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INTRODUCTION

Exposed sand beaches can be classified into 6 cate-
gories according to sediment characteristics and wave
energy, varying from reflective, with coarse sediment
and almost no surf-zone, to dissipative shores, which
have fine sediment and a large surf-zone (Short &
Wright 1983). Another common characteristic of dissi-
pative beaches is the presence of surf-zone diatoms.
Around the world, only 6 diatom species (Aulacodiscus

kitonii Arnott, A. petersi Ehrenberg, Anaulus australis
Drebes et Schulz, Asterionellopsis glacialis [Castra-
cane] Round, Asterionella socialis Lewin et Norris and
Attheya armatus [West] Crawford) inhabit this ecosys-
tem and may reach extremely high biomass (>1 mg
chl a l–1) and primary production rates (500 to 2000 g
C m–3 yr–1), supplying most of the organic matter
demanded by the zooplankton, benthos and nekton
present in these nearshore environments (Brown &
McLachlan 1990). Surf-zone diatom patch-formation
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the surf-zone diatom production may fuel metazoan secondary production in the adjacent nearshore
and coastal environment.
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was previously considered to be a blooming phenome-
non, though it is now recognized that a high concen-
tration of surf-zone diatoms results from shoreward
movement of re-suspended cells (Talbot et al. 1990).

Studies carried out along the South African coast,
where the surf-zone diatom Anaulus australis is the
main primary producer (Brown & McLachlan 1990),
indicate that dissipative beaches are self-sustained
ecosystems. Although a significant part (up to 25%) of
the primary production in these beaches is directly
consumed by zooplankton and benthic filter-feeders,
some studies pointed out the possibility that most of the
carbon fixed by the surf-zone diatom is in the dissolved
form, and flows through the microbial food web
(McLachlan & Bate 1985, Heymans & McLachlan
1996). 

Cassino Beach in southern Brazil (32° 13’ S,
52° 15’ W) shows intermediate to dissipative features
throughout the year. Water temperature oscillates
between 10 and 26°C, and salinity varies from 17 to 35.
Nitrate + nitrite (0.2 to 9.7 µM), phosphate (0.1 to
3.6 µM) and silicate (3.5 to 66.1 µM) are normally pres-
ent at low concentrations, except following major rain-
fall events, when enhanced freshwater outflow from
the Patos Lagoon enriches the coastal region (Ode-
brecht et al. 1995, Rörig & Gacia 2003). The surf-zone
diatom Asterionellopsis glacialis frequently reaches a
very high abundance in the water column (108 to 109

cells l–1), generating chl a values and primary produc-
tion rates as high as 1647 µg l–1 and 6.0 mg C l–1 h–1,
respectively (Odebrecht et al. 1995, Reynaldi 2000,
Rörig & Garcia 2003). A high concentration of A.
glacialis at Cassino Beach is associated with the mete-
orological regime. The passage of atmospheric fronts
from the Antarctic over southern Brazil results in
onshore winds that generate high wave energy (Ode-
brecht et al. 1995). The action of the waves removes
cells from the beach sediment, while the shoreward
wind concentrates them in the surf-zone, forming
brown patches of algae (Odebrecht et al. 1995, Rörig &
Garcia 2003). A. glacialis provides up to 70% of the
particulate organic carbon to the shore and represents
the most important food item for the highly productive
benthic and nektonic fauna of Cassino Beach and the
nearshore environment (Garcia & Gianuca 1997). 

Total (particulate + dissolved) primary production
during Asterionellopsis glacialis patch formation at
Cassino Beach varies between 0.8 and 6.4 mg C l–1 h–1,
and as much as 68% of this is in the dissolved form
(Reynaldi 2000). Such high production rates of particu-
late and dissolved organic matter (DOM) should favor
the development of large bacterial biomass. However,
during a year-long study carried out at this beach, we
repeatedly observed a drastic reduction of bacterial
abundance soon after the appearance of A. glacialis

patches. On average, the abundance of bacteria at
Cassino Beach was an order of magnitude lower than
the nearby Patos Lagoon estuarine water (Abreu et al.
1992) and less than that found in the adjacent coastal
region (Abreu 1997). Bacterial abundance at Cassino
Beach is also much lower than that reported for lim-
netic and marine waters at comparable chl a levels
(Cole et al. 1988, Biddanda et al. 2001). These observa-
tions indicate a strong decoupling between diatom
production and bacterial growth. Moreover, A.
glacialis is known to produce an antibiotic with an
antimitotic property (Aubert et al. 1970). These facts
led us to test the hypothesis of whether the surf-zone
diatom inhibits bacterial growth in this ecosystem.
Therefore, we have examined the dynamics of the
surf-zone diatom A. glacialis and heterotrophic bacte-
rioplankton in the field, as well as in controlled labora-
tory experiments.

