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Abstract. We formulate a new integrable asymmetric exclusion process with
N − 1 = 0, 1, 2, . . . kinds of impurities and with hierarchically ordered dynamics.
The model we proposed displays the full spectrum of the simple asymmetric
exclusion model plus new levels. The first excited state belongs to these new levels
and displays unusual scaling exponents. We conjecture that, while the simple
asymmetric exclusion process without impurities belongs to the KPZ universality
class with dynamical exponent 3

2 , our model has a scaling exponent 3
2 + N − 1.

In order to check the conjecture, we solve numerically the Bethe equation with
N = 3 and N = 4 for the totally asymmetric diffusion and found the dynamical
exponents 7

2 and 9
2 in these cases.
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1. Introduction

The simple asymmetric exclusion model (ASEP) is a stochastic model that describes
the dynamics of hard-core particles diffusing asymmetrically on the lattice. This model
became a paradigm in non-equilibrium statistical physics in the same way as the Ising
model in the equilibrium statistical mechanics. Due to its intrinsic nontrivial many-body
behavior, the ASEP is used to model a wide range of complex systems, like traffic flow [1],
biopolymerization [2], interface growth [3], etc (see [4] for a review). Remarkably, the
ASEP in one dimension is exactly solvable, which enables us to use the Bethe ansatz [5]
to obtain spectral information about its evolution operator [6]–[9]. The relaxation time to
the stationary state depends on the system size L and satisfies a scaling relation T ∼ Lz,
where z = 3

2
is the ASEP dynamical exponent. This dynamic exponent was first obtained

by the Bethe ansatz [6, 8, 10] and shows that the ASEP belongs to the Kardar–Parisi–
Zhang (KPZ) universality class [11]. The scaling property of the model can be understood
by mapping the ASEP into the particle height interface model, whose fluctuations in the
continuum limit are governed by the KPZ model [11].

On the other hand, the generalization of the simple exclusion problem by including
more than one kind of particle (N = 1, 2, . . .) has displayed exciting new physics,
including spontaneous symmetry breaking and phase separation phenomena [12]. The
introduction of a second class of particle is a useful tool to study the microscopic structure
of shocks [13], and the case with three distinct classes of particles was first considered
in [14]. However, the critical phenomena and universal dynamics of these one-dimensional
driven diffusive systems with several kinds of particles are largely unexplored. Another
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motivation for studying these models stems from the connection between interacting
stochastic particle dynamics and quantum spin systems. This connection follows from the
similarity between the master equation describing the time fluctuations of these models
and the Schrödinger equation in Euclidean time. This relationship enables us to identify
a quantum Hamiltonian associated with these stochastic models. The simplest example is
the mapping between the ASEP and the exact integrable anisotropic Heisenberg chain, or
the so-called XXZ quantum chain [4]. Furthermore, N -state quantum Hamiltonians have
played an important role in describing strongly correlated electrons in the last few decades.
Remarkably, in one dimension several models in this category are exactly solvable, such
as, for example, the spin-1 Sutherland [15] and t–J [16] models, and the spin- 3

2
Perk–

Schultz model [17], the Essler–Korepin–Schoutens model [18], the Hubbard model [19] and
the two-parameter integrable model introduced in [20]. These quantum models can be
related to the asymmetric diffusion of two (spin-1) and three (spin-3

2
) kinds of particles [4],

respectively. In its formulation in terms of particles with two and three global conservation
laws, these models describe the dynamics of different kinds of particles on the lattice, where
the total number of particles of each type is conserved separately.

In order to ensure integrability, all known models of this class satisfy some particle–
particle exchange symmetries [21, 22]. Recently, we introduced a new class of three-state
model that is integrable despite it not having particle–particle exchange symmetry [22].
In [23] we extend the model [22] and formulate a one-dimensional asymmetric exclusion
process with one kind of impurity (ASEPI). This model describes the dynamics of two
types of particles (type 1 and 2) on a lattice of L sites, where each lattice site can be
occupied by at most one particle. While particles of type 1 can jump to neighbor sites
if they are empty, like in ASEP, particles of type 2 (called impurities) do not jump to
empty sites but exchange positions with neighboring particles of type 1. We show that
this model has a relaxation time longer than the ones for the ASEP and displays a scaling
exponent of z = 5

2
[23] (of order L3/2L = L5/2 [23]). We obtained this result by solving the

Bethe ansatz equation for the half-filling sector and in the totally asymmetric diffusion
process [23].

In the present work we show how this model can be easily generalized to obtain
models with relaxation times even larger. We formulate an asymmetrical diffusion model
of N = 1, 2, 3, . . . kinds of particles with impurities (N-ASEPI), where particles of kind
1 can jump to neighboring sites if they are empty and particles of kind α = 2, 3, . . . , N
(called impurities) only exchange positions with particles if they satisfy a well-defined
dynamics. Different from the ASEPI [23], our generalized model can have more than
one particle on each site (multiple site occupation). Although our model can be solved
by the coordinate Bethe ansatz, we are going to formulate a new matrix product ansatz
(MPA) [21, 24] due to its simplicity and unifying implementation for arbitrary systems.
This new MPA introduced in [21, 24] can be seen as a matrix product formulation of the
coordinate Bethe ansatz and it is suited to describe all eigenstates of integrable models.
We solve this model with periodic boundary conditions through the MPA and we analyze
the spectral gap for some special cases. Our N-ASEPI model displays the full spectrum
of the ASEP [6] plus new levels. The first excited state belongs to these new levels and
displays unusual scaling exponents. Although the ASEP belongs to the KPZ universality
class, characterized by the dynamical exponent z = 3

2
[11], we conjecture that our model

displays a scaling exponent 3
2

+ N − 1, where N − 1 is the number of kinds of impurities.

doi:10.1088/1742-5468/2012/05/P05017 3

http://dx.doi.org/10.1088/1742-5468/2012/05/P05017


J.S
tat.M

ech.
(2012)

P
05017

Asymmetric exclusion model with several kinds of impurities

In order to check our conjecture, we solve numerically the Bethe equation with N = 3 and
4 for the totally asymmetric diffusion and found that the gap for the first excited state
scales with L−7/2 and L−9/2 in these cases. Furthermore, we also generalize the model [23]
to include quantum spin chain and solve the Bethe ansatz equation for symmetric and
asymmetric diffusion.

Our paper is organized as follows. In section 2 we generalize the model [23] to
include the quantum spin chain and solve the Bethe ansatz equation for the symmetric
and asymmetric diffusion. The generalization for several kinds of impurities is done in
section 3. Finally, our conclusions are presented in section 4.

2. The asymmetric exclusion model with one kind of impurity

Recently, we propose an exactly solvable asymmetric exclusion process with impurities [23]
(ASEPI) and found its dynamic exponent z = 5

2
. The exponent z in [23] was obtained,

from the spectral gap of the model, for the totally asymmetric exclusion process (TASEPI)
and at half-filling. It is important to notice that, although the ASEP without impurities
belongs to the KPZ universality class [11] (dynamic exponent 3

2
), our new model displays

an unusual scaling exponent 5
2
. In this section we extend our previous analysis [23] and

obtain the spectral gap for the symmetric and asymmetric exclusion process. Furthermore,
we generalize both the models [22] and [23] in order to include quantum spin chains, and
we found analytically the spectral gap of the quantum model in the special case where we
have free fermions.

The model in [23] describes the dynamics of two kinds of particles (type 1 and 2) on
a one-dimensional lattice of L sites, where each lattice site can be occupied by at most
one particle. Furthermore, the total numbers n1, n2 of particles of each type is conserved.
In this model if the neighboring sites are empty, particles of type 1 can jump to the right
or to the left with rate Γ1 0

0 1 and Γ0 1
1 0, respectively. Particles of type 2 (impurities) do not

jump to neighboring sites if they are empty, but can exchange positions with neighboring
particles of type 1 with rates Γ1 2

2 1 and Γ2 1
1 2 if particle 1 is on the left or on the right,

respectively. To describe the occupancy of a given site i (i = 1, 2, . . . , L), we attach on
it a variable αi taking values αi = 0, 1, 2. If αi = 0, the site is vacant. If αi = 1, 2, we
have on the site a particle of kind 1 or 2, respectively. The allowed configurations can be
denoted by the set {α} = {α1, α2, . . . , αL} of L integers αi = 0, 1, 2. The master equation
for the probability distribution at a given time t, P ({α}, t), can be written in general as

∂P ({α}, t)
∂t

= Γ({α′} → {α})P ({α′}, t) − Γ({α} → {α′})P ({α}, t) (1)

where Γ({α} → {α′}) is the transition rate where the configuration {α} changes to {α′}.
The master equation (1) can be written as a Schrödinger equation in Euclidean time

(see [4] for general applications for two-body processes)

∂|P 〉
∂t

= −H|P 〉, (2)
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where we represent a configuration αi on site i by the vector |αi〉i, and we interpret
|P 〉 = P ({α}, t)|α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αL〉 as the associated wavefunction. In order to
generalize our model [23] and to include quantum chain solutions, the general Hamiltonian
we consider on a ring of perimeter L is given by

H =
L∑

j=1

(
Γ1 0

0 1E
0,1
j E1,0

j+1 + Γ0 1
1 0E

1,0
j E0,1

j+1 +
2∑

α�=β=1

Γα β
β αEβ,α

j Eα,β
j+1 +

2∑

α,β=0

Γα β
α βEα,α

j Eβ,β
j+1

)
,

(3)

with Eα,β
L+1 ≡ Eα,β

1 due to the periodic boundary condition, and where Eα,β
k (α, β = 0–2)

is the 3×3 Weyl matrix acting on site k with i, j elements (El,m
k )i,j = δl,iδm,j and Γl m

n o are
the coupling constants. The last sum in (3) accounts for the static interactions while the
first and second sums are the kinetic terms representing the motion and interchange of
particles, respectively. The U(1)⊗U(1) symmetry supplemented by the periodic boundary
condition of (3) implies that the total number of particles n1, n2 = 0, 1, 2, . . . , L (with
n1 + n2 ≤ L) on class 1 and 2 as well the momentum P = 2πl/L (l = 0, 1, . . . , L − 1) are
good quantum numbers. Furthermore, the Hamiltonian (3) also preserves the numbers
of vacant sites between the impurities. This conservation plays a fundamental role in
the spectral properties of the model [23]. As we shall show, for the stochastic model the
Bethe equation does not depends on the number of impurities (n2 �= 0). Consequently,
the roots of the Bethe equation and the eigenvalues of the Hamiltonian are independent
of n2 �= 0 (but the wavefunction depends on n2). This huge spectral degeneracy follows
directly from the conservation of the numbers of vacant sites between the impurities
by the Hamiltonian (3). Let us explain with the following example. Suppose we start
with a given configuration 0120220 with one particle (1), three impurities (2) and three
vacant sites (0). We can make a surjective map between all possible configurations of
these particles to all possible configurations of a new chain with just impurities and
vacant sites. For example 0120220 =⇒ 020220. On this new chain, we are looking only
for the effective movement of impurities on the chain. For simplicity, let us consider
the totally asymmetric model (TASEP), where Γ1 0

0 1 = 1 and Γ0 1
1 0 = 0. When the

particle jumps over the impurities, nothing changes in the effective chain since we also
have 0210220 =⇒ 020220, then 0201220 =⇒ 020220, then 0202120 =⇒ 020220, then
0202210 =⇒ 020220, then 0202201 =⇒ 020220, and finally a change in the mapped
configuration 1202200 =⇒ 202200. In other words, the impurities move on the mapped
chain as they are just one ‘object’ due to the conservation of vacant sites between
impurities. Moreover, this ‘object’ only moves when the particle complete a turn over
the chain. As a consequence, the time for the particle to complete one revolution is
the timescale for the movements of this ‘object’. For an arbitrary number of particles
in a chain of length L, the time for the particles to complete one revolution is of
order L3/2 (L2 in the symmetrical diffusion). As the ‘object’ formed by the impurities
needs to move of order L times to span all possible configurations, it will take a
time of order L3/2L = L5/2 (L3 in the symmetrical diffusion) to reach the stationary
state.
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2.1. The exact solution of the model

We want to formulate a matrix product ansatz for the eigenvectors |Ψn1,n2,P 〉 of the
eigenvalue equation

H|Ψn1,n2,P 〉 = εn1,n2|Ψn1,n2,P 〉 (4)

belonging to the eigenvector labeled by (n1, n2, P ). These eigenvectors are given by

|Ψn1,n2,P 〉 =
∑

{α}

∑

{x}
f(x1, α1; . . . ; xn, αn)|x1, α1; . . . ; xn, αn〉, (5)

where the kets |x1, α1; . . . ; sn, αn〉 ≡ (|0〉⊗)x1−1|α1〉 ⊗ (|0〉⊗)x2−x1−1|α2〉 ⊗ · · · ⊗
(|0〉⊗)xn−xn−1−1|αn〉 ⊗ (|0〉⊗)L−xn denote the configurations with particles of type αi

(αi = 1, 2) located at the positions xi (xi = 1, . . . , L), and the total number of particles
is n = n1 + n2. The summation {α} = {α1, . . . , αn} extends over all the permutations
of n integers numbers {1, 2} in which n1 terms have value 1 and n2 terms the value 2,
while the summation {x} = {x1, . . . , xn} extends, for each permutation {α}, into the set
of non-decreasing integers satisfying xi+1 ≥ xi + 1.

