systems. The agestiaviors are
modeled as probabilistic transitions functions, where interval-valuedhpitities are used to
express the uncertainty in determining those probabilities. The modejwifateon of social
exchanges is based on the concept of equilibrium supervisor, whibleiscerecommend the
best exchanges for the agents to perform in order to achieve the eiguilibf the system.
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1. Introduction

This work is concerned with the use lofterval Mathematic$7] and Interval-valued Hid-
den Markov Model§l11] in models forSocial Simulatiorin multiagent systems [14].

Social controlis a powerful notion for explaining the self-regulation o$eciety, and
the various possibilities for its realization have beensidered, both in natural and arti-
ficial societies [1]. The approach for regulating interati in multiagent systems, based
on the Piaget'’s theory focial exchange valud8], was proposed in [5]. The evaluation
of an exchange by an agent is done on the basissachieof exchange valuesvhich are
of a qualitative nature — subjective values like those emeeyuses to judge the daily ex-
changesdood bad etc.). In order to capture the qualitative nature of excleavegjues,
technigues from Interval Mathematics were used. A scalatefval exchange values was
defined as an algebraic structure endowed with a loose denoarelation — two intervals
are equivalent if their midpoints are approximately eqsak([5]).

The social exchange control mechanism is performedsyparvisoragent, which can
solve the problem of keeping agent interactions in equilibr(with respect to the exchange
values involved in them) by usin@Qualitative Interval Markov Decision Process€3l-
MDP) [3] — MDPs [9] where states are classes of balances dfange values, actions are
interval operations, and the equilibrium state is the ctd$stervals enclosing the zero.

As explained in [2], a realistic account of agent interatsibas to consider that agents
may have differeninteraction personalitiesin order to allow for the agents to participate
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in different ways in social interactions, depending notyam the way tasks were delega-
ted to them, but also on the way they assess their own cotitiitsuand the contributions
of the others to the interaction. Here, the agents may hdferefit personality traits,
which induce different attitudes towards the regulatiorchasmism (blind obedience, even-
tual obedience etc.) and the possible profits of social exgs (egoism, altruism etc.).
Also, these personality traits influence the agents’ evanaof their current status (rea-
lism, over- or under-evaluation). These variables creghabilistic social environment,
from the point of view of the social control.

In [4], we consider that the agents allow full external ascestheir internal states,
behaving asransparentagents. So, the supervisor is always able to determinedhgssif
the system, acting in a completely observable environnmEmns paper considers partially
observable environments, i.e., open societies where catieatant, new agents may joint
the society, appearing as non-transparent agents, whiahgsrthat the supervisor has no
direct knowledge of the new agents’ personality traits amdinect access to their internal
values. Thus, it must rely on observations of what the agepisrt about the exchanges.

The personality traits are defined by probability distribng that reflect the exchanges
performed by the agents in each interaction. In this papeextend previous work [4] to
consider interval-valued probabilities [13] that chaeaizie the uncertainty in the modelling
of the different personality-based behaviors.

To solve the problems of determining the most probable atistate of the system,
recognizing agent’s personalities, learning new persiesltraits, and maintaining an
adequate model of the system, we introduce into the sumergisnechanism based on
Interval-valued Hidden Markov Models (I-HHM), using a geslezation of HMM [10] to
consider interval-valued probabilities first introducadil].

The paper is organized as follows. In Sect. 2., we review tbdetling of social ex-
changes. Section 3. presents the architecture of the tegulaechanism. Section 4.
introduces the exchanges between personality-basedsagére I-HMM is introduced in
Sect. 5., and simulation results in Sect. 6.. Section 7 enclusion.

2. Modelling Social Exchanges

The evaluation of an exchange by an agent is done usieglaof exchange valuesvhich
are represented as intervals= [zq, z2], With —L < a1 < 2 < 29 < L, 21,22, L € R.
This representation is a compromise between a purely gtiaditand a purely quantitative
representation. It makes the representation mathemgtmadrational, and the decision
process computationally viable, without being unfaithfuPiaget’s approach [8].