MATERIALS AND METHODS

This study was conducted in 3 phases. In the first
phase (field monitoring), water was collected at about
weekly intervals at a fixed station at Cassino Beach,
southern Brazil (Fig. 1), between June 1992 and
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Fig. 1. Cassino beach, southern Brazil (32° 13’ S, 52° 15’ W). 
Encircled cross marks sampling station
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August 1993. Various abiotic factors (temperature,
salinity and dissolved inorganic nutrients), as well as
chl a concentration and Asterionellopsis glacialis
abundance, were measured during this period (Rörig
1997). During this phase, A. glacialis was observed in
high concentration 11 times, when water was sampled
inside and outside (at least 10 m from the edge) the
diatom patches. Daily samples were carried out after
highest abundance of A. glacialis between 3 and 9
September 1993 and from 12 to 16 February 1996. 

For Asterionellopsis glacialis and bacterial counts,
small water volumes (100 to 200 ml) were fixed with
neutral Lugol solution (Throndsen 1978) and stored in
amber glass bottles. In the laboratory, bacterial abun-
dance, differentiated in free and attached forms, was
quantified using epifluorescence microscopy. Before
filtration, samples were decolorized with few drops
of a 3% w/v sodium thiosulphate solution (Nishino
1986). A 1 ml sub-sample (duplicate) was concen-
trated onto black polycarbonate membrane filter
(Nuclepore; 0.2 µm pore size), and stained with 0.1%
w/v Acridine Orange (Hobbie et al. 1977). Microor-
ganisms were enumerated in 30 fields and chosen at
random, using an epifluorescence microscope (Zeiss)
under blue light excitation. The number of A.
glacialis cells was also determined in the same sam-
ples. Cells were counted on the bottom of settling
chambers using an inverted Nikon microscope,
equipped with phase contrast, at 200 × or 400 × final
magnification (Utermöhl 1958).

Water temperature (±0.1°C) and salinity (±0.5) were
surveyed in situ using a Yellowspring thermo-
salinometer (Model 33 SCT). Chl a was measured after
concentrating 50 to 100 ml aliquots onto Whatman
GF/F glass fiber filters. This pigment was extracted in
the dark at –12°C using 90% v/v acetone, and its
concentration determined fluorometrically, using a
calibrated Turner 111 fluorometer (Strickland & Par-
sons 1972). Ammonium, nitrate + nitrite and phosphate
concentrations were determined according to Strick-
land & Parsons (1972). Chl a and dissolved inorganic
nutrients were measured at least in duplicate. The
parametric t-test was employed to determine statistical
differences between samples inside and outside the
diatom patches (p < 0.05) (Sokal & Rohlf 1969).

In the second phase of the study (seawater growth
experiments), we carried out laboratory experiments
with water from Cassino Beach. After the accumula-
tion of Asterionellopsis glacialis at Cassino Beach
(maximum of 3.66 × 108 cells l–1) on 1 July 1997, surface
water was sampled every 3 d for 3 wk. At t = 0 (1 July;
maximum abundance) and t = 14 (15 July; low abun-
dance), beach water was filtered through a Whatman
GF/F fiber filter (0.75 µm pore size) and Nuclepore
polycarbonate membrane filter (0.2 µm pore size). A

total of 100 ml filtered water microcosms (duplicate)
were inoculated with unfiltered beach water (10% v/v)
collected on the same day. The increase in bacterial
abundance was followed daily for 1 wk. Such seawater
growth experiments give an idea of the potential
growth rate of bacteria under reduced grazing pres-
sure (Ammerman et al. 1984)

In the third phase of the study, culture growth exper-
iments were conducted with non-axenic batch cultures
of Asterionellopsis glacialis. A. glacialis cells were
isolated from Cassino Beach waters and grown in
F2 medium (Guillard & Ryther 1962) under 100 µE m–2

light condition in a 12:12 h light:dark cycle. Cultures
were filtered (Whatman GF/F and Nuclepore 0.2 µm)
after 7 (log phase) and 14 d (death phase), and the
filtrate inoculated with unfiltered beach water (10%
v/v) collected during a non-bloom period. Bacteria and
A. glacialis abundance in the culture growth experi-
ments (Ammerman et al. 1984) were determined as
described above. 