The MPA [24] is constructed by making a one-to-one correspondence between the
configurations of particles and a product of matrices:

f(x1, α1; . . . ; xn, αn) ⇐⇒ Ex1−1A(α1)Ex2−x1−1A(α2) · · ·Exn−xn−1−1A(αn)EL−xn, (6)

where for this map we can choose any operation on the matrix products that gives a non-
zero scalar. In the original formulation of the MPA with periodic boundary conditions [24]
the trace operation was chosen to produce this scalar. The matrices A(α) are associated
with the particles of type α = 1, 2, respectively, and the matrix E is associated with the
vacant sites. Actually E and A(α) are abstract operators with an associative product.
A well-defined eigenfunction is obtained, apart from a normalization factor, if all the
amplitudes are related uniquely, due to the algebraic relations (to be fixed) among the
matrices E and A(α). Equivalently, the correspondence (6) implies that, in the subset of
words (products of matrices) of the algebra containing n matrices A(α) and L−n matrices
E, there exists only a single independent word (‘normalization constant’). The relation
between any two words is a c number that gives the ratio between the corresponding
amplitudes in (5).

As the Hamiltonian (3) commutes with the momentum operator due to the periodic
boundary condition, the amplitudes f(x1, α1; . . . ; xn, αn) should satisfy the following
relations:

f(x1, α1; . . . ; xn, αn) = e−iPf(x1 + 1, α1; . . . ; xn + 1, αn), (7)

where

P =
2πl

L
, l = 0, 1, . . . , L − 1. (8)

Let us consider initially the simpler cases where n = 1 and 2.

doi:10.1088/1742-5468/2012/05/P05017 6
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n = 1. We have distinct equations depending on the type α = 1, 2 of the particle. The
eigenvalue equation (4) gives us

ε(1)Ex−1A(1)EL−x = Γ1 0
0 1E

x−2A(1)EL−x+1 + Γ0 1
1 0E

xA(1)EL−x−1

+ (Γ0 1
0 1 + Γ1 0

1 0)E
x−1A(1)EL−x, (9)

if the particle is of type 1 and

ε(2)Ex−1A(2)EL−x = (Γ0 2
0 2 + Γ2 0

2 0)E
x−1A(2)EL−x, (10)

if the particle is of type 2. In these last two equations ε(1) ≡ ε1,0 and ε(2) ≡ ε0,1 are the
eigenvalues, and we choose Γ0 0

0 0 = 0 without loss of generality. A convenient solution is
obtained by introducing the spectral parameter-dependent matrices

A(α) = EA
(α)
k (α = 1, 2), (11)

with complex k parameter, that satisfy the commutation relation with the matrix E

EA
(α)
k = eikA

(α)
k E (α = 1, 2). (12)

Inserting (11) and (12) into (9) and (10) we obtain

ε(1)(k) = Γ1 0
0 1e

−ik + Γ0 1
1 0e

ik + Γ0 1
0 1 + Γ1 0

1 0,

ε(2)(k) = Γ0 2
0 2 + Γ2 0

2 0.
(13)

The up-to-now free spectral parameter k is fixed by imposing the boundary condition.
This will be done only for general n.

n = 2. For two particles of types α1 and α2 (α1, α2 = 1, 2) on the lattice we have two kinds
of relations coming from the eigenvalue equation. The configurations where the particles
are at positions (x1, x2) with x2 > x1 + 1 give us the generalization of (9)

εn1,n2Ex1−1A(α1)Ex2−x1−1A(α2)EL−x2

= Γα1 0
0 α1

Ex1−2A(α1)Ex2−x1A(α2)EL−x2 + Γ0 α1
α1 0E

x1A(α1)Ex2−x1−2A(α2)EL−x2

+ Γα2 0
0 α2

Ex1−1A(α1)Ex2−x1−2A(α2)EL−x2+1

+ Γ0 α2
α2 0E

x1−1A(α1)Ex2−x1A(α2)EL−x2−1

+ (Γ0 α1
0 α1

+ Γα1 0
α1 0 + Γ0 α2

0 α2
+ Γα2 0

α2 0)E
x1−1A(α1)Ex2−x1−1A(α2)EL−x2 , (14)

and the configurations where the particles are at the colliding positions (x1 = x, x2 = x+1)
give us

εn1,n2Ex−1A(α1)A(α2)EL−x−1 = Γα1 0
0 α1

Ex−2A(α1)EA(α2)EL−x−1

+ Γ0 α2
α2 0E

x−1A(α1)EA(α2)EL−x−2 + Γα2 α1
α1 α2

Ex−1A(α2)A(α1)EL−x−1

+ (Γ0 α1
0 α1

+ Γα2 0
α2 0 + Γα1 α2

α1 α2
)Ex−1A(α1)A(α2)EL−x−1, (15)

where we introduced Γ2 0
0 2 = Γ0 2

2 0 = 0 and Γα2 α1
α1 α2

= 0 if α1 = α2. The Hamiltonian (3)

does not have a standard solution as in [24] where each of the matrices A(α) (α = 1, 2)
is composed of two spectral parameter matrices, with the same value of the spectral
parameters k1, k2 (case a in [24]). In order to obtain a solution for (14) and (15) we now
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need to consider the A(α) as composed by nα spectral parameter-dependent matrices A
(α)

k
(α)
j

belonging to two distinct sets of spectral parameters [22, 23], i.e.

A(α) =
nα∑

j=1

EA
(α)

k
(α)
j

with EA
(α)

k
(α)
j

= eik
(α)
j A

(α)

k
(α)
j

E, (A
(α)

k
(α)
j

)2 = 0, (16)

for α = 1, 2 and n1 +n2 = n. These last relations when inserted in (14) give us the energy

in terms of the spectral parameters k
(α)
j (α = 1, 2):

εn1,n2 =

n1∑

j=1

ε(1)(k
(1)
j ) +

n2∑

j=1

ε(2)(k
(2)
j ), (17)

where ε(α)(k) is given by (13).
Let us consider now (15) in the case where the particles are of the same type. For

two particles, when α1 = α2 = 1, equations (16), (17) and (15) imply that the matrices

{A(1)

k
(1)
j

} should obey the Zamolodchikov algebra [25]

A
(1)

k
(1)
j

A
(1)

k
(1)
l

= S1 1
1 1(k

(1)
j , k

(1)
l )A

(1)

k
(1)
l

A
(1)

k
(1)
j

(j �= l), (A
(1)

k
(1)
j

)2 = 0, (18)

where j, l = 1, . . . , n1 and the algebraic constants S1 1
1 1(k

(1)
j , k

(1)
l ) are given by

S1 1
1 1(k

(1)
j , k

(1)
l ) = −Γ1 0

0 1 + Γ0 1
1 0e

i(k
(1)
j +k

(1)
l ) − (Γ1 1

1 1 − Γ1 0
1 0 − Γ0 1

0 1)e
ik

(1)
j

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − (Γ1 1

1 1 − Γ1 0
1 0 − Γ0 1

0 1)e
ik

(1)
l

. (19)

For two impurities (α1 = α2 = 2) at ‘colliding’ positions, the eigenvalue equation does not

fix a commutation relation among the matrices A
(2)

k
(2)
j

since (15) is automatically satisfied

in this case. On the other hand, the sum

2∑

j,l=1

A
(2)

k
(2)
j

EdA
(2)

k
(2)
l

�= 0, (20)

where the number of vacant sites between the impurities d = y − x is a conserved
charge of the Hamiltonian (3), should be different from zero or the MPA will produce
an eigenfunction with null norm. Moreover, the algebraic expression in (16) ensures that
any matrix product defining our ansatz (6) can be expressed in terms of two single matrix

products A
(2)

k
(2)
1

A
(2)

k
(2)
2

EL and A
(2)

k
(2)
2

A
(2)

k
(2)
1

EL. Using (16) we have, from the periodic boundary

condition,

A
(2)

k
(2)
j

A
(2)

k
(2)
l

EL = e−ik
(2)
j Le−ik

(2)
l LA

(2)

k
(2)
j

A
(2)

k
(2)
l

EL, (21)

To satisfy this equation we should have k
(2)
2 = −k

(2)
1 + 2πj/L (j = 0, 1, . . . , L − 1).

Consequently, the most general commutation relation A
(2)

k
(2)
1

A
(2)

k
(2)
2

= S2 2
2 2(k

(2)
j , k

(2)
l )A

(2)

k
(2)
2

A
(2)

k
(2)
1

among the matrices A
(2)

k
(2)
1

and A
(2)

k
(2)
2

can be reduced to A
(2)

k
(2)
1

A
(2)

k
(2)
2

= A
(2)

k
(2)
2

A
(2)

k
(2)
1

(S2 2
2 2(k

(2)
j , k

(2)
l ) = 1) by an appropriate change of variable in the spectral parameter k

(2)
1 .
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By choosing S2 2
2 2(k

(2)
j , k

(2)
l ) = 1 and imposing that the sum (20) is not zero, we obtain

(j, l, v = 1, . . . , n2)

k
(2)
l �= k

(2)
j +

π(2m + 1)

dv

(m = 0, 1, . . .), (22)

where {dv} is the set of all numbers of vacant sites between the impurities.
Let us consider now the case where the particles are of distinct kinds. From (13),

(16) and (17), equation (15) gives us two independent relations:

[Γα2 0
0 α2

+ Γ0 α1
α1 0e

i(k(1)+k(2)) − (Γα1 α2
α1 α2

− Γα1 0
α1 0 − Γ0 α2

0 α2
)eik(α2)

]A
(α1)

k(α1)A
(α2)

k(α2)

− Γα2 α1
α1 α2

eik(α2)

A
(α2)

k(α2)A
(α1)

k(α1) = 0 (α1 �= α2 = 1, 2). (23)

These two relations need to be identically satisfied, and since at this level we want to
keep k(1) and k(2) as free complex parameters, (23) implies special choices of the coupling
constants Γm n

k l [22, 23]:

Γ0 2
2 0 = Γ2 0

0 2 = 0, Γ2 1
1 2Γ

1 2
2 1 = Γ0 1

1 0Γ
1 0
0 1, t12 = t21 = t22 = 0, (24)

where tα1α2 = Γα1 α2
α1 α2

−Γα1 0
α1 0−Γ0 α2

0 α2
(α1, α2 = 1, 2). We also obtain the structural constants:

S2 1
2 1(k

(2), k(1)) =
1

S1 2
1 2(k

(1), k(2))
=

Γ2 1
1 2

Γ0 1
1 0

eik(2)

. (25)

The integrability conditions (24) generalize the result obtained for the stochastic process
with one kind of impurity [23] to include quantum chains [22]. Let us consider now the
case of general n.

General n. We now consider the case of arbitrary numbers n1, n2 of particles of types 1
and 2. The eigenvalue equation gives us generalizations of (14) and (15). To solve
these equations we identify the matrices A(α) as composed by nα spectral-dependent
matrices (16). The configurations where xi+1 > xi + 1 give us the energy (17). The
amplitudes in (15) where a pair of particles of types α1 and α2 are located at the closest
positions give us the algebraic relations

A
(α1)

k
(α1)
j

A
(α2)

k
(α2)
l

= Sα1 α2
α1 α2

(k
(α1)
j , k

(α2)
l )A

(α2)

k
(α2)
l

A
(α1)

k
(α1)
j

, (26)

where the algebraic structure constants are the diagonal S matrix defined by (19) and

(25), S2 2
2 2(k

(2)
j , k

(2)
l ) = 1, with coupling constants (24).