A social exchangbetween two agents; and 3, is performed involving two types of
stages. In stages of tydgg, the agent realizes a service fas. The exchange values
involved in this stage are the following;_, (the value of thenvestmentione bya for the
realization of a service foB, which is alwayshegative; 1, (the value of3’s satisfaction
due to the receiving of the service done by, ¢1,, (the value of3’s debt the debt it
acquired tox for its satisfaction with the service done by; andwr,, (the value of the
credit that o acquires from3 for having realized the service). In stages of the tihg;,
the agenty asks the payment for the service previously doneXaand the values related
with this exchange have similar meaning, ,, s1,,, r1,, andsi,, are calledmaterial
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values ti,,, vr,,, ti,, andur,, are thevirtual values The order in which the exchange
stages may occur is not necessafily — Il,3. We observe that the values are undefined
if either no service is done in a stage of tyher no credit is charged in a stage of type
I1. Also, it is not possible for to realize a service fgf and, at the same, to charge him
a credit. Observe that, in any exchange stage, eithar 3 has to perform a service, so
decreasing its material results.

A social exchange proce&sa sequence of stages of typg and/orll,z. Thematerial
results according to the points of view ef and, are given by the sum of the well defined
material values involved in the process, denoted, resmdgtiby m,s andmg,. The
virtual resultsv, 3 andvg, are defined analogously. A social exchange process is said to
be inequilibriumif m,s andmg, are around a reference valse R.

3. The Regulation Mechanism

Figure 1 shows the architecture of our social exchange aéignl mechanism, which ex-
tends the one proposed in [4] with a learning module basedHiiMs. Theequilibrium
supervisor at each time, uses &valuation Modulgo analyze the constraints imposed by
the system’s external and internal environments, detengnihe target equilibrium point.

To regulatetransparentagents, the supervisor uses a Balance Modsier| to calculate
their balancesof material/virtual results of the performed exchanges. r8gulatenon-
transparentagents, the supervisor uses an observation mo@be)( to access what they
report about their virtual values (debts/credits), andlithéMM module to recognize and
maintain an adequate model of the personality traits of sugents, generatinglausible
balancesof their material exchange values.

Supervisor
Exchange --HMM ‘
Evaluation Balances
Module
s Resul
Results Results Observations
A X A
Agent Exchanges

Transparent Non-transparent
Agents
Agents

Supervisor
Recommendations System

Figure 1: The architecture of the social exchange regulatiechanism

Determination
of the
Target Point

Taking both the directly observed and the indirectly cadted material results, together
with the currently target equilibrium point, the supervisses the module that implements
a personality-based QI-MDP to decide on recommendatioegaifanges for the agents,
in order to keep the material results in equilibrium. It alakes into account the virtual
results in order to decide which type of exchange stage itlshsuggest.

The statesof a QI-MDP [3] are pair§E, g, Eg,.) of classes of material results (in-
vestments and satisfactions) of exchanges between agamid3, from the point of view
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of a and3, respectively E, = {E;, E, E}} is the set of the supervisor representation
of the classes afinfavorable(E;"), equilibrated(E?) andfavorable(E;") material results
of exchanges, related to a target equilibrium pm’nt(Egﬂ, Eg’a) is theterminal state
(equilibrium state).

Theactionsof the QI-MDP model are interval operations that give risstade transi-
tions. The actions may be of the following typesc@npensation actigwhich directs the
agents’ exchanges to the equilibrium poing@forward action which directs them to in-
creasing material results;gm-backward actionwhich directs them to decreasing material
results. The supervisor has to find, for the current stateattions that may achieve the
terminal state in the least number of steps, which is calteapdimal police The choice of
actions is constrained by the rules of the social exchanggsame transitions aferbid-
den(e.g., both agents increasing results simultaneouslyiy some cases the supervisor
has to find alternative paths in order to lead the system tedoéibrium.

An optimal police generates aptimal exchange recommendatjavhich is a partially
defined exchange stage that the agents are suggested topeddso, by the analysis
of the agents’ virtual results (debts/credits), the suigerrecommends a specific type of
exchange stagé 6r II).

4. Personality-based Agents

We define different levels of obedience to the supervisdrttteagents may present:

Blind Obedience:the agent always follows the recommendations;

Eventual Obedience: the agents may not follow the recommendations, accordirg to
certain probability;

Full Disregard of Recommendations:the agent always decides on its own, disregarding
what was recommended.