RESULTS

During the year-long study, water temperature var-
ied between 10 and 26°C, with minimum values during
austral winter (June, July and August) and maximum
during spring–summer. Salinity (17 to 35) followed a
similar trend, mostly controlled by the amount of rain
in the Patos Lagoon drainage basin. Ammonium con-
centration varied between non detectable values and
2.7 µM; nitrite + nitrate varied from 0.2 to 9.7 µM,
while phosphate varied between 0.1 and 3.6 µM. Chl a
ranged between 0.95 and 352.2 µg l–1 (Fig. 2). Highest
chl a values (~300 µg l–1) resulted from the accumula-
tion of Asterionellopsis glacialis at the beach (maxi-
mum of 1.3 × 108 cells l–1). During the year, bacterial
abundance ranged from 0.3 × 105 to 0.7 × 106 cells ml–1,
with highest values occurring during austral summer
(Fig. 2). Bacterial abundance for samples collected in-
and outside the A. glacialis patches showed no statisti-
cal differences (Table 1). However, the abundance of
bacteria in samples collected at daily intervals
increased, especially in the case of the attached bacte-
ria, 4 to 5 d after A. glacialis reached its highest
concentration (16.46 × 106 cells l–1 on 3 September 1993
and 2.18 × 108 cells l–1 on 12 February 1996)
(Fig. 3A,B).

In July 1997, bacterial abundance at Cassino Beach
did not show any significant increase in the first 3 d
after the decrease in number of Asterionellopsis
glacialis. However, after this initial period, bacterial
abundance increased steadily to a maximum of 1.9 ×
106 cells ml–1 (Fig. 4A). In the laboratory experiments
with Cassino Beach filtered water collected during A.
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glacialis maximum abundance (Day 1, Fig. 4A), it was
shown that the bacterial lag-phase extended to 4 d
(Fig. 4B). On the other hand, in the experiment with fil-
tered water collected when A. glacialis was of a low
abundance following the collapse of the bloom
(Day 14, Fig. 4A), the initial lag in bacterial growth
prevailed only for 1 d (Fig. 4C). During both experi-
ments there was no record of flagellates or ciliates.

In Asterionellopsis glacialis batch cultures, bacterial
abundance increased steadily for 2 wk. However, bac-
terial growth rate in A. glacialis culture water was

notably higher after the 7th day, when the algae
started to die (Fig. 5A). Bacteria growing in experi-
ments with A. glacialis batch-culture filtrate collected
during the growth phase (Day 7, Fig. 5A) had a growth
lag-phase of 1 full day (Fig. 5B). However, bacteria
growing in experiments with filtrate from the diatom
death phase (Day 14, Fig. 5A) were characterized by
the absence of any discernible bacterial lag phase
(Fig. 5C). As in the previous experiment, we found no
bacterial predators (flagellates or ciliates) during rou-
tine bacterial counts.
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Fig. 2. Chl a (µg l–1) and heterotrophic bacterial abundance (105 cells ml–1) at Cassino Beach between June 1992 and August 1993

Date Free bacteria Attached bacteria 
(dd/mm/yy) Inside patch Outside patch Inside patch Outside patch

(×105 cells ml–1) (×105 cells ml–1) (×105 cells ml–1) (×105 cells ml–1)

27/08/92 0.53 0.49 ~0 ~0
03/09/92 1.49 1.13 ~0 ~0
26/09/92 0.32 0.32 0.04 ~0
22/10/92 0.99 1.21 ~0 0.74
29/10/92 0.46 1.42 0.60 0.56
10/11/93 1.43 0.71 0.32 0.11
19/11/92 0.21 0.14 0.14 0.46
07/04/93 0.28 0.53 2.53 0.71
28/05/93 0.93 0.28 ~0 1.81
01/07/93 1.74 0.42 ~0 0.53
03/09/93 ~0 0.17 0.32 0.21