In order to complete our solutions we should fix the spectral parameters

k
(1)
1 , . . . , k

(1)
n1 and k

(2)
1 , . . . , k

(2)
n2 . The algebraic expression in (16) ensures that any matrix

product defining our ansatz (6) can be expressed in terms of the matrix product

A
(1)

k
(1)
1

· · ·A(1)

k
(1)
n1

A
(2)

k
(2)
1

· · ·A(2)

k
(2)
n2

EL. From the periodic boundary condition we obtain

eik
(1)
j L = −e−i

∑n2
l=1 k

(2)
l

(
Γ2 1

1 2

Γ0 1
1 0

)−n2 n1∏

l=1

S1 1
1 1(k

(1)
j , k

(1)
l ) (j = 1, . . . , n1),

eik
(2)
j (L−n1) =

(
Γ2 1

1 2

Γ0 1
1 0

)n1

(j = 1, . . . , n2),

(27)
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where the spectral parameters {k(2)
j } should satisfy the restrictions (22). We can write

the Bethe equation (27) in a more convenient way. From the second expression on (27)
we have

ei
∑n2

j=1 k
(2)
j (L−n1) =

(
Γ2 1

1 2

Γ0 1
1 0

)n1n2

⇒ ei
∑n2

j=1 k
(2)
j =

(
Γ2 1

1 2

Γ0 1
1 0

)n1n2/(L−n1)

ei(2π/(L−n1))m, (28)

with m = 0, 1, . . . , L−n1−1. By inserting (28) and using (19) in the first equation in (27)
we obtain

eik
(1)
j L = (−)n1−1φn1,n2(m)

n1∏

l=1

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − 2Δeik

(1)
j

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − 2Δeik

(1)
l

, (29)

where j = 1, . . . , n1, 2Δ = Γ0 0
0 0 +Γ1 1

1 1−Γ1 0
1 0−Γ0 1

0 1 and the phase factor φn1,n2(m) is defined
by

φn1,n2(m) =

(
Γ2 1

1 2

Γ0 1
1 0

)−n1(n2)2/(L−n1)

e−i(2π/(L−n1))m (m = 0, 1, . . . , L − n1 − 1). (30)

The Bethe equation (29) generalizes our results [22, 23]. Furthermore, it is important to
notice that (30) differs from the ones related to the asymmetric XXZ chain [6] by the
phase factor φn1,n2(m) (30). As we shall see, this phase factor will play a fundamental
role in the spectral properties of the model.

Finally, the eigenstate momentum is given by inserting the ansatz (16) into the
relation (7):

P =

n1∑

j=1

k
(1)
j +

n2∑

j=1

k
(2)
j =

2πl

L
(l = 0, 1, . . . , L − 1). (31)

The Bethe equation (30) plus the momentum equation (31) completely fix the spectral

parameters {k(1)
j } and {k(2)

j } and the eigenvalues (17). Let us consider some special cases:

2.2. Stochastic model

For stochastic models we should have Γα β
β α = −Γα β

α β (α, β = 0–2). Let us set, without loss

of generality, Γ1 0
0 1 + Γ0 1

1 0 = 1, Γ2 1
1 2 = Γ0 1

1 0 and Δ = 1
2
. In this case our model describes

an asymmetric exclusion process with impurities [23]. The Bethe equation (29) with the
phase factor (30) reduces now to

eik
(1)
j L = (−)n1−1e−i(2π/(L−n1))m

n1∏

l=1

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − eik

(1)
j

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − eik

(1)
l

, (32)

where j = 1, . . . , n1 and m = 0, 1, . . . , L − n1 − 1.
In our previous work [23] we consider the TASEPI (when Γ1 0

0 1 = 1 and Γ0 1
1 0 = 0,

or Γ1 0
0 1 = 0 and Γ0 1

1 0 = 1). In this case we solve (32) numerically up to L = 1024
in the half-filling sector n1 = L/2 and we obtain the scaling exponent z = 5

2
for the

TASEPI. Now, we generalize our previous results by solving the Bethe equation (27)
for the asymmetric ASEPI and symmetric SEPI exclusion processes. We also checked the
eigenvalues obtained from exact diagonalization of the Hamiltonian with the Bethe ansatz
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Figure 1. In this figure we display the logarithm of the real part of the energy
gap versus the logarithm of L for Γ1 0

0 1 = 0.7 and Γ1 0
0 1 = 0.5. The dynamical

exponents z are 2.50(2) and 3.01(2), respectively.

Table 1. Dynamical exponent z versus Γ1 0
0 1 in the half-filling sector n1 = L/2.

Γ1 0
0 1 = 0.9 Γ1 0

0 1 = 0.8 Γ1 0
0 1 = 0.7 Γ1 0

0 1 = 0.6 Γ1 0
0 1 = 0.5

z 2.52(2) 2.51(2) 2.50(1) 2.52(2) 3.01(2)

solution for a small chain with L = 6, n1 = 2, n2 = 1 and Γ1 0
0 1 = 0.75 (see appendix A).

The eigenvalue with the largest real part is εn1,n2 = 0 corresponding to the stationary
state (it is provided by choosing m = 0 and P = 0 in the Bethe equation (32) giving us

the n1 fugacities eik
(1)
j = 1). Other eigenvalues contribute to the relaxation behavior to the

stationary state. In particular, the eigenvalue with the second largest real part determines
the relaxation time and the dynamical exponent z. This eigenvalue is obtained from the
Bethe equation (32) by choosing m = 1 and P = 2π/L (see appendix A for a detailed
discussion for a small chain). In table 1 we show the dynamical exponent z versus Γ1 0

0 1

obtained from the numerical solution of the Bethe equation (27) for several values of L
in the half-filling sector n1 = L/2. The errors displayed are computed from the linear
regression for the logarithm of the real part of the energy gap versus the logarithm of L
(see figure 1 for the cases where Γ1 0

0 1 = 0.7 and Γ1 0
0 1 = 0.5). In the ASEPI, we consider

the cases where Γ1 0
0 1 = 0.9, 0.8, 0.7, 0.6 with L = 20, 40, 80, 160, 200, 300 and 400, and

we found that the energy gap has a leading behavior of KPZ L−3/2 and a sub-leading
term L−5/2 related to the super-diffusion of particle 1 and the sub-diffusion of particle
2, respectively. For m = 0 (and also for n2 = 0) the sub-leading term vanishes and we
recover the spectrum of the ASEP without impurities [6]. For m = 1 the spectral gap
scales with L−5/2 instead of L−3/2 due to the sub-leading term. On the other hand, we
obtain for the SEPI (Γ1 0

0 1 = Γ0 1
1 0 = 0.5 with L = 20, 32, 40, 52) a energy gap with a leading

behavior of L−2 and a sub-leading term L−3 related to the normal diffusion of particle 1
and sub-diffusion of particle 2, respectively.

Finally, as in [23], it is important to notice that the dynamics of particle 1 is not
affected by the impurities. This explains why the model displays the full spectrum of the
ASEP [6]. The dynamics of the impurities is totally dependent on the particles, since
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the impurities only move when particles change position with them. Consequently, the
time for the fluctuations to vanish on the densities of particles acts as a timescale for
the diffusion of the impurities, resulting in a relaxation time greater than the one for the
standard ASEP and SEP (reflected in the L−3/2L−1 = L−5/2 gap for the ASEPI and the
L−2L−1 = L−3 gap for the SEPI).

Eigenstates. The stationary state is the eigenstate associated with the eigenvalue
εn1,n2 = 0 (it is in the sector with m = 0 and P = 0). In this case, the Bethe equation (32)

has the unique solution ek
(α)
j = 1 for all α = 1, 2 and j = 1, . . . , nα. As a consequence,

the S matrix reduces to the identity Sα1 α2
α1 α2

(k
(α1)
j , k

(α2)
l ) = 1, and all amplitudes in the

eigenfunction (5) become equal to a normalization constant f(x1, α1; . . . ; xn, αn) = f0,
since we have from (6) and (16)

Ex1A
(α1)

k
α1
1

Ex2−x1A
(α2)

k
α2
2

· · ·Exn−xn−1A
(αn)

kαn
n

EL−xn = A
(1)

k
(1)
1

· · ·A(1)

k
(1)
n1

A
(2)

k
(2)
1

· · ·A(2)

k
(2)
n2

EL. (33)

The eigenfunction |Ψ0〉 corresponding to the stationary state is given by a simple
combination of all possible configurations of particles, where each particle configuration
has the same weight given by the normalization constant f0. We have from (5)

|Ψ0〉 = f0

∑

{α}

∑

{x}
|x1, α1; . . . ; xn, αn〉. (34)

Consequently, at the stationary state, all configurations that satisfy the hard-core
constraints imposed by the definition of the model occur with equal probabilities given
by f0. Furthermore, in this case each site is occupied by a particle α with probability
ρα = nα/L.

Finally, the MPA (6) enables us to write all eigenstates of (3) in a matrix product

form. For a given solution k
(1)
j and k

(2)
j , the matrices E and A

(α)

k
(α)
j

have the following

finite-dimensional representation:

E =

n1⊗

l=1

(
1 0
0 eik

(1)
l

) n2⊗

l=1

(
1 0
0 eik

(2)
l

)
,

A
(2)

k
(2)
j

=

n1⊗

l=1

(
1 0
0

Γ2 1
1 2

Γ0 1
1 0

eik
(2)
l

) j−1⊗

l=1

I2

⊗(
0 0
1 0

) n2⊗

l=j+1

I2,

A
(1)

k
(1)
j

=

j−1⊗

l=1

(
S1 1

1 1(k
(1)
j , k

(1)
l ) 0

0 1

) ⊗(
0 0
1 0

) n1+n2⊗

j=j+1

I2,

(35)

where n = n1 +n2, I2 is the 2×2 identity matrix and the dimension of the representation
is 2n. The matrix product form of the eigenstates is given by inserting the matrices (16)
defining the MPA (6) with the spectral parameters (29) into equation (5). As shown
in [27], our MPA generalizes the steady-state matrix product introduced by Derrida et

al [28]. For the stochastic model the stationary state is obtained by choosing k
(1)
j = 0

and k
(2)
j = 0 in (35). However, a relation between our matrix product form for the

steady state and the standard matrix product form for the open boundary condition is
not trivial [27, 28].
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Figure 2. In this figure we have an allowed particle configuration for L = 9,
N = 5 and n = n1 + n2 + n3 + n4 + n5 = 9. The configuration satisfies the
hard-core constraints imposed by the condition αj+1 > αj + 1.

2.3. Quantum model

We consider here only the simplest case of free fermions, when Δ = 0 and Γ2 1
1 2 = Γ1 0

0 1 =
Γ0 1

1 0 = 1, in this particular case, the Bethe equation (29) reduces to roots of unity. The
simplicity of the Bethe equation enables us to calculate analytically the eigenvalues by
following [6]. As in the stochastic model, the ground state is obtained by choosing m = 0
and the first excited state is given by m = 1. Due to the L−1 term in the phase factor,
the energy gap

Δε =
4απ

(1 − ρ1)2
sin

(απρ1

2

) 1

L3
+ O(L−4), (36)

with α = 1(2) for n1 even (odd), scales with L−3 instead of L−1 for the case of only one
kind of particle. The boundary condition plays a fundamental role in the scaling behavior
of the model. In the quantum sector our model is related to the strong regime of the t–U
Hubbard model introduced in [26] and solved with diagonal open boundary conditions.
Although the open chain t–U Hubbard model has a scaling gap of L−1, since its spectrum
coincides with the spectrum of the anisotropic XXZ model [26] at Δ = 0, our model with
periodic boundary conditions displays a scaling gap of L−3.

3. The asymmetric exclusion model with N − 1 kinds of impurities

We generalize the model discussed in section 2 by adding more types of impurities.
Although we can formulate a general model including both stochastic processes and
quantum spin chains, we will consider for simplicity only stochastic processes. The model
introduced describes the dynamics of N types of particles on a one-dimensional lattice
of L sites, where the total number n1, n2, . . . , nN of particles of each type is conserved.
Different from the case with just one kind of impurity [23], discussed in section 2, in
our generalized model we can have more than one particle on each site (multiple site
occupation). In order to describe the occupancy of a given site i (i = 1, 2, . . . , L) we
attach on site i a set {α}i = {α1, . . . , αn}, where αj = 1, . . . , N (j = 1, . . . , n) denotes a
particle of kind αj . If {α}i = ∅, the site is vacant. If {α}i = {α1, . . . , αn}, we have on
the site n particles of kinds α1, α2, . . . , αn with αj+1 > αj + 1 (j = 1, . . . , n − 1). The
allowed configurations, denoted by {α} = {{α}1, {α}2, . . . , {α}L}, are those satisfying the
hard-core constraints imposed by the condition αj+1 > αj + 1 for particles on the same
site (see figure 2 for an example of an allowed configuration).
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Figure 3. In this figure we have an allowed motion of four particles with transition
rates Γ1 0

0 1.