The agents may have different social attitudes that giegoisin interval state-transition
function, which specify, for each obedience level, and wgitee current state and recom-
mendation, an interval-valued probability distributidiE; ) over the set of statdg, that
the interacting agents will try to achieve next, dependingh® their personality traits. In
the following, we illustrate some of those personalitytaai
Egoism: the agent is mostly seeking its own benefit, with a high prdibahio accept
exchanges that represent transitions toward states afdflaleoresults;

Altruism: the agent is mostly seeking the benefit of the other, with & pigbability to
accept exchanges that represent transitions to states wWieeother has favorable results;
Fanaticism: the agent has a very high probability to enforce exchangadehd it to the
equilibrium, avoiding other kinds of transitions;

Tolerance: the agent has a high probability to enforce exchanges thdtite¢o the equili-
brium if its material results are far from that state, buttitepts other kinds of transitions.

Table 1 presents a pattern of the probability distribulit#;, ), considering individual
agent transitions, characterizing egoist/altruist andhfia/tolerant agents. Observe that,
for an egoist agent, transitions ending in favorable res(it™) occurs with very high
probability, whereas, for an altruist agent, the most pbbdb&ransitions are those ending in

2|n this paper, we consider just a sample of classes of matesalts. See [3] for the whole family of classes
of a QI-MDP, and the interval-based procedure for deterrgittiem.
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unfavorable resultsK~). For a fanatic agent, the least probable transitions arsetimot
ending in the terminal stat®. In contrast, a tolerant agent accepts transitions tosstate
other thanE?, although with a low probability.

Table 1: A pattern of the interval-valued probability distition IT(E, ) for individual tran-
sitions

Egoist agents Altruist agents
II(E,) EV ET E- EV ET E-
E° low very high verylow| low verylow very high
E* low very high verylow| low verylow very high
E~ low very high verylow| low verylow very high
Fanatic agents Tolerant agents
II(E,) E° ET E- E° ET E-
E° very high  verylow verylow| high low low
ET very high  verylow verylow| high low low
E- very high verylow verylow| high low low

Table 2 shows parts of sample interval state-transitiontfansF for systems compo-
sed by (a) two tolerant agents and (b) two egoist agents ivaya disregard the recom-
mendations. The matX indicates that the transition is forbidden according toatiepted
social rules (both agents increasing results simultagasexplained in Sect. 3.). In (b),
the highest probabilities appear in the transitions endingz*, E™), representing incre-
asing results for both agents, or in the stdtesE™) or (ET, —) when the transitions to
the state{ £, ET) are not allowed. The probability around 200n the last line of (b)
indicates that the agents refuse to exchange (which woattideth to unfavorable results),
remaining in the same stat&—, £~). This shows that this system presents an absorbent
state,(E—, E~), meaning that the system is not able to leave that stateghithes it, and
so it may never achieve the desired target equilibrium pdim¢a), one observes the more
uniform behavior of tolerant agents, even though the ttams to the state$E°, E),
(E°, —) and(—, E) being the most probable.

We remark that even if the agents present a certain level efiiebce, there may be
a great deal of uncertainty about the effects of the suparsisecommendations. Con-
sidering an obedience level around%0the state-transition functions shown in Table 2
become the respective ones shown in Table 3, showing areseia the probability of the
transitions ending ifE°, E°) and also the absence of an absorbent state.

Since the supervisor has no access to the current staterighagsults of exchanges),
it has to rely on observations of the agents’ evaluation$eif tvirtual results debts(D),
credits (C) or null results(N)). Due to their personality traits, they may presentediht
attitudes concerning such evaluations (see Table 4):

Realism: the agent has a very high probability to proceed to realstiduations;
Over-evaluation: the agent has a very high probability to report that it haditse
Under-evaluation: the agent has a very high probability to report that it hassleb
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Table 2: Parts of transition functiodsfor pairs of agents that always disregard recommen-
dations

(a) (tolerant, tolerant) agents
F (%) (E°,E°%) (E°.EY) (E°E") (E*,EY) (EY,E7) (B, E°) (E”,EY) (E_,E7)

(E°,E°) | [625652] X [13.1;14.3] X [2.70;3.20] [13.1;14.3] [2.70;3.20] [2.70;3.20]
(EY,E™) | [48.3;49.8] [10.0;11.0] [10.0;11.0] [2.10;2.50] [2.10;2.50]0[®;11.0] [2.10;2.50] [2.10;2.50]

(E~,E7) X X [36.7;39.0] X [7.80;8.50] [36.7;39.0] [7.80;8.50] [7.80;8.50]
(b) (egoist, egoist) agents