Mean 0.76 0.62 0.36 0.47
SD 0.59 0.44 0.75 0.53
t-test p = 0.46 p = 0.69

ns ns

Table 1. Free and attached bacteria abundance in- and outside the Asterionellopsis glacialis patches. Mean values, SD and 
t-test results are shown. ns: not significant
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DISCUSSION

Despite phenomenal developments in aquatic micro-
bial ecology during the last decades, few studies have
been conducted on the surf-zone, probably due to the
difficulties of sampling these highly dynamic environ-
ments. The first description of the functioning of the
microbial food web in dissipative beaches was made
by scientists in South Africa. Preliminary estimates
based on the surf-zone diatom Anaulus australis and
microbial biomass, production and turnover rates indi-
cated that the microbial food web could consume ca.
50% of surf-zone primary production (McLachlan &
Bate 1985, Brown & McLachlan 1990). Later, an
input–output analysis confirmed the idea that the
microbial food web is the major trophic assemblage in
the high-energy surf-zone ecosystem (Heymans &
McLachlan 1996). The scenario in which heterotrophic
bacteria are major conduits for surf-zone diatom car-
bon most likely stems from the fact that a large fraction
(up to half) of the surf-zone diatom primary production
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Fig. 3. Free and attached bacterial (105 cells ml–1) and Asteri-
onellopsis glacialis abundance between (A) 3 and 9 Septem-
ber 1993 and (B) 12 and 16 February 1996, following peaks of 

this surf-zone diatom abundance

A)

B)

Fig. 4. (A) Asterionellopsis glacialis and heterotrophic bacter-
ial abundance at Cassino Beach between 1 and 22 July 1997.
Arrows indicate time of water sampling for laboratory experi-
ments; (B) bacterial abundance (duplicate) in filtered beach
water (seawater growth experiments) collected during A.
glacialis maximum abundance (1 July 1997; t = 0); (C) bacter-
ial abundance (duplicate) in filtered beach water (seawater
growth experiments) collected when A. glacialis abundance
reached lowest levels (15 July 1997; t = 14). Filled and unfilled
circles in (B) and (C) represent bacterial abundance from

duplicate microcosms

A)

B)

C)
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occurs in the dissolved form (Campbell et al. 1985,
Brown & McLachlan 1990, Reynaldi 2000).

It is possible that the high-energy and -light environ-
ment of the surf-zone favors elevated rates of extra cel-
lular DOC production of surf-zone diatoms. Talbot &
Bate (1988) suggested that mucus production would be
a common feature of all surf-zone diatoms. Cell coating
with different adhesive characteristics would allow the
diatoms to switch between water column and epiben-
thic habitats. During the morning these diatoms would
adhere to air bubbles and foam, accumulating at the
surf-zone. On the other hand, more ‘sticky’ mucus pro-
duced in the afternoon would facilitate the attachment
of sand particles to the cells, increasing their density
and forcing their sedimentation during this period of
the day. After sedimentation, part of the new diatom
biomass would be transferred, by rip currents, to sedi-
ment beyond the surf-zone. Increasing wave energy
would resuspend the diatoms from the epibenthic
habitat, giving rise to a new cycle of floating and sedi-
mentation of the cells (Talbot & Bate 1988, Talbot et al.
1990, Odebrecht et al. 1995, Rörig & Garcia 2003).

Primary production measurements conducted at
Cassino Beach during Asterionellopsis glacialis
patches showed that the production of DOM is high
(0.03 to 3.44 mg C l–1 h–1) and may reach 68% of total
(particulate + dissolved) primary production (Reynaldi
2000). Besides this, the levels of total DOC in the
waters of Cassino Beach during conditions of A.
glacialis patches were extremely high (4 to 7 mg C l–1;
Reynaldi 2000) comparable to those found in highly
eutrophic environments (Biddanda et al. 2001). 