The master equation for the probability distribution at a given time t, P ({α}, t), can
be written in general as

∂P ({α}, t)
∂t

= −Γ({α} → {α′})P ({α}, t) + Γ({α′} → {α})P ({α′}, t) (37)

where Γ({α} → {α′}) is the transition rate where a configuration {α} changes to {α′}. In
the model proposed there are only diffusion processes. As in [23], and in the last section,
if the neighboring sites are empty, particles of type α = 1 can jump to the right or to the
left with rate Γ1 0

0 1 and Γ0 1
1 0, respectively. Particles of type α = 2, . . . , N (impurities) do not

jump to the neighboring sites if they are empty. The only allowed motions for impurities
are those in which 2l (l = 1, 2, . . .) particles exchange positions (when αl+1 > 2l + 1):

{1, 3, . . . , 2l − 1, αl+1, . . .}i{2, 4, . . . , 2l, βl+1, . . .}i+1

⇒ {2, . . . , 2l, αl+1, . . .}i{1, . . . , 2l − 1, βl+1, . . .}i+1 (38)

with transition rate Γ1 0
0 1 and

{2, . . . , 2l, βl+1, . . .}i{1, . . . , 2l − 1, αl+1, . . .}i+1

⇒ {1, 3, . . . , 2l − 1, βl+1, . . .}i{2, 4, . . . , 2l, αl+1, . . .}i+1 (39)

with transition rate Γ0 1
1 0, respectively, or those in which 2l+1 particles exchange positions

(when βl+1 > 2l + 2):

{1, 3, . . . , 2l + 1, αl+2, . . .}i{2, 4, . . . , 2l, βl+1, . . .}i+1

⇒ {2, . . . , 2l, αl+2, . . .}i{1, . . . , 2l + 1, βl+1, . . .}i+1, (40)

with transition rates Γ1 0
0 1 and

{2, . . . , 2l, βl+1, . . .}i{1, . . . , 2l + 1, αl+2, . . .}i+1

⇒ {1, 3, . . . , 2l + 1, βl+1, . . .}i{2, 4, . . . , 2l, αl+2, . . .}i+1, (41)

with transition rates Γ0 1
1 0, respectively. It is important to notice that all allowed motions

are those in which we have a sequence of particles 1, 3, . . . , 2l ± 1 on site i (i + 1) and a
sequence of particles 2, 4, . . . , 2l on site i + 1 (i), respectively (see figure 3 for an example
of an allowed motion of particles).
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The stochastic Hamiltonian associated with the master equation (37) on a one-
dimensional lattice of L sites and periodic boundary condition is given by

H =

L∑

i=1

[
Γ1 0

0 1(E
0,1
i E1,0

i+1 − E1,1
i E0,0

i+1) + Γ0 1
1 0(E

1,0
i E0,1

i+1 − E0,0
i E1,1

i+1)

+
∑

{α}i,{β}i+1

Γα β
β′ α′(E

{β′}i,{α}i

i E
{α′}i+1,{β}i+1

i+1 − E
{α}i,{α}i

i E
{β}i+1,{β}i+1

i+1 )

]
, (42)

where the summations {α}i and {β}i+1 extend over all possible configurations satisfying
the hard-core constraints imposed by the condition αj+1 > αj + 1 and βj+1 > βj + 1

for particles on the same site, and E
{α}i,{β}i

i (with E
{α}L+1,{β}L+1

L+1 ≡ E
{α}1,{β}1

1 due to the
periodic boundary condition) are operators that annihilate the configuration {β}i and

create a configuration {α}i on site i. The coupling constants Γα β
β′ α′ in (42) are equal to

Γ1 0
0 1 or Γ0 1

1 0 if {α}i {β}i+1 → {β ′}i {α′}i+1 satisfy the relations (38) and (39), or (40)
and (41), respectively, and are zero otherwise.

3.1. The exact solution for the asymmetric exclusion model with N − 1 types of impurities

As in the case of one kind of impurity discussed in section 2, we want to formulate a
matrix product ansatz for the eigenvectors |Ψn1,n2,...,nN ,P 〉 of the eigenvalue equation

H|Ψn1,n2,...,nN ,P 〉 = εn1,n2,...,nN |Ψn1,n2,...,nN ,P 〉 (43)

belonging to the eigenvector labeled by (n1, n2, . . . , nN , P ). The MPA we propose asserts
that the amplitudes corresponding to the configurations where there is no multiple
occupancy are given by

f(x1, α1; . . . ; xn, αn) ⇐⇒ Ex1−1A(α1)Ex2−x1−1A(α2) · · ·Exn−xn−1−1A(αn)EL−xn, (44)

while if there exists a multiple occupancy with m particles β1, β2, . . . , βm (βi+1 > βi + 1)
at xj we have

f(. . . ; xj , β1; xj , β2; . . . ; xj, βm; . . .)

⇐⇒ Ex1−1A(α1) · · ·Exj−xj−1−1B(β1,...,βm)Exj+m−xj−1 · · ·A(αn)EL−xn, (45)

where the matrices A(α) are associated with the particles of type α (α = 1–3), the matrices
B(β1,...,βm) = A(β1)E−1A(β2)E−1 · · ·A(βm) are associated with a multiple occupation of m
particles β1, β2, . . . , βm at the same site and the matrix E is associated with vacant sites.
Furthermore, as the Hamiltonian (42) commutes with the momentum operator due to
the periodic boundary condition, the amplitudes f(x1, α1; . . . ; xn, αn) should satisfy the
following relations:

f(x1, α1; . . . ; xn, αn) = e−iPf(x1 + 1, α1; . . . ; xn + 1, αn), (46)

where

P =
2πl

L
, l = 0, 1, . . . , L − 1. (47)

The eigenvalue equation (43) gives us two kinds of relations for the amplitudes (44)
and (45). The first kind is related to those amplitudes without multiple occupancy, and
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the second type is related to those amplitudes with multiple occupancy. Let us consider
separately each case:

Without multiple occupancy. In this case, we have from the eigenvalue equation (43)
relations for amplitudes without collisions (particles of kind 1 have only empty neighboring
sites) and with collisions. For the configuration without collision the amplitudes should
satisfy the following constraints:

εn1,n2,...,nN f(x1, α1; . . . ; xn, αn) =
n∑

i=1

[Γαi 0
0 αi

f(. . . ; xi − 1, αi; . . .)

+ Γ0 αi
αi 0f(. . . ; xi + 1, αi; . . .)] − n1f(x1, α1; . . . ; xn, αn), (48)

where we introduced Γ0 α
α 0 = Γα 0

0 α = 0 for α �= 1. In order to obtain a solution for (48)
we need to generalize (16) for N kinds of particles. We consider the matrices A(α)

(α = 1, . . . , N) as composed by nα spectral parameter-dependent matrices A
(α)

k
(α)
j

belonging

to N distinct sets of spectral parameters, i.e.

A(α) =

nα∑

j=1

EA
(α)

k
(α)
j

with EA
(α)

k
(α)
j

= eik
(α)
j A

(α)

k
(α)
j

E, (A
(α)

k
(α)
j

)2 = 0, (49)

for α = 1, 2, . . . , N and n1 + n2 + · · · + nN = n. These expressions when inserted into
relations without collisions (48) give us the energy in terms of the spectral parameters

{k(1)
j }:

εn1,n2,...,nN =

n1∑

j=1

ε(k
(1)
j ), (50)

where

ε(k) = Γ1 0
0 1e

−ik + Γ0 1
1 0e

ik − 1. (51)

It is important to notice that, like in the previous section, the eigenvalues of the model
depend only on the spectral parameters of particles of kind 1. On the other hand, for
amplitudes without multiple occupancy and particles of kinds α and β at the colliding
positions (xj+1 = xj +1), the eigenvalue equation (43) gives us the generalizations of (26)
with α, β = 1, 2, where the S-matrix elements are given by

S1 1
1 1(k

(1)
j , k

(1)
l ) = −Γ1 0

0 1 + Γ0 1
1 0e

i(k
(1)
j +k

(1)
l ) − eik

(1)
j

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − eik

(1)
l

,

S2 1
2 1(k

(2), k(1)) =
1

S1 2
1 2(k

(1), k(2))
= eik(2)

.

(52)

We do not consider here the cases where we have one particle of kind 1 and other particles
of kind greater than 2 since the eigenvalue equation in this case will relate amplitudes with
multiple occupancy. For α, β ≥ 2 the relations coming from the eigenvalue equation are
identically satisfied. In this case, as in section 2, we can choose without loss of generality

Sα α
α α(k

(α)
j , k

(α)
l ) = 1 (α ≥ 2). (53)
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Furthermore, in order to have amplitudes with non-null norm, the spectral parameters

{k(α)
j } (α ≥ 2) should satisfy the constraints

k
(α)
l �= k

(α)
j +

π(2m + 1)

d
(α)
v

(m = 0, 1, . . .) (α ≥ 2), (54)

where {d(α)
v } is the set of all numbers of vacant sites between particles of type α ≥ 2.

With multiple occupancy. Let us consider first the relations coming from the eigenvalue
equation (43) where we have only one site with multiple occupancy of m particles
β1, β2, . . . , βm (βi+1 > βi+1) at position xj ≡ x. We have from the eigenvalue equation (43)
the following relations:

εn1,n2,...,nN f(. . . ; x, β1; x, β2; . . . ; x, βm; . . .)

=

n∑

i=1,xi �=x

[Γαi 0
0 αi

f(. . . ; xi − 1, αi; . . .) + Γ0 αi
αi 0f(. . . ; xi + 1, αi; . . .)]

+ Γβ1 0
0 β1

f(. . . ; x − 1, β1; x, β2; . . . , x, βm; . . .)

+ Γ0 β1

β1 0f(. . . ; x, β2; . . . , x, βm; x + 1, β1; . . .)

− n1f(. . . ; x, β1; x, β2; . . . ; x, βm; . . .), (55)

for empty neighboring sites and

εn1,n2,...,nN f(. . . ; x − 1, β1; x, β2; . . . ; x, βm; . . .)

=
n∑

i=1,xi �=x−1,x

[Γαi 0
0 αi

f(. . . ; xi − 1, αi; . . .) + Γ0 αi
αi 0f(. . . ; xi + 1, αi; . . .)]

+ Γβ1 0
0 β1

f(. . . ; x − 2, β1; x, β2; . . . , x, βm; . . .)

+ Γ0 β1

β1 0f(. . . ; x, β1; x, β2; . . . , x, βm; . . .)

− n1f(. . . ; x, β1; x, β2; . . . ; x, βm; . . .), (56)

and

εn1,n2,...,nN f(. . . ; x, β2; . . . ; x, βm; x + 1, β1 . . .)

=

n∑

i=1,xi �=x,x+1

[
Γαi 0

0 αi
f(. . . ; xi − 1, αi; . . .) + Γ0 αi

αi 0f(. . . ; xi + 1, αi; . . .)
]

+ Γβ1 0
0 β1

f(. . . ; x, β1; x, β2; . . . , x, βm; . . .)

+ Γ0 β1

β1 0f(. . . ; x, β2; . . . , x, βm; x + 2, β1; . . .)

− n1f(. . . ; x, β1; x, β2; . . . ; x, βm; . . .), (57)

for neighboring sites occupied by one particle of kind β1. In (55)–(57) we have β1 =

1, 2, . . . , N and Γβ1 0
0 β1

= Γ0 β1

β1 0 = 0 if β1 �= 1, and without loss of generality we also choose
no collisions of particle 1. Equations (55)–(57) are automatically satisfied if β1 �= 1.
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On the other hand, for β1 = 1, while (56) is again automatically satisfied, equations (55)
and (57) will impose algebraic constraints for the matrices defining the ansatz. By
inserting the ansatz (45) with (49) and (50) into equations (55) and (57) we obtain,
after some algebraic manipulations, the following constraints among the matrices:

A
(1)

k(1)A
(β2)

k(β2) · · ·A(βm)

k(βm) = A
(β2)

k(β2) · · ·A(βm)

k(βm)A
(1)

k(1), (58)

where β2 = 3, 4, . . . , N and m = 2, 3, . . . with βi+1 > βi +1. In order to satisfy (58) for any
set {β2, . . . , βm} we should impose the following commutation relations among matrices

A
(1)

k
(1)
j

and A
(α)

k
(α)
j

(α ≥ 3):

A
(1)

k
(1)
j

A
(α)

k
(α)
j

= A
(α)

k
(α)
j

A
(1)

k
(1)
j

(α ≥ 3). (59)

Let us consider now the configurations where we have neighboring sites at positions
x and x + 1 with multiple particle occupations. For those configurations in which 2l
(l = 1, 2, . . .) particles exchange positions the eigenvalue equation (43) gives us the
following relations:

εn1,n2,...,nN f(. . . ; x, 1; . . . ; x, 2l − 1; x, βl+1; . . . ; x, βm;

x + 1, 2; . . . ; x + 1, 2l; x + 1, β ′
l+1; . . . ; x + 1, β ′

m′; . . .)

=
n∑

i=1,xi �=x,x+1

[
Γαi 0

0 αi
f(. . . ; xi − 1, αi; . . .) + Γ0 αi

αi 0f(. . . ; xi + 1, αi; . . .)
]

+ Γ1 0
0 1f(. . . ; x − 1, 1; x, 3; . . . ; x, βm; . . .)

+ Γ0 1
1 0f(. . . ; x, 2; . . . ; x, 2l; x, βl+1; . . . ; x, βm;

x + 1, 1; . . . ; x + 1, 2l − 1; x + 1, β ′
l+1; . . . ; x + 1, β ′

m′ ; . . .)