F (%) (E°,E%) (E°,E*) (E°,E~) (E*,ET) (ET,E7) (E~,E®) (E~,E") (E,E7)
(E°,E7) X X [0.70;0.90] X [3.70;4.40] [14.6;15.5] [83.1;87.3] [0.20;0.30]

(E*,ET) | [2.10;2.50] [11.5;12.5] [0.60;0.90] [63.2;64.9] [3.50;4.50] .0;0.90] [3.50;4.50] [0.20;0.40]
(EY,E7) | [2.10;2.50] [12.2;13.3] [0.00;0.10] [67.1;68.9] [0.00;0.40] .60;0.90] [3.80;4.70] [0.00;0.00]
(E=,E7) X X [0.00;0.00] X [0.00;0.00] [0.00;0.00] [0.00;0.00] [95.5; 100]

Table 3: Parts of transition functiod&for pair of agents with obedience in [40;50]

(a) (tolerant, tolerant) agents
F (%) (E°,E%) (E° EY) (E°.E") (EY,EY) (BY,E") (E",E°) (E",EY) (E",E")

(E°,E®) | [80.1;83.7] X  [6557.15] X [1.35;1.60] [6.55;7.15] [1.35;1.60] [1.35;1.60]
(EY,E™) | [73.2;75.6] [5.00;5.50] [5.00;5.50] [1.05;1.25] [1.05;1.25].08;5.50] [1.05;1.25] [1.05;1.25]

(E~,E7) X X [18.3;195] X [27.9;30.5] [18.3;19.5] [27.9;30.5] [27.9;30.5]
(b) (egoist, egoist) agents

F (%) (E°,E®) (E°,E") (E°,E~) (EY,ET) (ET,E~) (E~,E°) (E~,E") (E,E7)
(E°, E7) X X [0.70;0.90] X [23.1;27.5] [7.30;7.75] [65.9;69.4] [0.20;0.30]

(E*,ET) | [48.70;58.1] [5.75:6.25] [0.30;0.45] [31.6;32.5] [1.75;2.55.30;0.45] [1.75;2.55] [0.10;0.20]
(ET,E™) | [48.70;58.1] [6.10;6.65] [0.00;0.10] [33.5;34.5] [0.00;0.4(.30;0.45] [1.90;2.35] [0.00;0.00]
(E~,E7) X X [0.00;0.00] X [24.0;25.0] [0.00;0.00] [24.0;25.0] [49.0;50.0]

5. Reasoning About Exchanges

To be able to reason about exchanges between pairs of nepant personality-based
agents, the supervisor uses Interval-valued Hidden Malkaodels (I-HMM) [11].

Definition 5.1. An Interval-valued Hidden Markov Model for exchanges betwron-
transparent personality-based agents is a tufle, O, 7, F, G), where:

(i) the setE, of states is given by the pairs of classes of material resultgeres is the
equilibrium point: E, = {(E°, E°),(E°, E"),(E°,E™),(ET,E°),(ET,E"),(ET,E™),

(E=,E°),(E~,E*),(E~,E")k

(i) the setO of observations is given by the possible pairs of agentduasimns of virtual
results: O = {(N, N), (N, D), (N,C),(D,N), (D, D), (D,C),(C,N),(C, D), (C,C)};

(i) 7 is the initial interval-valued probability distributionw@r the set of statel,;

(iv) F : E; — II(E,) is the interval state-transition function, which gives, éach state,
an interval-valued probability distribution over the sdtstatesEs;

(v) G : E; — II(O) is the interval observation function that gives, for eachtest an
interval-valued probability distribution over the set digervationd0.
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Table 4: A pattern of the interval-valued probability distition IT(O) over the observati-
onsO = {N, D, C} of agents’ evaluations of virtual results, in each state

Realistic agents Over-evaluator agents Under-evaluator agents
II1(0) D N C D N C D N C
E° very low very high verylow | very low low very high | very high low very low
ET very high very low very low low medium high very high  verylow  verylow
E~ very low verylow veryhigh| verylow  verylow very high high medium low

This model allows the supervisor to perform the following MMasks [10]:

Task 1: to find the interval-valued probability of a sequence of dgeevaluations of

virtual results;

Task 2: to find the most probable sequence of states associated tuarse of agents’
evaluations of virtual results;

Task 3: to maintain an adequate model of agent personality traitengheir observable
behaviors: the supervisor adjusts the parameters of iterumodel to the interval-valued
probability of a frequent sequence of observations, inof@eompare it with the known
models and to classify it.