Based on the assumption that bacteria are the main
DOC consumers in any aquatic ecosystem, and consid-
ering the fact that a large fraction of surf-zone diatom
primary production is in dissolved form, we should
expect a significant increase of bacterial biomass at
least in the first hours, or days, after the peak of Aster-
ionellopsis glacialis biomass. However, in our study
several lines of evidence indicate that bacterial growth
at Cassino Beach is not stimulated any further by the
large amount of DOC produced by A. glacialis. First,
during the yearlong study, bacterial abundance was
relatively low, less than that found at the continuous
coastal shelf zone (Abreu 1997) and at least 1 order of
magnitude lower than that found in the nearby Patos
Lagoon estuary (Abreu et al. 1992). It is also notable
that the abundance of heterotrophic bacteria in
Cassino Beach was several folds lower than those
found in freshwater and marine environments at com-
parable levels of primary production (Cole et al. 1988,
Biddanda et al. 2001). Moreover, by the time that A.
glacialis patches appeared, bacterial number was close
to zero (Fig. 2) and there was no significant difference
(t-test p > 0.05; Table 1) between the abundance of
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Fig. 5. (A) Asterionellopsis glacialis and heterotrophic bacter-
ial abundance in A. glacialis batch cultures. Arrows indicate
times of water sampling for laboratory experiments; (B) bacte-
rial abundance (duplicate) in filtered culture media (culture
growth experiments) collected during diatom log-phase (t =
7); (C) bacterial abundance (duplicate) in filtered media (cul-
ture growth experiments) collected during diatom death
phase (t = 14). Filled and unfilled circles in (B) and (C) rep-

resent bacterial abundance from duplicate microcosms

A)

B)

C)
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bacteria outside and inside the diatom patches, where
DOC input is supposed to be high. 

Second, following the bacterial abundance variation
at the beach on a daily basis, it was observed that
bacteria take 3 to 4 d to increase in number after the
maximum of Asterionellopsis glacialis abundance
(Fig. 3). A similar ‘lag’ pattern was observed in the bac-
terial growth experiments at the laboratory, either with
the beach water containing a surf-zone diatom bloom
(Fig. 4), or A. glacialis batch-culture water (Fig. 5).
These series of observations suggested that there was
a strong decoupling between heterotrophic bacterial
activity and surf-zone diatom production in the
Cassino Beach environment. We envisage at least 5
possible reasons for this decoupling, which are:
(1) viral infection, (2) bacterial grazing, (3) DOC
quality, (4) nutrient competition and (5) antibiotic
production.

Regarding the virus action, some studies have
demonstrated that bacterial infection by viruses can
highly control bacterial production in aquatic environ-
ments, influencing biogeochemical and ecological pro-
cesses in the water (Bratbak et al. 1992, Fuhrman
1999). Viral lyses of bacteria could keep bacterial
abundance at low levels as observed in this study.
Unfortunately, we have no knowledge of virus abun-
dance/infectivity at Cassino Beach or within our labo-
ratory experiments. Thus, this hypothesis remains to
be tested.

The often observed high bacterial production rates
with no concomitant bacterial-biomass increase gave
rise to the idea that bacterivory is a key mechanism of
bacterial losses in aquatic systems (Strom 2000). Bac-
terivory can be equivalent to bacterial production in
oligotrophic systems, while production often exceeds
grazing where primary and bacterial production is
high. Unpublished data of the Brazilian Long Term
Ecological Research monitoring program at Patos
Lagoon estuary and adjacent coastal region for the
period between 1993 and 2001 show that mean flagel-
lates (9.91 × 103 cells ml–1 ± 13.63 × 106 cells ml–1) and
ciliates (23.82 cells ml–1 ± 44.56 cells ml–1) abundance
at Cassino Beach are consistently lower than those of
the nearby Patos Lagoon estuary (flagellates = 27.63 ×
103 cells ml–1 ± 52.23 × 103 cells ml–1 and ciliates =
25.81 cells ml–1 ± 23.87 cells ml–1). Moreover, a recent
study on bacterial grazing exerted by flagellates and
ciliates conducted in a salinity gradient from the inner
estuary to the beach demonstrated that bacterial con-
sumption rates at the beach (0.11 to 0.19 µg C l–1 h–1)
are smaller than those measured in estuarine waters
(0.33 to 0.60 µg C l–1 h–1) (Hickenbick 2002). We did not
measure grazing rates before, during and after the for-
mation of A. glacialis patches. However, the fact that
during the laboratory experiments with filtrates from

beach water and the Asterionellopsis glacialis batch-
culture no flagellate or ciliate was recorded, leads us to
consider that grazing pressure exerted by the proto-
zooplankton would not be sufficient to prevent bacter-
ial growth at Cassino Beach.