− n1f(. . . ; x, 1; . . . ; x, 2l − 1; x, βl+1; . . . ; x, βm;

x + 1, 2; . . . ; x + 1, 2l; x + 1, β ′
l+1; . . . ; x + 1, β ′

m′; . . .) (60)

and

εn1,n2,...,nN f(. . . ; x, 2; . . . ; x, 2l; x, β ′
l+1; . . . ; x, β ′

m′ ;

x + 1, 1; . . . ; x + 1, 2l − 1; x + 1, βl+1; . . . ; x + 1, βm; . . .)

=

n∑

i=1,xi �=x,x+1

[
Γαi 0

0 αi
f(. . . ; xi − 1, αi; . . .) + Γ0 αi

αi 0f(. . . ; xi + 1, αi; . . .)
]

+ Γ0 1
1 0f(. . . ; x + 1, 3; . . . ; x + 1, β ′

m′ ; x + 2, 1; . . .)

+ Γ1 0
0 1f(. . . ; x, 1; . . . ; x, 2l − 1; x, β ′

l+1; . . . ; x, β ′
m′ ;

x + 1, 2; . . . ; x + 1, 2l; x + 1, βl+1; . . . ; x + 1, βm; . . .)

− n1f(. . . ; x, 2; . . . ; x, 2l; x, β ′
l+1; . . . ; x, β ′

m′ ;

x + 1, 1; . . . ; x + 1, 2l − 1; x + 1, βl+1; . . . ; x + 1, βm; . . .), (61)
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where βl+1 > 2l + 1. Furthermore, for those configurations in which 2l + 1 (l = 0, 1, . . .)
particles exchange positions the eigenvalue equation (43) gives us

εn1,n2,...,nN f(. . . ; x, 1; . . . ; x, 2l + 1; x, βl+2; . . . ; x, βm;

x + 1, 2; . . . ; x + 1, 2l; x + 1, β ′
l+1; . . . ; x + 1, β ′

m′; . . .)

=
n∑

i=1,xi �=x,x+1

[
Γαi 0

0 αi
f(. . . ; xi − 1, αi; . . .) + Γ0 αi

αi 0f(. . . ; xi + 1, αi; . . .)
]

+ Γ1 0
0 1f(. . . ; x − 1, 1; x, 3; . . . ; x, βm; . . .)

+ Γ0 1
1 0f(. . . ; x, 2; . . . ; x, 2l; x, βl+2; . . . ; x, βm;

x + 1, 1; . . . ; x + 1, 2l + 1; x + 1, β ′
l+1; . . . ; x + 1, β ′

m′; . . .)

− n1f(. . . ; x, 1; . . . ; x, 2l + 1; x, βl+2; . . . ; x, βm;

x + 1, 2; . . . ; x + 1, 2l; x + 1, β ′
l+1; . . . ; x + 1, β ′

m′; . . .) (62)

and

εn1,n2,...,nN f(. . . ; x, 2; . . . ; x, 2l; x, β ′
l+1; . . . ; x, β ′

m′ ;

x + 1, 1; . . . ; x + 1, 2l + 1; x + 1, βl+2; . . . ; x + 1, βm; . . .)

=
n∑

i=1,xi �=x,x+1

[
Γαi 0

0 αi
f(. . . ; xi − 1, αi; . . .) + Γ0 αi

αi 0f(. . . ; xi + 1, αi; . . .)
]

+ Γ0 1
1 0f(. . . ; x + 1, 3; . . . ; x + 1, βm; x + 2, 1; . . .)

+ Γ1 0
0 1f(. . . ; x, 1; . . . ; x, 2l + 1; x, β ′

l+1; . . . ; x, β ′
m′;

x + 1, 2; . . . ; x + 1, 2l; x + 1, βl+2; . . . ; x + 1, βm; . . .)

− n1f(. . . ; x, 2; . . . ; x, 2l; x, β ′
l+1; . . . ; x, β ′

m′ ;

x + 1, 1; . . . ; x + 1, 2l + 1; x + 1, βl+2; . . . ; x + 1, βm; . . .), (63)

where β ′
l+1 > 2l + 2. By inserting the ansatz (45) with (49), (50) and (59)

into equations (60)–(63) we obtain, after some algebraic manipulations, the following
constraints among the matrices:

ei(k(2)+···+k(2l))A
(1)

k(1) · · ·A(2l−1)

k(2l−1)A
(βl+1)

k(βl+1) · · ·A(βm)

k(βm)A
(2)

k(2) · · ·A(2l)

k(2l)

= ei(k(3)+···+k(2l−1))A
(2)

k(2) · · ·A(2l)

k(2l)A
(βl+1)

k(βl+1) · · ·A(βm)

k(βm)A
(1)

k(1) · · ·A(2l−1)

k(2l−1) , (64)

and

ei(k(2)+···+k(2l))A
(1)

k(1) · · ·A(2l+1)

k(2l+1)A
(βl+1)

k(βl+1) · · ·A(βm)

k(βm)A
(2)

k(2) · · ·A(2l)

k(2l)

= ei(k(3)+···+k(2l+1))A
(2)

k(2) · · ·A(2l)

k(2l)A
(βl+1)

k(βl+1) · · ·A(βm)

k(βm)A
(1)

k(1) · · ·A(2l+1)

k(2l+1) . (65)

In order to satisfy equations (64) and (65) for all l = 0, 1, . . . and m = 2, 3, . . . with
βi+1 > βi + 1, the matrices defining the ansatz should satisfy the algebraic relations:

A
(α+1)

k(α+1)A
(α)

k(α) = eik(α+1)

A
(α)

k(α)A
(α+1)

k(α+1) (α = 1, . . . , N − 1)

A
(α)

k(α)A
(β)

k(β) = A
(β)

k(β)A
(α)

k(α) (β > α + 1).
(66)
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Equations (66) with (49), (52), (53) and (59) completely fix the commutation relations
among the matrices defining the ansatz:

EA
(α)

k
(α)
j

= eik
(α)
j A

(α)

k
(α)
j

E, (A
(α)

k
(α)
j

)2 = 0,

A
(α)

k
(α)
j

A
(β)

k
(β)
l

= Sα β
α β (k

(α)
j , k

(β)
l )A

(β)

k
(β)
l

A
(α)

k
(α)
j

(α, β = 1, 2, . . . , N),
(67)

where the coupling constants Sα β
α β (k

(α)
j , k

(β)
l ) are given by

S1 1
1 1(k

(1)
j , k

(1)
l ) = −Γ1 0

0 1 + Γ0 1
1 0e

i(k
(1)
j +k

(1)
l ) − eik

(1)
j

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − eik

(1)
l

,

Sα α
α α(k

(α)
j , k

(α)
l ) = 1 (2 ≤ α ≤ N),

Sα+1 α
α+1 α(k

(α+1)
j , k

(α)
l ) =

1

Sα α+1
α α+1(k

(α)
l , k

(α+1)
j )

= eik
(α+1)
j (1 ≤ α ≤ N − 1),

Sα β
α β (k

(α)
j , k

(β)
l ) = Sβ α

β α(k
(β)
l , k

(α)
j ) = 1 (α = 1, . . . , N − 1, α + 1 < β ≤ N).

(68)

Finally, all other relations coming from the eigenvalue equation (43) containing amplitudes
with an arbitrary number of particles on neighboring sites are automatically satisfied by
the ansatz (44) and (45) with (49) and the algebraic relations (67). Furthermore, the asso-
ciativity of the algebra (67) provides a well-defined value for any product of matrices and
it follows from the fact that the algebra (67) is diagonal and the structure constants (68)

are c numbers with the property Sα β
α β (k

(α)
j , k

(β)
l )Sβ α

β α(k
(β)
l , k

(α)
j ) = 1 (α, β = 1, . . . , N).

In order to complete our solution we should fix the spectral parameters {k(α)
j }

(α = 1, . . . , N). As in section 2, the algebraic expression in (67) ensures that any
matrix product defining our ansatz can be expressed in terms of a simple matrix product

A
(1)

k
(1)
1

· · ·A(1)

k
(1)
n1

A
(2)

k
(2)
1

· · ·A(2)

k
(2)
n2

· · ·A(N)

k
(N)
1

· · ·A(N)

k
(N)
nN

EL. From the periodic boundary condition we

obtain

A
(1)

k
(1)
1

· · ·A(1)

k
(1)
j−1

A
(1)

k
(1)
j

A
(1)

k
(1)
j+1

· · ·A(N)

k
(N)
nN

EL

=

n1∏

l>j

S1 1
1 1(k

(1)
j , k

(1)
l )e−i

∑n2
q=1 k

(2)
q e−ik

(1)
j LA

(1)

k
(1)
1

· · ·A(1)

k
(1)
j−1

A
(1)

k
(1)
j+1

· · ·A(N)

k
(N)
nN

ELA
(1)

k
(1)
j

=

n1∏

l>j

S1 1
1 1(k

(1)
j , k

(1)
l )e−i

∑n2
q=1 k

(2)
q e−ik

(1)
j LA

(1)

k
(1)
j

A
(1)

k
(1)
1

· · ·A(1)

k
(1)
j−1

A
(1)

k
(1)
j+1

· · ·A(N)

k
(N)
nN

EL

= −
n1∏

l=1

S1 1
1 1(k

(1)
j , k

(1)
l )e−i

∑n2
q=1 k

(2)
q e−ik

(1)
j L

×A
(1)

k
(1)
1

· · ·A(1)

k
(1)
j−1

A
(1)

k
(1)
j

A
(1)

k
(1)
j+1

· · ·A(N)

k
(N)
nN

EL, (69)

and

A
(1)

k
(1)
1

· · ·A(α)

k
(α)
j−1

A
(α)

k
(α)
j

A
(α)

k
(α)
j+1

· · ·A(N)

k
(N)
nN

EL

= e−i
∑nα+1

q=1 k
(α+1)
q e−ik

(α)
j LA

(1)

k
(1)
1

· · ·A(α)

k
(α)
j−1

A
(α)

k
(α)
j+1

· · ·A(N)

k
(N)
nN

ELA
(α)

k
(α)
j
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= e−i
∑nα+1

q=1 k
(α+1)
q e−ik

(α)
j LA

(α)

k
(α)
j

A
(1)

k
(1)
1

· · ·A(α)

k
(α)
j−1

A
(α)

k
(α)
j+1

· · ·A(N)

k
(N)
nN

EL

= e−i
∑nα+1

q=1 k
(α+1)
q e−ik

(α)
j (L−nα−1)A

(1)

k
(1)
1

· · ·A(α)

k
(α)
j−1

A
(α)

k
(α)
j

A
(α)

k
(α)
j+1

· · ·A(N)

k
(N)
nN

EL, (70)

for α = 2, . . . , N − 1 and

A
(1)

k
(1)
1

· · ·A(N)

k
(N)
j−1

A
(N)

k
(N)
j

A
(N)

k
(N)
j+1

· · ·A(N)

k
(N)
nN

EL

= e−ik
(N)
j LA

(1)

k
(1)
1

· · ·A(N)

k
(N)
j−1

A
(N)

k
(N)
j+1

· · ·A(N)

k
(N)
nN

ELA
(N)

k
(N)
j

= e−ik
(N)
j LA

(N)

k
(N)
j

A
(1)

k
(1)
1

· · ·A(N)

k
(N)
j−1

A
(N)

k
(N)
j+1

· · ·A(N)

k
(N)
nN

EL

= e−ik
(N)
j (L−nN−1)A

(1)

k
(1)
1

· · ·A(N)

k
(N)
j−1

A
(N)

k
(N)
j

A
(N)

k
(N)
j+1

· · ·A(N)

k
(N)
nN

EL, (71)

where in (69), (69) and (71) we used the algebraic relations (67) with (68) and we

introduced S1 1
1 1(k

(1)
j , k

(1)
j ) = −1. From (69), (69) and (71) we obtain the Bethe equations

for our model:

eik
(1)
j L = (−)n1−1e−i

∑n2
q=1 k

(2)
q

n1∏

l=1

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − eik

(1)
j

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − eik

(1)
l

, (72)

eik
(α)
j (L−nα−1) = e−i

∑nα+1
q=1 k

(α+1)
q (α = 2, . . . , N − 1), (73)

eik
(N)
j (L−nN−1) = 1, (74)

where equations should be satisfied for all k
(α)
j (α = 1, . . . , N) with j = 1, . . . , nα. On the

other hand, the momentum of the eigenstate is given by inserting the ansatz (44) and (45)
into relations (46) and (47):

