Fundação Universidade Federal do Rio Grande Programa de Pós-Graduação em Engenharia Oceânica

Régis da Silva Pereira

PROCESSOS QUE REGEM A QUALIDADE DA ÁGUA DA LAGOA DOS PATOS, SEGUNDO O MODELO DELFT3D.

Dissertação de Mestrado

Rio Grande – RS 2003

Régis da Silva Pereira

PROCESSOS QUE REGEM A QUALIDADE DA ÁGUA DA LAGOA DOS PATOS, SEGUNDO O MODELO DELFT3D.

Dissertação de mestrado apresentada à comissão de curso do Programa de Pós-Graduação em Engenharia Oceânica da Fundação Universidade Federal do Rio Grande, como parte dos prérequisitos para obtenção título de Mestre em Engenharia Oceânica, área de concentração Hidroquímica

Orientador: Prof. Dr. Luis Felipe Hax Niencheski

Rio Grande – RS 2003

P436 Pereira, Régis da Silva Processo que regem a qualidade da água da Lagoa dos Patos, segundo o modelo Delft3D. - Rio Grande: 2003. 150f..; 21cm. Dissertação (mestrado) - Programa de Pós-Graduação em Engenharia Oceânica - Fundação Universidade Federal do Rio Grande, 2003. 1. Engenharia Oceânica. 2. Qualidade de água. 3. Modelo ,matemático I Título.

CDU 626/627

Catalogação na Publicação: Bibliotecária Renata Braz Gonçalves CRB10: 1502

AGRADECIMENTOS

Ao Prof. Orientador Luis Felipe Niencheski, pela orientação, amizade e confiança no desenvolvimento deste trabalho.

Ao amigo Marcelo Vitola, pela ajuda fundamental para a realização desta pesquisa.

A toda equipe do Laboratório de Hidroquímica, pela amizade e solidariedade durante os dosi anos de convivência.

A todos professores do Programa de Pós-Graduação em Engenharia Oceânica, pelo fornecimento da base teórica para o desenvolvimento deste trabalho.

A Comissão de Curso do Programa de Pós-Graduação em Engenharia Oceânica, por proporcionar as condições necessárias para o desenvolvimento desta pesquisa.

A todos os colegas da Engenharia Oceânica pela amizade durante estes dois anos.

A minha família e a Renata, por sempre me darem incentivo a todas as minhas decisões.

E finalmente a Deus.

ÍNDICE GERAL

L	IST	A DE FIGURAS	iv			
L	IST	A DE TABELAS	vi			
L	IST	A DE ABREVIATURAS	vi			
R	ESU	JMO	_ vii			
A	ABSTRACTvii					
1	INT	ſRODUÇÃO	1			
2	OB	JETIVOS	2			
	2.1	OBJETIVO GERAL	2			
	2.2	OBJETIVOS ESPECIFICOS	2			
3	ÁR	EA DE ESTUDO	3			
	3.1	CARACTERÍSTICAS HIDROGRÁFICAS	3			
	3.2	CARACTERÍSTICAS HIDROQUÍMICAS	5			
4	AN	TECEDENTES	8			
5	MC	DDELOS MATEMATICOS	9			
	5.1	MODELOS HIDRODINÂMICOS	11			
	5.2	MODELOS DE TRANSPORTE E DE TRANSFORMAÇÃO DE CONSTITUINTES				
		QUÍMICOS	15			
	53	INTEGRAÇÃO DOS MODELOS HIDRODINÂMICOS COM OS DEMAIS MODELOS	DE			
	5.5	OUALIDADE DE ÁGUA.	18			
6	MC		10			
0		MÓDULO ELOW	_ 19 10			
	0.1	MODULO FLOW	_ 19			
	6.2	MÓDULO WAQ	_ 23			
7	ME	TODOLOGIA	_ 24			
	7.1	METODOLOGIA DE CAMPO – Programa Pró-Mar de Dentro	_ 24			
	7.2	METODOLOGIA DE CAMPO – Projeto Espinha	_ 26			
	7.3	BASE DE DADOS PARA O MODELO MATEMÁTICO	28			
		7.3.1 BATIMETRIA	_ 28			
		7.3.2 DESCARGAS FLUVIAIS	_ 29			
		7.3.3 VENTOS	_ 29			