Since Asterionellopsis glacialis particulate and dis-
solved production at Cassino Beach are relatively high
and could potentially sustain increasing levels of bac-
terial growth, one could speculate that the observed
decoupling between A. glacialis and bacteria is related
to the quality of DOM exuded by the algae, rather than
to its total amount. Bacteria can use DOC of low or high
molecular weight (LMW and HMW, respectively),
though HMW DOC is utilized at a greater extent
(Amon & Benner 1996). Furthermore, the C:N ratios of
DOC produced by phytoplankton of diverse taxonomic
groups can be quite different between the pools of
HMW DOC (C:N ~ 21) and LMW DOC (C:N ~ 6.0).
This could affect the microbial reactivity at different
environments, depending on the predominance of
HMW or LMW DOC pools, and their sources (Bid-
danda & Benner 1997). 

Polysaccharides are considered to be the main con-
stituent of HMW DOM found in marine waters and
also exuded by phytoplankton (Aluwihare & Repeta
1999). A cytochemical study of surf-zone diatoms
developed by Du Preez & Campbell (1996) showed
that the Asterionellopsis glacialis mucilage coat is
made up of a mixture of neutral, acidic and sulphated
polysaccharides. It is possible that different propor-
tions of distinct polysaccharides in the DOC exuded by
A. glacialis give this microalgae the capacity to bind to
foam, or have sand particles attached to them (Rörig &
Garcia 2003), since sticky transparent exopolymer par-
ticles (TEP) found in the water are mostly composed of
acidic polysaccharides (Passow 2002). If this is the
case, bacteria could react differently to exuded DOC
produced at different periods of the day. 

It is noteworthy that the production of large amounts
of TEP during a diatom bloom flocculation off Santa
Barbara (USA) was not followed by an increase in bac-
terial number (Passow & Alldredge 1994), similar to the
observations in the present study. Sherr & Sherr (1996)
have also observed that diatoms may produce HMW
organic compounds that may not be immediately used
by bacteria. It is likely that mucus-rich exudates from
surf-zone diatoms are not a good growth substrate for
heterotrophic bacterioplankton. 

The concentration of dissolved inorganic nutrients
(ammonium, nitrite + nitrate and phosphate) at
Cassino Beach is quite low in comparison to the estuar-
ine water of the Patos Lagoon, but it is far from being
considered an oligotrophic system. An increase in
nutrient availability in the coastal region occurs after
strong rainfalls and increasing freshwater outflow from
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the Patos Lagoon (Ciotti et al. 1995). However, higher
nitrogenous nutrients concentration at Cassino Beach
is normally observed in water of high salinity, suggest-
ing that the input of this nutrient results from the re-
suspension of the near-shore sediments due to the
action of onshore southerly winds (Odebrecht et al.
1995). Phosphate concentration, on the other hand, is
quite high and stable during most of the year (Ode-
brecht et al. 1995, Rörig & Garcia 2003) 

One of the strategies used by cells to survive in a
low-nutrient environment is to grow more slowly.
However, considering the nutrient levels at Cassino
Beach, there is no reason to conclude that bacterial
growth would be limited by the lack of dissolved inor-
ganic nutrients (especially N and P). On the other
hand, the production of antibiotic substances by the
algae could hinder bacterial growth, as observed here,
and favor Asterionellopsis glacialis in a direct competi-
tion with bacteria for dissolved inorganic nutrients.
Bioassays (nutrient addition studies) conducted at the
Patos Lagoon estuary showed that carbon is not a lim-
iting factor, while nitrogen and phosphorus stimulate
the bacterial growth in this ecosystem (Cesar & Abreu
2001). Thus, it is likely that bacteria at Cassino Beach
have similar dissolved inorganic nutrient require-
ments, since both water bodies are closely connected.