P =
n1∑

j=1

k
(1)
j +

n2∑

j=1

k
(2)
j + · · · +

nN∑

j=1

k
(N)
j =

2πl

L
(l = 0, 1, . . . , L − 1). (75)

where the spectral parameters satisfy the Bethe equation (72)–(74).
The Bethe equations (72)–(74) are more complicated than the case of the previous

section since the spectral parameters, and the eigenvalues of our model, depend on the
densities of impurities. We compare the Bethe equation solution (78) for N = 3 with
the eigenvalues obtained from direct diagonalization of the Hamiltonian (42) with L = 5,
n1 = 2, n2 = 1 and n3 = 1 (see appendix B). The model displays the full spectrum
of the ASEP and additional eigenvalues. The spectrum of the ASEP is obtained when∑nα

j=1 k
(α)
j = 0 for all α = 2, . . . , N . The stationary state belongs to this case and has

the eigenvalue with the largest real part εn1,n2 = 0. In order to obtain the second largest
real part of the eigenvalue, we can rewrite the Bethe equations in a more convenient way

by eliminating the spectral parameters k
(2)
j in equation (72). The first excited state is

obtained when we have
nα∑

j=1

k
(α)
j =

2π

(L − nN−1)(L − nN−2) · · · (L − nα−1)
(76)
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Figure 4. In this figure we display the logarithm of the real part of the energy
gap versus the logarithm of L for N = 3, 4 in the half-filling sector n1 = L/2.
The dynamical exponents z are 3.50 and 4.01(2), respectively.

for all α = 2, . . . , N (see appendix B for a detailed discussion for a small system). Hence,

by using (76) we can relate the sum over spectral parameters k
(2)
j for the first excited state

with roots of unity:

n2∑

q=1

k(2)
q =

2π

LN−1

N−1∏

l=1

(1 − ρl)
−1, (77)

where ρl = nl/L are the densities of particles of the kind l = 1, . . . , N . Finally,
inserting (77) into (72) we obtain the following Bethe equation:

eik
(1)
j L = (−)n1−1e−i(2π/LN−1)

∏N−1
l=1 (1−ρl)

−1
n1∏

l=1

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − eik

(1)
j

Γ1 0
0 1 + Γ0 1

1 0e
i(k

(1)
j +k

(1)
l ) − eik

(1)
l

. (78)

The Bethe equation (78) generalizes [22, 23] and (29) to the case of N − 1 kinds of
impurities. As in the case of one kind of impurities (N = 2), the phase factor on (78)
plays a fundamental role in the spectral properties of the model. The eigenvalue with the
second largest real part determines the relaxation time and the dynamical exponent z.
This eigenvalue is provided by selecting n1 fugacities from (78) with momentum P = 2π/L
in (75). We solve (78) numerically for the totally asymmetric exclusion process (N-
TASEPI), when Γ1 0

0 1 = 1 and Γ0 1
1 0 = 0 (or Γ1 0

0 1 = 0 and Γ0 1
1 0 = 1), in the half-filling sector

n1 = L/2 for both two (N = 3) and three (N = 4) kinds of impurities (see figure 4). As in
section 2, the errors displayed are computed from the linear regression for the logarithm
of the real part of the energy gap versus the logarithm of L = 80, 160, 200, 320 and 400.
For N = 3 we consider n2 = L/8 and n3 = L/8. In this case we found that the spectral
gap scales with L−7/2 instead of L−3/2 for the ASEP [6] and L−5/2 for the ASEPI [23]. On
the other hand, for N = 4 we choose n2 = L/8, n3 = L/8 and n4 = L/8, and we found
that the spectral gap scales with L−9/2. From these results, we can conjecture that for
general N = 2, 3, . . . our model will display a scaling exponent z = 3

2
+N −1. This scaling

law is a consequence of the dependence of the dynamic of impurities of kind N from the
dynamic of impurities of kinds α < N , since the impurities α only move when particles
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of kind α− 1 change position with them. As a consequence, the time for the fluctuations
to vanish on the densities of particles of kinds N − 1 acts as a timescale for the diffusion
of the impurities N (reflected in the L−3/2L−N+1 gap for the N-ASEPI).

Eigenstates. The stationary state is the eigenstate associated with the eigenvalue
εn1,n2 = 0, and with momentum P = 0. In this case, the Bethe equations (72)–(74)

have the unique solution ek
(α)
j = 1 for all α = 1, . . . , N and j = 1, . . . , nα, and the S

matrix reduces to the identity Sα1 α2
α1 α2

(k
(α1)
j , k

(α2)
l ) = 1. Consequently, as in section 2, at

the stationary state all configurations that satisfy the hard-core constraints imposed by
the definition of the model can occur with equal probabilities. Furthermore, each site is
occupied by a particle α with probability ρα = nα/L.

4. Conclusion

In the present work we formulate an exactly solvable asymmetrical diffusion model of
N = 1, 2, 3, . . . kinds of particles with impurities (N-ASEPI). In this model particles of
kind 1 can jump to neighboring sites if they are empty and particles of kind α = 2, 3, . . . , N
(called impurities) only exchange positions with other particles, satisfying a well-defined
dynamics. We solve this model with a periodic boundary condition through a new matrix
product ansatz [21, 24] and we analyze the spectral gap for some special cases. Our
N-ASEPI model displays the full spectrum of the ASEP [6] plus new levels. The first
excited state belongs to these new levels and has unusual scaling exponents. Although
the ASEP belongs to the KPZ universality class, characterized by the dynamical exponent
z = 3

2
[11], we conjecture that our model displays a scaling exponent 3

2
+ N − 1, where

N − 1 is the number of kinds of impurities. In order to check our conjecture, we solve
numerically the Bethe equation with N = 3 and N = 4 for the totally asymmetric
diffusion and we found that the gap for the first excited state scales as L−7/2 and L−9/2

in these cases. Furthermore, for N = 2 we generalize the model [23] to include quantum
spin chain Hamiltonians and we analyze the Bethe ansatz equation for the symmetric and
asymmetric diffusions. A quite interesting problem for the future concerns the formulation
of the model with open boundary conditions instead of periodic ones. In this case we
expect the critical behavior of the model will display the same scaling exponent 3

2
+N −1.
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Appendix A. Eigenvalues and Bethe roots for N = 2, n1 = 2, n2 = 1 and L = 6

In this appendix we list the full spectrum of the Hamiltonian (3) for the asymmetric
exclusion model with one kind of impurity for N = 2, n1 = 2, n2 = 1, L = 6 and
Γ1 0

0 1 = 0.75. We compared the eigenvalues obtained by direct diagonalization of the
Hamiltonian (3) with those given by the Bethe ansatz solution. For N = 2, n1 = 2,
n2 = 1, L = 6 and Γ1 0

0 1 = 0.75 the Bethe equations (32) reduce to

x6 = −e−i(2π/4)m 0.75 + 0.25xy − x

0.75 + 0.25xy − y
, (A.1)
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where m = 0–3 and x = eik
(1)
1 and y = eik

(1)
2 are the fugacities. Equation (A.1) can

be reduced to a simple polynomial equation by inserting the relation for the momentum
P = 2πl/6 (31):

xy = ei(2πl/6)+i(2π/4)m, (A.2)

where l = 0–5 and we have used (28). In table A.1 we display the full spectrum of the
Hamiltonian (3) and the associated Bethe roots x and y. The eigenvalue with the largest
real part is zero, it is provided by choosing m = 0 and P = 0 (l = 0) in (A.1) and (A.2).

In this case all spectral parameters are zero and we have eik
(1)
1 = eik

(1)
2 = eik

(2)
1 = 1. It

is also important to note that for m = 0 our model reproduces the full spectrum of
the ASEP. For m = 1–3 our model displays additional energy levels. In particular, the
eigenvalues with the second largest real part, which determine the relaxation time and the
dynamical exponent z, belong to these new levels. Actually, these eigenvalues are given
by a complex conjugated pair by choosing m = 1 and P = 2π/L = 2π/6 and by choosing
m = L − n1 − 1 = 3 and P = (L − 1)(2π/L) = 5(2π/6).

Appendix B. Eigenvalues and Bethe roots for N = 3, n1 = 2, n2 = 1, n3 = 1 and
L = 5

In this appendix we list the full spectrum of the Hamiltonian (42) for the asymmetric
exclusion model with one kind of impurities for N = 3, n1 = 2, n2 = 1, n3 = 1, L = 5
and Γ1 0

0 1 = 1. We compared the eigenvalues obtained by direct diagonalization of the
Hamiltonian (42) with those given by the Bethe ansatz solution. For N = 3, n1 = 2,
n2 = 1, n3 = 1, L = 5 and Γ1 0

0 1 = 1 the Bethe equations (72)–(74) reduce to

x5 = −e−ik(2) 1 − x

1 − y
, (B.1)

ei3k(2)

= e−ik(3)

, (B.2)

ei4k(3)

= 1, (B.3)

where x = eik
(1)
1 and y = eik

(1)
2 are the fugacities. Equation (B.1) can be reduced to a

simple polynomial equation by inserting the relation for the momentum P = 2πl/6 (31):

xy = ei(2πl/5)−i(2π/6)m−i(2π/3)m′
, (B.4)

where l = 0–5, m = 0–3 and m′ = 0–2 and we have used from (B.2) and (B.3) the
following relations:

k(2) = −2π

12
m +

2π

3
m′, (B.5)

k(3) =
2π

4
m. (B.6)

In tables B.1 and B.2 we display the full spectrum of the Hamiltonian (42) and the
associated Bethe roots x and y. The eigenvalue with the largest real part is zero, it is
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Table A.1. The eigenvalues for L = 6, n1 = 2 and n2 = 1.

Sector Energies Bethe roots

P = 0,
m = 0

0 1; 1
−1.381 9660 0.309 0170 ± 0.951 0565i
−3.618 0340 −0.809 0170 ± 0.587 7852i

P =
2π
6

,

m = 0

−0.507 4856 − 0.218 1393i 0.819 9801 − 0.079 6133i; 0.502 4902 + 1.104 9419i

−2.492 5144 + 0.218 1393i −0.765 5328 + 0.708 7925i; 0.212 2933 − 0.934 7130i

P = 2
2π
6

,

m = 0

−0.877 2838 − 0.597 4379i 0.575 5876 + 0.327 5559i; −0.009 3985 + 1.509 9420i

−1.356 2417 − 0.120 8056i 0.759 2145 − 0.074 9922i; −0.763 7957 + 1.065 2413i
−2.766 4745 + 0.718 2435i −0.972 8436 − 0.401 1708i; 0.125 5214 − 0.941 9611i

P = 3
2π
6

,

m = 0

−1.5 0.618 0340; −1.618 0340

−1.5 −1.618 0340; 0.618 0340

P = 4
2π
6

,

m = 0

−0.877 2838 + 0.597 4379i −0.009 3985 − 1.509 9420i; 0.575 5876 − 0.327 5559i

−1.356 2417 + 0.120 8056i 0.759 2145 + 0.074 9922i; −0.763 7957 − 1.065 2413i
−2.766 4745 − 0.718 2435i 0.125 5214 + 0.941 9611i; −0.972 8436 + 0.401 1708i

P = 5
2π
6

,

m = 0

−0.507 4856 + 0.218 1393i 0.819 9801 + 0.079 6133i; 0.502 4902 − 1.104 9419i

−2.492 5144 − 0.218 1393i 0.212 2933 + 0.934 7130i; −0.765 5328 − 0.708 7925i

P = 0,
m = 1

−0.655 7872 + 0.296 1339i 0.701 8547 − 0.095 9405i; 0.191 1910 − 1.398 6613i
−2.344 2128 − 0.296 1339i 0.448 9168 + 0.814 0546i; −0.941 9626 − 0.519 4527i

P =
2π
6

,

m = 1

−0.057 2751 + 0.205 9994i 0.837 3023 − 0.085 5293i; 1.083 9923 − 0.486 4275i

−1.382 8654 + 0.013 0776i 0.529 3573 + 0.804 9461i; 0.060 2956 − 1.036 2278i
−3.559 8595 − 0.219 0769i −0.622 6580 + 0.771 3741i; −0.941 1875 − 0.362 9724i

P = 2
2π
6

,

m = 1

−0.413 9462 − 0.115 0956i 0.688 4251 + 0.842 9321i; 0.859 1734 − 0.325 7069i

−2.586 0538 + 0.115 0956i −0.552 4868 + 0.857 0897i; −0.048 0098 − 0.979 4781i

P = 3
2π
6

,

m = 1

−0.497 7725 − 0.531 5017i 0.634 5797 + 0.296 3134i; 0.604 1134 + 1.293 7589

−1.383 5508 − 0.061 6583i 0.788 4227 − 0.347 2311i; −0.467 8531 + 1.062 3069i
−3.118 6767 + 0.593 1600i −1.021 9882 − 0.146 3166i; −0.137 2745 − 0.958 8315i

P = 4
2π
6

,

m = 1

−1.083 2361 − 0.299 9300i 0.495 3389 + 0.144 2693i; −1.340 6309 + 1.399 8737i

−1.916 7639 + 0.299 9300i −1.218 0653 + 0.072 0208i; 0.732 6938 − 0.367 1649i

P = 5
2π
6

,

m = 1

−1.210 3358 + 0.118 8691i 0.548 9836 − 0.064 1372i; −1.451 2935 − 1.080 3272i

−1.433 0978 + 0.664 6123i 0.642 5791 − 0.432 6605i; −0.566 8353 − 1.159 7751i
−2.356 5664 − 0.783 4814i −0.873 5004 + 0.643 3986i; 0.369 4030 + 0.844 5026i
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Table A.1. (Continued.)