		7.3.4	MARÉ	30
,	7.4	PREPARA	ÇÂO DO MODELO HIDRODINÂMICO	31
		7.4.1	CONSTRUÇÃO DA GRADE	31
		7.4.2	BATIMETRIA	34
		7.4.3	TEMPO DE SIMULAÇÃO	35
		7.4.4	PROCESSOS	36
		7.4.5	CONDIÇÕES INICIAIS	36
		7.4.6	CONDIÇÕES DE CONTORNO	37
		7.4.7	PARÂMETROS FÍSICOS	38
		7.4.8	PARÂMETROS NUMÉRICOS	39
		7.4.9	PARÂMETROS DE SAÍDA	40
,	7.5	CONVERS	ÃO DOS DADOS HIDRODINÂMICOS	42
,	7.6	PREPARA	ÇÂO DO MODELO DE TRANSPORTE E TRANSFORMAÇÂO DE	
		CONSTITU	JINTES QUIMICOS	42
		7.6.1	DADOS HIDRODINÂMICOS	42
		7.6.2	COEFICIENTES DE DISPERSÃO	43
		7.6.3	SUBSTÂNCIAS	43
		7.6.4	TEMPO DE SIMULAÇÃO	44
		7.6.5	CONDIÇÕES INICIAIS	44
		7.6.6	CONDIÇÕES DE CONTORNO	45
		7.6.7	PARÂMETROS NUMÉRICOS	45
		7.6.8	PONTOS DE OBSERVAÇÃO	45
		7.6.9	PARÂMETROS DE SAÍDA	45
8	RE	SULTADO	S E DISCUSSÃO	46
:	8.1	MODELO I	HIDRODINÂMICO	46
		8.1.1	AVALIAÇÂO DO MODELO HIDRODINÂMICO	46
		8.1.2	VALIDAÇÃO DO MODELO HIDRODINÂMICO	47
		8.1.3	DILUIÇÃO E DISPERSÃO DA ÁGUA SALGADA	50
		8.1.4	TEMPO DE RESIDÊNCIA	52
:	8.2	RESULTA	DOS DO MODELO DE TRANSPORTE E TRANSFORMAÇÂO DE	
		CONSTITU	JINTES QUÍMICOS	54

	8.2.1	VALID	AÇÃO DO MODELO DE TRANSPORTE E	
		TRANS	FORMAÇÂO DE CONSTITUINTES QUIMICOS	54
	8.2.2	APLICA	AÇÃO DO MODELO	59
		8.2.2.1	Material em Suspensão	59
		8.2.2.2	Oxigênio Dissolvido	63
		8.2.2.3	Nutrientes	67
		8.2.2.4	Metais Pesados	81
9 C	ONSIDERA	ÇÕES FII	NAIS	94
10	CONCLU	SÕES		97
11	RECOME	NDAÇÕ	ES	99
12	REFERÊN	NCIAS B	IBLIOGRÁFICAS	100
ANE	XOA			105
ANE	XOB			114
ANE	ANEXO C			132