Whenever a new non-transparent agent join the society, thenggor assumes the
position of an observer, building a I-HHM in order to obtaim adequate model of the
personality traits of such agent and to find the most probsthke of the system at a given
instant. After that, it is able to start making recommeratai We assume that obtaining
the model of an agent’s personality traits is independetite@fgent’s degree of obedience.
Of course, to discover an agent’s degree of obedience igial tiask.

6. Simulation Results

Some simulation results were chosen for discussion, cenegl the supervisor’s tasks
detailed in Sect. 5.. For that, interval versions of the dyitaprogramming algorithms
backward-forwardfor task 1),Viterbi (for task 2) andBaum-Welchfor task 3) (see [11]),

were incorporated in the supervisor behavior (Fig. 1, I-HMiddule). The implementation
was done in Python, using the module PylInterval [6] for waéMathematics.

6.1. Simulation of Tasks 1 and 2

The methodology used for the analysis of the performanclkeélgorithms in tasks and
2 considered: (i) test-situations with two agents, comlgjrafi different personality traits;
(ii) a uniform initial interval-valued probability distsution 7 over the set of states; (iii)
the computation of the interval-valued probabilities ofwecence of all sequences of two
consecutive observations (agents’ evaluations); (iv)cthraputation of the most probable
sequence of states that generates each observation.

Table 5(a) presents some peculiar results obtained forraptilerant/realistagents.
As expected, the simulations showed that the observatidlested the actual state transiti-
ons. The most probable sequences of observations wereghdse in null virtual results,
associated to transitions toward the equilibrium (e.gs. ob, 2, 3). The transitions that
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did not faithfully reflect the observations were those tloaktthe place of transitions that
are forbidden, according to the social rules of the modglliRor example, the transition
found for observation 4 (which presented the lowest ocawegrobability, for sequences
ending in null results) was found in place @°, E~) — (E°, EY), since the latter is a
forbidden transition. Observations with very low probébpilvere associated, in general,
to transitions that went away from the equilibrium (e.g.5.0B).

Table 5(b) shows some selected results for a paitobéi@nt/under-evaluatqitolerant/
over-evaluatoy agents. As expected, the transitions did not always refiecbbservations
(e.g., obs. 1, 2). Nonetheless, the overall set of simulatehowed that almost 70% of
the observations ending in null results coincided withsions ending in the equilibrium.
However, those observations presented very low probalfdig., obs. 1 and 3, the latter
having the lowest occurrence probability, since it refldca adequate transition, which
was not expected for non realist agents). Observation 4pted the highest probability,
and its associated transition towards to the equilibriuimtp@as the most expected one
for a pair of tolerant agents. There was always a high prdibatiiat the agents evaluated
their virtual results agéD, C) if they were in the equilibrium state, as expected. In gdnera
sequences of observations contain{ig C') were the most probable, whereas sequences
of observation presentin@”’, D) had almost no probability of occurrence (e.g., obs. 5).

Table 5: Simulation results for pair of agents

(a) (tolerant/realist,tolerant/realist)
N Observation Probab%) Probable State Transition

1 (N,N)-(N,N) [3.32,3.76] (E°,E°) — (E°,E")
2 (D,D)-(N,N) [3.20;3.63] (E*,ET)— (E° EY)
3 (DN)-(N,N) [3.06;3.48] (E+,E°) — (E° E)
4 (N,C)-(N,N) [1.37;1.67] (E° E°) — (E°, E)
5 (D,N)-(D,D) [0.33,042] (Et,E°) — (Et,ET)
(b) (tolerant/under-evaluator, tolerant/over-evaldato
N Observation  Probab%)  Probable State Transition
1 (N,N)-(N,N) [0.074;,0.096] (E—,ET)— (E°,E°)
2 (D,C)-(N,N) [1.745;2.084] (E~,E~)— (E—,EY)
3 (C,D)-(N,N) [0.00;0.0017] (E~,E*)— (E° E°)
4 (D,C)-(D,C) [33.37;37.04] (Et,E~)— (E° E°)
5 (C,D)-(C,D) [3.0;7.01.10¢° (E—,E*)— (E—,ET)