Sector Energies Bethe roots

P = 0,
m = 2

−1.174 6854 0.471 2748; −2.121 9040
−1.912 6573 − 0.773 4344i 0.560 9520 + 0.669 2321i; −0.735 6374 + 0.877 6368i
−1.912 6573 + 0.773 4344i 0.560 9520 − 0.669 2321i; −0.735 6374 − 0.877 6368i

P =
2π
6

,

m = 2

−0.849 4232 + 0.332 7914i 0.569 2219 − 0.164 8546i; −0.403 8910 − 1.638 3922i

−2.150 5768 − 0.332 7914i 0.634 0571 + 0.621 2665i; −1.085 1023 − 0.302 6347i

P = 2
2π
6

,

m = 2

−0.225 7571 + 0.390 9776i 0.735 5889 − 0.213 1056i; 0.941 7640 − 0.904 4865i

−1.384 8207 + 0.030 9866i 0.698 5648 + 0.599 6111i; −0.200 5790 − 1.067 5545i
−3.389 4222 − 0.421 9643i −0.393 4528 + 0.899 0944i; −1.012 6551 − 0.112 9670i

P = 3
2π
6

,

m = 2

−0.381 9660 0.809 0170 + 0.587 7853i; 0.809 0170 − 0.587 7853i

−2.618 0340 −0.309 0170 + 0.951 0565i; −0.309 0170 + 0.951 0565i

P = 4
2π
6

,

m = 2

−0.225 7571 − 0.390 9776i 0.735 5889 + 0.213 1056i; 0.941 7640 + 0.904 4865i

−1.384 8207 − 0.030 9866i −0.200 5790 + 1.067 5545i; 0.698 5648 − 0.599 6111i
−3.389 4222 + 0.421 9643i −1.012 6551 + 0.112 9670i; −0.393 4528 − 0.899 0944i

P = 5
2π
6

,

m = 2

−0.849 4232 − 0.332 7914i 0.569 2219 + 0.164 8546i; −0.403 8910 + 1.638 3922i

−2.150 5768 + 0.332 7914i 0.634 0571 − 0.621 2665i; −1.085 1023 + 0.302 6347i

P = 0,
m = 3

−0.655 7872 − 0.296 1339i 0.701 8547 + 0.095 9405i; 0.191 1910 + 1.398 6613i
−2.344 2128 + 0.296 1339i 0.448 9168 − 0.814 0546i; −0.941 9626 + 0.519 4527i

P =
2π
6

,

m = 3

−1.210 3358 − 0.118 8691i 0.548 9836 + 0.064 1372i; −1.451 2935 + 1.080 3272i

−1.433 0978 − 0.664 6123i 0.642 5791 + 0.432 6605i; −0.566 8353 + 1.159 7751i
−2.356 5664 + 0.783 4814i −0.873 5004 − 0.643 3986i; 0.369 4030 − 0.844 5026i

P = 2
2π
6

,

m = 3

−1.083 2361 + 0.299 9300i 0.495 3389 − 0.144 2693i; −1.340 6309 − 1.399 8737i

−1.916 7639 − 0.299 9300i 0.732 6938 + 0.367 1649i; −1.218 0653 − 0.072 0208i

P = 3
2π
6

,

m = 3

−0.497 7725 + 0.531 5017i 0.634 5797 − 0.296 3134i; 0.604 1134 − 1.293 7589

−1.383 5508 + 0.061 6583i 0.788 4227 + 0.347 2311i; −0.467 8531 − 1.062 3069i
−3.118 6767 − 0.593 1600i −1.021 9882 + 0.146 3166i; −0.137 2745 + 0.958 8315i

P = 4
2π
6

,

m = 3

−0.413 9462 + 0.115 0956i 0.859 1734 + 0.325 7069i; 0.688 4251 − 0.842 9321i

−2.586 0538 − 0.115 0956i −0.048 0098 + 0.979 4781i; −0.552 4868 − 0.857 0897i

P = 5
2π
6

,

m = 3

−0.057 2751 − 0.205 9994i 0.837 3023 + 0.085 5293i; 1.083 9923 + 0.486 4275i

−1.382 8654 − 0.013 0776i 0.529 3573 − 0.804 9461i; 0.060 2956 + 1.036 2278i
−3.559 8595 + 0.219 0769i −0.622 6580 − 0.771 3741i; −0.941 1875 + 0.362 9724i
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Table B.1. The eigenvalues for L = 5, n1 = 2, n2 = 1 and n3 = 1.

Sector Energies Bethe roots

P = 0,
m = 0,
m′ = 0

0 1; 1

−2 i; −i

P =
2π
5

,
m = 0,
m′ = 0

−0.710 2901 + 0.326 8955i 0.704 4758 + 0.226 0418i; 0.004 9626 − 1.351 6126i

−3.098 7269 − 0.914 6808i −0.152 2713 + 0.922 7363i; −1.057 1671 − 0.160 4367i

P = 2
2π
5

,
m = 0,
m′ = 0

−1.211 3723 + 1.441 8449i −0.443 4074 − 1.195 4323i; 0.652 8893 − 0.434 5885i

−1.479 6107 − 0.490 7884i 0.649 8509 + 0.322 0402i; −1.359 3328 − 0.230 8612i

P = 3
2π
5

,
m = 0,
m′ = 0

−1.211 3723 − 1.441 8449i −0.443 4074 + 1.195 4323i; 0.652 8893 + 0.434 5885i

−1.479 6107 + 0.490 7884i 0.649 8509 − 0.322 0402i; −1.359 3328 + 0.230 8612i

P = 4
2π
5

,
m = 0,
m′ = 0

−0.710 2901 − 0.326 8955i 0.704 4758 − 0.226 0418i; 0.004 9626 + 1.351 6126i

−3.098 7269 + 0.914 6808i −0.152 2713 − 0.922 7363i; −1.057 1671 + 0.160 4367i

P = 0,
m = 0,
m′ = 1

−0.914 6286 + 0.474 0955i 0.680 5844 + 0.043 5103i; −0.812 6913 − 1.220 5172i

−2.585 3714 − 1.340 1209i 0.212 2293 + 0.863 4034i; −1.080 1224 + 0.313 6036i

P =
2π
5

,
m = 0,
m′ = 1

−0.151 5123 + 0.610 2038i 0.762 6883 − 0.041 5504i; 0.927 6613 − 0.923 8376i

−1.934 9423 − 0.203 4672i 0.356 2835 + 0.825 8711i; −0.463 9570 − 1.010 3645i

P = 2
2π
5

,
m = 0,
m′ = 1

−0.599 9763 − 0.116 4667i 0.594 8634 + 0.960 9114i; 0.731 4932 − 0.497 8679i

−3.378 1712 + 0.324 3784i −0.857 4914 + 0.556 0440i; −0.533 4672 − 0.820 2624i

P = 3
2π
5

,
m = 0,
m′ = 1

−0.581 2538 − 1.117 5571i 0.716 8460 + 0.213 9355i; 0.246 2898 + 1.313 8552i

−1.749 6157 + 0.374 4123i −0.966 7610 + 0.780 0852i; 0.568 2275 − 0.570 2092i

P = 4
2π
5

,
m = 0,
m′ = 1

−1.183 8852 − 0.530 4177i 0.668 9977 + 0.124 7276i; −1.356 9984 + 0.563 7791i

−1.920 6433 + 1.524 9396i −0.887 7912 − 0.797 7974i; 0.493 1159 − 0.677 3195i

P = 0,
m = 0,
m′ = 2

−0.914 6286 − 0.474 0955i 0.680 5844 − 0.043 5103i; −0.812 6913 + 1.220 5172i

−2.585 3714 + 1.340 1209i −1.080 1224 − 0.313 6036i; 0.212 2293 − 0.863 4033i
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Table B.1. (Continued.)

Sector Energies Bethe roots

P =
2π
5

,
m = 0,
m′ = 2

−1.183 8852 + 0.530 4177i 0.668 9977 − 0.124 7276i; −1.356 9984 − 0.563 7791i

−1.920 6432 − 1.524 9396i 0.493 1159 + 0.677 3194i; −0.887 7913 + 0.797 7974i

P = 2
2π
5

,
m = 0,
m′ = 2

−0.581 2538 + 1.117 5571i 0.716 8460 − 0.213 9355i; 0.246 2898 − 1.313 8552i

−1.749 6155 − 0.374 4122i 0.568 2275 + 0.570 2092i; −0.966 7610 − 0.780 0853i

P = 3
2π
5

,
m = 0,
m′ = 2

−0.599 9764 + 0.116 4667i 0.731 4931 + 0.497 8680i; 0.594 8633 − 0.960 9114i

−3.378 1713 − 0.324 3784i −0.533 4673 + 0.820 2623i; −0.857 4914 − 0.556 0439i

P = 4
2π
5

,
m = 0,
m′ = 2

−0.151 5123 − 0.610 2038i 0.762 6883 + 0.041 5504i; 0.927 6613 + 0.923 8376i

−1.934 9423 + 0.203 4672i −0.463 9570 + 1.010 3645i; 0.356 2835 − 0.825 8711i

P = 0,
m = 1,
m′ = 0

−0.673 0048 + 0.278 7791i 0.712 6887 + 0.281 1734i; 0.192 2387 − 1.290 9955i

−3.193 0207 − 0.778 7791i −0.248 8952 + 0.912 8580i; −1.022 0576 − 0.269 0613i

P =
2π
5

,
m = 1,
m′ = 0

−0.009 5876 − 0.156 7928i 0.854 2110 − 0.053 7788i; 1.125 3051 + 0.314 2423i

−1.995 8904 + 0.052 2644i −0.108 0056 + 1.020 8495i; 0.101 1590 − 0.968 8728i

P = 2
2π
5

,
m = 1,
m′ = 0

−0.753 5156 − 0.370 9970i 0.697 0108 − 0.176 0220i; −0.197 7531 + 1.376 8984i

−2.989 6292 + 1.040 1277i −1.081 1538 + 0.046 8434i; −0.056 7203 − 0.922 3284i

P = 3
2π
5

,
m = 1,
m′ = 0

−1.386 3511 − 1.487 0626i 0.624 2368 + 0.495 8318i; −0.579 9899 + 1.112 2610i

−1.405 7371 + 0.508 9149i 0.657 6010 − 0.268 0371i; −1.407 4815 + 0.044 8287i

P = 4
2π
5

,
m = 1,
m′ = 0

−1.041 3131 + 1.381 4181i 0.675 2325 − 0.375 0635i; −0.290 1255 − 1.261 7289i

−1.551 9502 − 0.467 8727i 0.638 3338 + 0.379 6151i; −1.285 8348 − 0.399 5129i

P = 0,
m = 1,
m′ = 1

−1.257 0659 − 0.529 0855i 0.666 3053 + 0.169 8506i; −1.409 2394 + 0.359 2349i

−1.742 9341 + 1.529 0855i −0.801 8074 − 0.910 4995i; 0.544 7415 − 0.618 5860i

P =
2π
5

,
m = 1,
m′ = 1

−0.856 1485 + 0.445 0459i 0.685 0761 + 0.085 7982i; −0.615 2818 − 1.311 1923i

−2.731 6367 − 1.254 0628i 0.126 6103 + 0.892 1177i; −1.093 2067 + 0.191 2369i
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Table B.1. (Continued.)