LISTA DE FIGURAS

Figura 1: Área de estudo	4
Figura 2: Segmentação espacial usada nos modelos hidrodinâmicos	13
Figura 3: Elemento da grade escalonada	21
Figura 4: Pontos de amostragem do Projeto Espinha em toda a Lagoa dos Patos	27
Figura 5: Pontos de amostragem do Projeto Espinha no estuário	28
Figura 6: Descarga média mensal dos principais tributários	29
Figura 7: Valores diários da intensidade do vento	30
Figura 8: Valores diários da direção do vento	30
Figura 9: Contorno da Lagoa dos Patos	33
Figura 10: Linhas de referência para transformação em grade	33
Figura 11: Grade computacional da Lagoa dos Patos	33
Figura 12: Perfil vertical da batimetria no eixo principal da Lagoa dos Patos	34
Figura 13: Batimetria da Lagoa dos Patos	35
Figura 14: Localização das condições de contorno do modelo hidrodinâmico da Lagoa dos	
Patos	38
Figura 15: Pontos de amostragem no Programa Pró Mar de Dentro	26
Figura 16: Localização das secções de controle de vazão	41
Figura 17: Distribuição da salinidade ao alongado do tempo, nas estações P8 e P7	47
Figura 18: Distribuição da salinidade ao longo do tempo nas estações P6, P5 e P4	49
Figura 19: Distribuição da salinidade ao longo do tem po nas estações P3 e P1	49
Figura 20: Representação gráfica da intrusão de uma massa de água salgada na Lagoa dos	
Patos	50
Figura 21: Representação gráfica da expulsão de uma massa de água salgada na Lagoa dos	
Patos	51
Figura 22: (a) Passagem do traçador pela seção 1; (b) Passagem do traçador pela seção 2	52
Figura 23: Tempo de residência da água na Lagoa	53
Figura 24: Velocidade média do vento aplicado na simulação hidrodinâmica da Lagoa	53
Figura 25: Distribuição das concentrações de superfície e fundo do oxigênio dissolvido,	
material em suspensão e nitrato ao longo do eixo principal da Lagoa	55
Figura 26: Distribuição das concentrações de superfície e fundo do fosfato e silicato ao longo	
do eixo principal da Lagoa	56
Figura 27: Distribuição das concentrações médias do oxigênio dissolvido, material em	
suspensão, nitrato, fosfato e silicato ao longo da seção São Lourenço	57
Figura 28: Distribuição das concentrações médias do oxigênio dissolvido, material em	
suspensão, nitrato e fosfato ao longo da seção Tapes	58
Figura 29: Distribuição das concentrações médias do silicato ao longo da seção Tapes	59
Figura 30: Distribuição do material em suspensão ao longo do tempo nas estações P1 e P2	60
Figura 31: Distribuição do material em suspensão ao longo do tempo nas estações P3, P4, P5	
e P6	61
Figura 32: Distribuição do material em suspensão ao longo do tempo nas estações P7 e P8	62
Figura 33: Distribuição do OD ao longo do tempo nas estações P1, P3, P5 e P7	64
Figura 34: Distribuição do OD ao longo do tempo nas estações P1, P3, P5 e P7	65
Figura 35: Distribuição do OD ao longo do tempo nas estações P1 e P7.	66
Figura 30: Distribuição de nitrato ao longo do tempo nas estações P1, P3, P5 e P/	6/
Figura 3/: Distribuição de nitrato ao longo das estações de amostragem nos meses de	<u> </u>
Ievereiro e janeiro	68

Figura 38: Distribuição de nitrato ao longo das estações de amostragem nos meses de agosto e

setembro	. 69
Figura 39: Distribuição de nitrito ao longo do tempo nas estações P2 e P7	70
Figura 40: Distribuição do amônio ao longo do tempo nas estações P1, P3, P5 e P7	. 71
Figura 41: Distribuição do amônio ao longo das estações de amostragem nos meses de	
fevereiro e janeiro	. 71
Figura 42: (a) Distribuição do amônio ao longo das estações de amostragem no mês de	
fevereiro	. 72
Figura 43: Distribuição do amônio ao longo do tempo nas estação P6. Linha azul:	
concentração simulada do amônio no fundo	.73
Figura 44: Distribuição do NT ao longo das estações de amostragem nos meses de julho e	
novembro	74
Figura 45: Distribuição do fosfato removido e material em suspensão ao longo do tempo nas	
estações P1 e P5	75
Figura 46: Distribuição do fosfato e material em suspensão ao longo do tempo nas estações P1	
e P5	75
Figura 47: Distribuição do fosfato ao longo do tempo na estação P7	76
Figura 48: Distribuição do fosfato ao longo do tempo na estação P8	. 77
Figura 49: Distribuição do fósforo total ao longo das estações de amostragem nos meses de	
fevereiro e agosto	78
Figura 50: Distribuição do COT ao longo do tempo nas estações P1 e P4	79
Figura 51: Distribuição do COT ao longo do tempo nas estações P5 e P8	. 80
Figura 52: Distribuição da Si ao longo do tempo na estação P1	80
Figura 53: Distribuição da Si ao longo do tempo na estação P8	81
Figura 54: Distribuição do Cr ao longo das estações de amostragem no mês de julho	83
Figura 55: Distribuição do Cr ao longo das estações de amostragem no mês de julho	. 83
Figura 56: Distribuição das formas Cr ¹¹¹ e Cr ^{v1} ao longo das estações de amostragem	84
Figura 57: Distribuição do Cu ao longo das estações de amostragem no mês de dezembro	. 85
Figura 58: Distribuição do Cu ao longo das estações de amostragem no mês de agosto	. 86
Figura 59: Distribuição do Zn ao longo do tempo nas estações P2 e P7	86
Figura 60: Distribuição do Zn ao longo das estações de amostragem no mês de novembro	87
Figura 61: Distribuição do Zn ao longo das estações de amostragem nos meses de dezembro e	
janeiro	. 88
Figura 62: Distribuição do Pb ao longo do tempo nas estações P2 e P7	88
Figura 63: Distribuição do Ni ao longo das estações de amostragem nos meses de dezembro e	
janeiro	. 89
Figura 64: Distribuição do Ni ao longo das estações de amostragem nos meses de novembro e	
setembro	. 90
Figura 65: Distribuição do Cd ao longo do tempo nas estações P1	91
Figura 66: Distribuição do Cd ao longo do tempo nas estações P6 e P8	91
Figura 67: Distribuição do Fe ao longo das estações de amostragem nos meses de dezembro e	.
janeiro	. 92