6.2. Simulation of Task 3

The methodology used for the analysis of the performancleeoéguilibrium supervisor in
the task3 considered the following steps:

1. Given a frequently noticed sequence of observationsaifiations of virtual results, the
I-HMM is adjusted by generating new parameters (initiabimal distribution, transition
and emission interval matrices) for the interval-valueabaibility of such observations.
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2. The new I-HMM is compared with the models known by the suiger, stored in a
library, using the following procedure. L&t be any parameter of any reference I-HMM
(a square interval matrix) an¥ be the respective parameter of the new I-HMM (an in-
terval matrix of the same dimension df). The difference between the new I-HMM and
each of such reference models is evaluated by using a kinist#fnde between the in-
terval matrices\/ and N, given bydist(M, N) = maxx,,cm,y,;en d(Xij,Yij), where
d([z1, z2], [Y1, y2]) = maz{| 1 —y1 |,| z2 —y=2 |} is the distance between interva{s Y.
3. The new I-HMM is then classified either as describing a nedehof personality traits
or as being of one of the kinds of models maintained in thalygraccording to a given
maximum admissible distance, denotedrby. If the distances between the new I-HMM
and all the other models in the library are larger thad) then new I-HMM is classified as
a new model, otherwise it is identified as the model from wiitithkes the least distance.
To adjust the parameters of a given model, we used an integvsion of Baum Welch
algorithm (which we noticed happened to preserve the campd of the interval transition
matrices to the exchange rules). Table 6 shows the analysis loly the supervisor when
observing the interactions between five non-transparenttagvith transparent agents. The
results were obtained by comparing adjusted I-HMM’s (fatyabilities of observations)
with the other models of pairs of agents, considering= 0.7. For simplicity, only realist
agents were consideréd.

Table 6: Recognition of new personality traits

N Observation Prob.(%) Personality Traits
1 (D,D)-(N,N)-(N,N) [75;85] tolerance

2 (D,D)-(N,N)-(N,N) [95;100] new classification
3 (D,N)-(D,D)-(D,D) [55;65] egoism

4 (N,N)-(C,C)-(C,C) [35;45] altruism

5 (D,C)-(C,N)-(D,C)-(C,N) [45;55] new classification

For the observation in line 1 (probability around 80%, irenaictions with tolerant
agents), the least error between the new model and all otbdelsresulted in its compa-
tibility with a model oftolerantagents. So, the supervisor classified the non-transparent
agent agolerant For the observation in line 5 (probability around 50%, itenactions
with tolerant agents), the least error found was larger tharadmissible error, and then
the supervisor concluded that the agent had a new persotralit Line 2 shows the de-
pendence of the results on the probability of the obsematibin line 1 it was around
100%, the supervisor would conclude that the agent predermew personality trait.

7. Conclusion

The leads toward the idea of modelling agents’ personaiéigstin social exchange re-
gulation mechanisms, using Interval Mathematics to reprethe uncertain knowledge

SWe considerednd = 0.7 since in the simulations we performed it was empirically obsérhat models
with distances larger than 0.7 no longer behaved as expfutadyiven personality trait.
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about the transitions probabilities that characterizentgjpersonality-based behaviors and
Interval-valued HMM for reasoning about personality-lthezchanges. The main contri-

bution of the paper is to provide a reliable tool to deal with tincertainty that is inherent

to the problem of obtaining the characterization of difféngersonalities, due to the speci-
alists divergence in the definition of the various transifiwobabilities.

Future work is concerning with the fuzzy modelling for thegmality-based evalu-
ation of the services that generate qualitative exchangeesain order to consider the
different external aspects that may influence the agentduation of a social exchange
(e.g., quality, punctuality of services), as proposed £].[1
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Resuma Este trabalho apresenta uma aplamagle Modelos Ocultos de Markov Intervala-
res para a a modelagem de tracos de personalidades de agentetesrassimultiagentes.

Os comportamentos dos agentés snodelados como fuies de trans#p probabilsticas,

onde probabilidades intervalareiosutilizadas para expressar a incerteza de especialistas na
determinago exata dessas probabilidades. O modelo de refutigtrocas sociais baseia-se

no conceito de supervisor de edbilo, queé capaz de gerar recomendas das melhores
trocas que os agentes podem executar para promover theiquilo sistema.
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