Sector Energies Bethe roots

P = 2
2π
5

,
m = 1,
m′ = 1

−0.085 7230 + 0.463 5491i 0.781 8977 − 0.004 7923i; 1.039 2523 − 0.745 3724i

−1.963 2204 − 0.154 5321i 0.279 9188 + 0.880 5384i; −0.340 9951 − 1.027 1761i

P = 3
2π
5

,
m = 1,
m′ = 1

−0.617 5870 − 0.172 9136i 0.491 8745 + 1.087 3199i; 0.728 1574 − 0.414 6480i

−3.333 4697 + 0.481 9306i −0.921 4012 + 0.467 7083i; −0.440 6702 − 0.861 6120i

P = 4
2π
5

,
m = 1,
m′ = 1

−0.724 2529 − 1.218 3559i 0.705 8518 + 0.264 3779i; 0.058 6461 + 1.325 4225i

−1.687 9620 + 0.409 3389i −1.084 4991 + 0.674 7096i; 0.598 7696 − 0.504 4365i

P = 0,
m = 1,
m′ = 2

−0.234 9507 − 0.750 2975i 0.748 3302 + 0.080 8009i; 0.783 9712 + 1.072 6279i

−1.899 0239 + 0.250 2975i −0.589 6583 + 0.978 6229i; 0.544 7415 − 0.618 5860i

P =
2π
5

,
m = 1,
m′ = 2

−0.977 2050 − 0.497 3541i 0.676 9329 − 0.002 0008i; −0.991 7103 + 1.094 8804i

−2.429 5315 + 1.410 8995i −1.053 5823 − 0.436 6956i; 0.292 4923 − 0.826 5846i

P = 2
2π
5

,
m = 1,
m′ = 2

−1.112 4249 + 0.525 6078i 0.671 4067 − 0.081 4666i; −1.268 4629 − 0.759 7094i

−2.095 4867 − 1.503 7553i 0.433 5917 + 0.732 4188i; −0.957 9927 + 0.680 1679i

P = 3
2π
5

,
m = 1,
m′ = 2

−0.451 0354 + 1.005 2159i 0.726 7522 − 0.166 7177i; 0.434 8678 − 1.268 6880i

−1.805 8199 − 0.336 0853i 0.529 1823 + 0.636 6906i; −0.843 1292 − 0.864 9373i

P = 4
2π
5

,
m = 1,
m′ = 2

−0.589 3425 + 0.058 5923i 0.726 6229 + 0.595 1587i; 0.665 3905 − 0.831 1391i

−3.405 1795 − 0.163 1208i −0.622 6556 + 0.768 6536i; −0.785 7321 − 0.636 0565i

provided by choosing m = 0, m′ = 0 and P = 0 (l = 0) in (B.1), (B.4) and (B.5). In

this case all spectral parameters are zero and we have eik
(1)
1 = eik

(1)
2 = eik(2)

= eik(3)
= 1.

As in the case N = 2, it is important to note that for m = m′ = 0 our model reproduces
the full spectrum of the ASEP. If m or m′ are not zero our model displays additional
energy levels. In particular, the eigenvalues with the second largest real part, which
determine the relaxation time and the dynamical exponent z, belong to these new levels.
Actually, these eigenvalues are given by a complex conjugated pair by choosing m = 1,
m′ = 0 and P = 2π/L = 2π/5 and by choosing m = L − n2 − 1 = 3, m′ = 1 and
P = (L − 1)(2π/L) = 4(2π/5).
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Table B.2. The eigenvalues for L = 5, n1 = 2, n2 = 1 and n3 = 1.

Sector Energies Bethe roots

P = 0,
m = 2,
m′ = 0

−0.878 2556 + 1.306 6224i 0.692 4404 − 0.318 1480i; −0.121 7444 − 1.306 6224i

−1.621 7444 − 0.440 5970i 0.621 7444 + 0.440 5970i; −1.192 4404 − 0.547 8775i

P =
2π
5

,
m = 2,
m′ = 0

−0.642 0067 + 0.227 2404i 0.721 0291 + 0.343 2755i; 0.356 5184 − 1.200 4077i

−3.271 5388 − 0.633 9770i −0.345 4212 + 0.892 5020i; −0.976 5410 − 0.371 7780i

P = 2
2π
5

,
m = 2,
m′ = 0

−0.038 2564 − 0.311 8707i 0.809 4973 − 0.028 4654i; 1.109 4939 + 0.541 4704i

−1.983 5959 + 0.103 9590i −0.221 9898 + 1.030 2847i; 0.194 6917 − 0.928 6414i

P = 3
2π
5

,
m = 2,
m′ = 0

−0.802 2829 − 0.410 5415i 0.690 5308 − 0.129 6573i; −0.407 4337 + 1.363 7265i

−2.866 8478 + 1.153 6863i −1.093 3657 − 0.070 7271i; 0.036 6096 − 0.911 9650i

P = 4
2π
5

,
m = 2,
m′ = 0

−1.331 2716 + 0.521 8134i 0.662 7602 − 0.217 4407i; −1.425 3665 − 0.153 9334i

−1.564 1999 − 1.516 3354i 0.588 3753 + 0.557 6163i; −0.699 3882 + 1.016 1915i

P = 0,
m = 2,
m′ = 1

−0.878 2556 − 1.306 6224i 0.692 4404 + 0.318 1480i; −0.121 7444 + 1.306 6224i

−1.621 7444 + 0.440 5970i 0.621 7444 − 0.440 5970i; −1.192 4404 + 0.547 8775i

P =
2π
5

,
m = 2,
m′ = 1

−1.331 2716 − 0.521 8134i 0.662 7602 + 0.217 4407i; −1.425 3665 + 0.153 9334i

−1.564 1999 + 1.516 3354i −0.699 3882 − 1.016 1915i; 0.588 3753 − 0.557 6162i

P = 2
2π
5

,
m = 2,
m′ = 1

−0.802 2829 + 0.410 5415i 0.690 5308 + 0.129 6573i; −0.407 4337 − 1.363 7265i

−2.866 8476 − 1.153 6863i 0.036 6097 + 0.911 9649i; −1.093 3658 + 0.070 7270i

P = 3
2π
5

,
m = 2,
m′ = 1

−0.038 2564 + 0.311 8707i 0.809 4973 + 0.028 4654i; 1.109 4939 − 0.541 4704i

−1.983 5961 − 0.103 9590i 0.194 6916 + 0.928 6414i; −0.221 9899 − 1.030 2847i

P = 4
2π
5

,
m = 2,
m′ = 1

−0.642 007 − 0.227 2403i 0.356 5184 + 1.200 4077i; 0.721 0291 − 0.343 2755i

−3.271 5388 + 0.633 9770i −0.976 5410 + 0.371 7780i; −0.345 4213 − 0.892 5020i

P = 0,
m = 2,
m′ = 2

−0.585 7864 0.707 1068 + 0.707 1068i; 0.707 1068 − 0.707 1068i

−3.4142136 −0.707 1068 + 0.707 1068i; −0.707 1068 − 0.707 1068i
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Table B.2. (Continued.)

Sector Energies Bethe roots

P =
2π
5

,
m = 2,
m′ = 2

−0.335 1580 − 0.882 4028i 0.736 8286 + 0.122 4476i; 0.616 8508 + 1.188 2338i

−1.855 8250 + 0.294 6176i −0.716 6508 + 0.930 6243i; 0.481 0054 − 0.702 4638i

P = 2
2π
5

,
m = 2,
m′ = 2

−1.043 3294 − 0.514 5741i 0.673 9498 + 0.039 4376i; −1.145 4536 + 0.939 1785i

−2.265 6875 + 1.465 6306i −1.013 0569 − 0.559 3159i; 0.366 5267 − 0.782 5715i

P = 3
2π
5

,
m = 2,
m′ = 2

−1.043 3294 + 0.514 5741i 0.673 9498 − 0.039 4376i; −1.145 4536 − 0.939 1785i

−2.265 6875 − 1.465 6306i −1.013 0569 + 0.559 3159i; 0.366 5267 + 0.782 5715i

P = 4
2π
5

,
m = 2,
m′ = 2

−0.335 1580 + 0.882 4028i 0.736 8286 − 0.122 4476i; 0.616 8508 − 1.188 2338i

−1.855 8250 − 0.294 6176i 0.481 0054 + 0.702 4638i; −0.716 6509 − 0.930 6242i

P = 0,
m = 3,
m′ = 0

−1.257 0659 + 0.529 0855i 0.666 3053 − 0.169 8506i; −1.409 2394 − 0.359 2349i

−1.742 9341 − 1.529 0855i 0.544 7415 + 0.618 5860i; −0.801 8074 + 0.910 4995i

P =
2π
5

,
m = 3,
m′ = 0

−0.724 2529 + 1.218 3560i 0.705 8518 − 0.264 3779i; 0.058 6461 − 1.325 4224i

−1.687 9619 − 0.409 3389i 0.598 7696 + 0.504 4365i; −1.084 4991 − 0.674 7097i

P = 2
2π
5

,
m = 3,
m′ = 0

−0.617 5868 + 0.172 9136i 0.728 1573 + 0.414 6480i; 0.491 8745 − 1.087 3199i

−3.333 4696 − 0.481 9305i −0.440 6701 + 0.861 6120i; −0.921 4011 − 0.467 7083i

P = 3
2π
5

,
m = 3,
m′ = 0

−0.085 7230 − 0.463 5491i 0.781 8977 + 0.004 7922i; 1.039 2523 + 0.745 3723i

−1.963 2206 + 0.154 5321i −0.340 9952 + 1.027 1760i; 0.279 9187 − 0.880 5385i

P = 4
2π
5

,
m = 3,
m′ = 0

−0.856 1485 − 0.445 0459i 0.685 0761 − 0.085 7982i; −0.615 2818 + 1.311 1923i

−2.7316368 + 1.254 0628i −1.093 2067 − 0.191 2369i; 0.126 6102 − 0.892 1177i

P = 0,
m = 3,
m′ = 1

−0.673 0048 − 0.278 7791i 0.712 6887 − 0.281 1734i; 0.192 2387 + 1.290 9955i

−3.193 0206 + 0.778 7790i −1.022 0576 + 0.269 0613i; −0.248 8952 − 0.912 8580i

P =
2π
5

,
m = 3,
m′ = 1

1.041 3131 − 1.381 4181i 0.675 2325 + 0.375 0635i; −0.290 1255 + 1.261 7289i

−1.551 9502 + 0.467 8727i −1.285 8348 + 0.399 5130i; 0.638 3338 − 0.379 6150i
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Table B.2. (Continued.)

Sector Energies Bethe roots

P = 2
2π
5

,
m = 3,
m′ = 1

−1.405 7371 − 0.508 9149i 0.657 6010 + 0.268 0371i; −1.407 4815 − 0.044 8287i

−1.386 3511 + 1.487 0625i −0.579 9900 − 1.112 2609i; 0.624 2368 − 0.495 8318i

P = 3
2π
5

,
m = 3,
m′ = 1

−0.753 5156 + 0.370 9970i 0.697 0108 + 0.176 0220i; −0.197 7531 − 1.376 8984i

−2.989 6293 − 1.040 1277i −0.056 7204 + 0.922 3285i; −1.081 1538 − 0.046 8433i

P = 4
2π
5

,
m = 3,
m′ = 1

−0.009 5876 + 0.156 7928i 0.854 2110 + 0.053 7788i; 1.125 3051 − 0.314 2423i

−1.995 8905 − 0.052 2644i 0.101 1589 + 0.968 8728i; −0.108 0056 − 1.020 8495i

P = 0,
m = 3,
m′ = 2

−0.234 9507 + 0.750 2975i 0.748 3302 − 0.080 8009i; 0.783 9712 − 1.072 6279i

−1.899 0239 − 0.250 2976i 0.423 3823 + 0.766 0263i; −0.589 6583 − 0.978 6229i

P =
2π
5

,
m = 3,
m′ = 2

−0.589 3423 − 0.058 5923i 0.665 3905 + 0.831 1391i; 0.726 6229 − 0.595 1587i

−3.405 1794 + 0.163 1208i −0.785 7321 + 0.636 0565i; −0.622 6555 − 0.768 6536i

P = 2
2π
5

,
m = 3,
m′ = 2

−0.451 0354 − 1.005 2159i 0.726 7522 + 0.166 7177i; 0.434 8678 + 1.268 6880i

−1.805 8198 + 0.336 0852i 0.529 1824 − 0.636 6905i; −0.843 1291 + 0.864 9374i

P = 3
2π
5

,
m = 3,
m′ = 2

−1.112 4249 − 0.525 6078i 0.671 4067 + 0.081 4665i; −1.268 4629 + 0.759 7094i

−2.095 4868 + 1.503 7554i −0.957 9926 − 0.680 1680i; 0.433 5916 − 0.732 4189i

P = 4
2π
5

,
m = 3,
m′ = 2

−0.977 2050 + 0.497 3541i 0.676 9329 + 0.002 0008i; −0.991 7102 − 1.094 8804i

−2.429 5316 − 1.410 8996i 0.292 4923 + 0.826 5847i; −1.053 5823 + 0.436 6957i
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Ferrari P A, Kipnis C and Saada E, 1991 Ann. Probab. 19 226
Ferrari P A, 1992 Prob. Theory Relat. Fields 91 81

[14] Mallick K, Mallick S and Rajewsky N, 1999 J. Phys. A: Math. Gen. 32 48
[15] Sutherland B, 1975 Phys. Rev. B 20 3795
[16] Schlottmann P, 1987 Phys. Rev. B 36 5177
[17] Perk J H H and Schultz C L, 1981 Phys. Lett. A 84 407
[18] Essler F H L, Korepin V E and Schoutens K, 1992 Phys. Rev. Lett. 68 2960

Essler F H L, Korepin V E and Schoutens K, 1993 Phys. Rev. Lett. 70 73
[19] Lieb E H and Wu F Y, 1968 Phys. Rev. Lett. 20 1445
[20] Alcaraz F C and Bariev R Z, 1999 J. Phys. A: Math. Gen. 32 L483
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