LISTA DE TABELAS

Tabela 1: Alguns dos principais modelos hidrodinâmicos.	14
Tabela 2: Alguns dos principais modelos de transformação e transportes de constituintes	17
Tabela 3: Datas dos cruzeiros realizados pelo Programa Mar de Dentro	24
Tabela 4: Estratégias de amostragem e métodos para os parâmetros analisados (Jica)	25
Tabela 5: Estratégias de amostragem e métodos para os parâmetros analisados (Projeto	
Espinha).	.27
Tabela 6: Localização das estações de amostragem.	40
Tabela 7: Concentração inicial das substâncias utilizadas nas simulações	44

LISTA DE ABREVIATURAS

OD	Oxigênio Dissolvido	
$\mathbf{U}\mathbf{P}$		

- Demanda Bioquímica de Oxigênio DBO
- Demanda Química de Oxigênio DQO
- Material em Suspensão MES
- Nitrato NO₃
- Nitrito NO_2^{-}
- Amônio \mathbf{NH}_{4}^{+}
- NT Nitrogênio Total
- Fosfato PO_4^-
- Fósforo Total FT
- Carbono Orgânico Total COT
- Silicato Si
- Cromo Cr
- Cobre Со
- Zn Zinco Pb Chumbo
- Níquel
- Ni Cd Cádmio
- Ferro
- Fe
- Mercúrio Hg Arsênio As

RESUMO

Os modelos numéricos se propõem a simular tanto os processos de transporte como os processos químicos que ocorrem num corpo hídrico. O objetivo deste trabalho é avaliar os processos que determinam a qualidade das águas da Lagoa dos Patos, utilizando pela primeira vez o modelo Delft3D da WL | Delft Hydraulics. Neste modelo foram aplicados os dados obtidos no Programa para o Desenvolvimento Racional, Recuperação e Gerenciamento Ambiental da Lagoa dos Patos/Mirim - Pró Mar de Dentro, que realizou onze cruzeiros de amostragem, durante o período compreendido entre fevereiro de 1999 e janeiro de 2000. A primeira etapa realizada foi a validação do modelo hidrodinâmico, que foi feita comparandose os dados de salinidade obtidos em campo ao longo da Lagoa com os resultados das simulações. Em seguida, com o modelo hidrodinâmico validado, foi aplicado o modelo de qualidade de água. Os seguintes parâmetros foram avaliados: material em suspensão, oxigênio dissolvido, DBO, nitrato, nitrito, amônio, nitrogênio total, fosfato, fósforo total, carbono orgânico total, sílica, cromo, cobre, zinco, chumbo, níquel, cádmio, ferro. Os resultados mostraram que o modelo foi validado, apresentando bons resultados na simulação da circulação da Lagoa dos Patos. Apesar de alguns desvios terem sido percebidos, não se deveram propriamente ao modelo e sim a ausência de uma melhor distribuição temporal e espacial de dados para alimentá-lo. A avaliação dos parâmetros de qualidade de água indicou que os processos químicos e físicos que ocorrem na Lagoa variam espacialmente e temporalmente, dependendo principalmente das condições metereológicas da região. Apesar das diversas influências antrópicas presentes na Lagoa dos Patos, as águas do eixo principal da Lagoa não apresentaram sérias contaminações que tragam riscos aos ecossistemas que a cercam e dela dependem. De acordo com os resultados obtidos, o modelo poderia tornar-se uma importante ferramenta na previsão e avaliação da qualidade da água da Lagoa dos Patos.