Aubert et al. (1970) were the first to chemically char-
acterize an antibiotic synthesized by Asterionellopsis
glacialis (at that time Asterionella japonica). The
antibiotic is a nucleoside (molecular weight = 245)
made up of a pyrimidinic base and a pentose sugar,
probably arabinose. The structure of this nucleoside is
analogous to thymidine, but is different in that it has an
antimitotic property. Antibiotic action exerted by A.
glacialis was previously reported in studies with
Staphylococcus aureus (Aubert et al. 1970) and Vibrio
spp. (Riquelme et al. 1989); however, this same algae
stimulated the growth of bacteria from the genera
Pseudomonas (Riquelme et al. 1989). Such results point
out the fact that the antibiotic produced by A. glacialis
is not one of a broad spectrum. 

One consequence of the diatom-bacteria decoupling
at Cassino Beach is the accumulation of surplus DOC
in this environment. This organic matter will not reach
higher trophic levels through the microbial food web.
Besides this, the suppression of heterotrophic bacteria
by Asterionellopsis glacialis will enable a greater
transfer of diatom carbon to metazoan consumers in
the surf-zone, since dead diatoms will not be immedi-
ately decomposed by bacteria. Further, excess surf-
zone diatom production may be exported to the coastal
ocean, where it may fuel heterotrophic secondary pro-
duction. Alternatively, due to the high energy of the
surf-zone ecosystem, bubble production and the
‘sticky’ characteristic of mucus produced by A.

glacialis, particulate organic matter aggregates could
be formed and further consumed by benthic and
pelagic filter feeders and other omnivorous organisms
in the nearshore ecosystem, as observed in other stud-
ies (Larson & Shanks 1996). 

It is noteworthy that Cassino Beach supports a high
biomass of benthic filter-feeding organisms such as the
crustacean Emerita brasiliensis and the bivalves
Mesodesma mactroides and Donax hanleyanus. Accu-
mulated annual production at Cassino Beach of these
organisms reaches 238.5, 185.3 and 13.6 g m–2, respec-
tively (Gianuca 1997). They supply abundant food
resources for a variety of secondary consumers like fish
and shore birds. Garcia & Gianuca (1997) observed
that, during summer, 90% of the stomach content of
dominant resident and migratory birds at Cassino
Beach is composed of the filter feeders M. mactroides,
D. hanleyanus and E. brasiliensis. It is likely that sur-
plus organic matter produced by Asterionellopsis
glacialis in particulate and also dissolved form, which
is not consumed by bacteria, is channeled to the ben-
thic populations, generating high secondary produc-
tion. 

The food-web dynamics prevailing in Cassino Beach
(Brazil) during blooms of the surf-zone diatom have
parallels to events occurring in Newfoundland waters
(Canada), where the suppression of bacteria due to
very low temperatures in early springtime presumably
results in enhanced transfer of phytoplankton produc-
tion to benthic fisheries (Pomeroy & Deibel 1986).
Unlike Newfoundland waters, however, at Cassino
Beach the temperatures rarely fall below 10°C, and the
bacteria were decoupled from the surf-zone diatom
without any systematic bias towards the winter or sum-
mer seasons (Fig. 2). Studies have demonstrated that,
even at low temperatures, bacterial growth and respi-
ration could be raised by increasing the organic sub-
strate concentration (Pomeroy & Wiebe 2001). How-
ever, bacterial abundance as well as activity at Cassino
Beach did not increase, despite the high rate of DOC
input from Asterionellopsis glacialis and the high con-
centrations of DOC prevailing in the water, suggesting
that another controlling mechanism besides tempera-
ture, such as DOC quality (Pomeroy & Deibel 1986,
Sherr & Sherr 1996), viral lyses (Fuhrman 1999), bac-
terivory (Strom 2000), or production of antibiotic sub-
stances (Aubert et al. 1970, Requelme et al. 1989), can
also cause a decoupling between diatoms and bacteria.

Preliminary results of this study demonstrate that the
microbial ecology of surf-zone environments is more
complex than previously imagined. The input of extra
energy by wind and waves that benefit the surf-zone
diatom Asterionellopsis glacialis production do not fuel
bacterial growth at the same time. Future studies
should consider the characteristic decoupling between
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A. glacialis and bacteria interaction and characterize
how much of the produced DOC is actually utilized by
the microbial food web in the long term. Studies should
also explore the consequences of such temporal sup-
pression of the microbial loop in surf-zone-diatom-
dominated ecosystems to the carbon dynamics of the
nearshore food webs. 
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