Palav ras - Chaves: Qualidade da água, modelo Delft3D, Lagoa dos Patos.

ABSTRACT

Numeric models intend to simulate both the transport and chemical processes that happen in a water body. The aim of this work is to evaluate the processes that govern the quality of the Patos Lagoon water, using for the first time Delft3D model, from WL | Delft Hydraulics. The model was applied using data obtained during the project denominated "Programa para o Desenvolvimento Racional, Recuperação e Gerenciamento Ambiental da Lagoa dos Patos/Mirim - Pró Mar de Dentro", wich carried out eleven sampling campaigns, during the period of February 1999 and January 2000. First stage, consisted hydrodynamic model validation, that was made comparing the salinity data obtained during the samplig with the simulations results. Second stage, with the hydrodynamic model validated, the water quality model was applied. The following parameters were evaluated: suspended matter, dissolved oxygen, BOD, nitrate, nitrito, ammonium, total nitrogen, phosphate, total phosphorous, total organic carbon, silicate, chromium, copper, zinc, lead, nickel, cadmium, iron. The results showed that the model was validated, presenting good results in the circulation simulation of the Patos Lagoon. In spite of some deviations have been observed, they were not due properly to the model, but due the absence of more precise data for apply in the model. The evaluation of the water quality parameters indicated that chemical and physical processes that happen in the Lagoon have variation in the space and in the time, mainly depending on the metereological conditions of the region. In spite of several antropogenics influences present in the Patos Lagoon, waters in your main axis didn't present contaminations that bring risks to the survival of the ecossystems that surround and depend on this Lagoon. According to the obtained results, the model could become an important tool in the forecast and evaluation of the water quality of the Patos Lagoon.

Keywords: Water quality, Delft3D model, Patos Lagoon.

1 INTRODUÇÃO

A preservação dos sistemas costeiros e da qualidade de suas águas é uma constante preocupação dos pesquisadores que buscam amenizar as conseqüências da ação humana sobre o meio ambiente. A multiplicidade dos usos dos recursos hídricos, associada à característica de recurso natural renovável e também finito, define um cenário que reflete a complexidade da relação entre usos e preservação destes recursos.

A Política Nacional de Recursos Hídricos, instituída no Brasil pela Lei Federal 9433/97, é importante ferramenta legal para o gerenciamento da utilização da água. Como ferramentas técnicas, surgem os modelos matemáticos e programas computacionais, utilizados no suporte à decisão entre alternativas de gestão ou uso, e como agentes facilitadores neste processo (MENDONÇA, 2001).

Modelos matemáticos de simulação têm sido empregados em sistemas de apoio à decisão, sendo as ferramentas mais adequadas para avaliar os diversos usos da água (LUCA, 2001). Os modelos matemáticos se propõem a explicar as causas e efeitos dos processos do ambiente, diferenciar as fontes antropogênicas das fontes naturais de poluentes, avaliar a eficiência de programas de gerenciamento ambientais, determinar o tempo de recuperação de um corpo d'água após a implementação de um programa de redução de contaminantes, auxiliar em projetos e desenvolvimento de programas de amostragem de campo e no estudo em escala de bancada, assim como muitas outras aplicações podem ser identificadas de acordo com o modelo a ser utilizado.

A Lagoa dos Patos é uma das maiores lagoas costeiras do mundo, porém aplicações de modelos de qualidade de água são restritas a aspectos isolados, como a circulação (BONILHA, 1974; FETTER, 1998), balanços globais de constituintes (NIENCHESKI et al., 1994a)ou ainda aplicações a locais específicos da Lagoa, como o Rio Guaíba (CASALAS, 1985).

Porém, um modelo de qualidade de água que trate a Lagoa dos Patos como um todo apenas foi aplicado pelo Projeto Mar de Dentro (JICA, 2000), onde a abordagem pode ser considerada superficial no que diz respeito à avaliação da qualidade de água, pois apenas foi realizada uma análise descritiva dos parâmetros analisados.

Tendo em vista que todos os processos, sejam eles físicos, químicos ou biológicos, ocorrem simultaneamente e ainda interagem entre si, se faz necessário a preparação de um modelo o mais abrangente possível para a Lagoa dos Patos, que aborde um maior número de

1

questões relativas à qualidade de água como a circulação, dispersão de poluentes, ciclo de nutrientes, transformações de metais, etc. Os processos químicos e físicos podem ser estudados mais detalhadamente e como conseqüência pode-se obter uma importante ferramenta no entendimento da Lagoa como um todo, assim como auxiliar a predição da qualidade ambiental deste ecossistema.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Avaliar a qualidade de água da Lagoa dos Patos, através do uso de dados pretéritos recentes, fazendo uso de um modelo computacional inédito (Delft3D) para este sistema.

2.2 OBJETIVOS ESPECIFICOS

Validar o modelo Delft3D aplicado aos dados pretéritos, mediante parâmetro hidrológicos;

Aplicar o módulo de qualidade WAQ do Delft3D para avaliar os processos químicos e físicos da Lagoa, e conseqüentemente a qualidade da água da mesma, utilizando o modelo hidrodinâmico validado.

Avaliar o modelo Delft3D para que seja aplicado em trabalhos futuros, ressaltando as vantagens e desvantagens do mesmo.

3 ÁREA DE ESTUDO

A linha da costa do Rio Grande do Sul apresenta dois lobos convexos que englobam a Lagoa dos Patos, ao norte, e a Lagoa Mirim, ao sul, estando estas duas lagoas ligadas pelo canal de São Gonçalo. A concavidade formada no encontro dos dois lobos formam a embocadura da Lagoa dos Patos, comunicação do sistema lagunar com o Oceano Atlântico (HARTMANN, 1996).

A Lagoa dos Patos, com 250 km de extensão e largura média de 60 km, é alongada no sentido NE-SW e dispõe-se paralelamente à planície costeira (Figura 1). É caracterizada por um fundo relativamente plano, com 6 a 7 metros de profundidade e ocorrência de pontais progressivos na margem oeste, sendo que as maiores profundidades encontram-se próximas à restinga (margem leste) e estão dispostas paralelamente ao eixo principal da Lagoa, com gradual diminuição da batimetria no sentido noroeste (HERZ, 1977).

3.1 CARACTERÍSTICAS HIDROGRÁFICAS

Entrada de água doce: as características hidrográficas estuarina e lagunar da Lagoa dos Patos, são completamente dominadas pelos ciclos hidrológicos do conjunto de rios, lagos e arroios que fazem parte desta bacia hidrográfica. Cerca de 85% da água da bacia de drenagem da Lagoa dos Patos é originada do Rio Guaíba, Rio Camaquã, e Canal do São Gonçalo localizados na parte norte, centro e sul da Lagoa, respectivamente (Figura 1)

As descargas de água doce variam consideravelmente entre verão-outono e invernoprimavera (6 a 5300 m³/s da Bacia do Camaquã e 41 a 25000 m³/s da Bacia do Guaíba) (HERZ, 1977). Especialmente em ano sob a influência do El Niño, as descargas excedem os valores médios. O fluxo do canal São Gonçalo é controlado por comportas que impedem que a água salgada penetre do estuário para a Lagoa Mirim. Estas somente são fechadas quando os níveis estão acima de 1.0m (Datum Torres). Como conseqüência, a descarga de água doce da parte superior da Lagoa para o estuário é variável (700 a 3000 m³/s), geralmente sendo mais intenso durante o inverno e primavera.

Figura 1: Área de estudo.

Maré e correntes: a costa sul do Brasil é localizada na região de mínima influência da maré (GARCIA, 1997). A amplitude média da maré é 0,47 m e predominante semi-diurna. A onda de maré com amplitude de 10,8 cm, representa a principal componente (HERZ, 1977). O canal de entrada da Lagoa dos Patos age como filtro, atenuando a amplitudes das ondas de maré que avançam para dentro do estuário. Devido à sua grande superfície e seu volume, velocidades máximas de corrente no corpo da Lagoa são de aproximadamente 0,3 m/s, com freqüente inversão de direção (GARCIA, 1997). Entretanto, no canal de saída da água a velocidade das correntes podem atingir 1,7-1,9 m/s depois de prolongados períodos de chuva (GARCIA, 1997).

Forçantes da circulação da Lagoa e do estuário: a circulação da maioria das lagoas costeiras é controlada pelo vento, maior que a própria influência da maré. A região da Lagoa dos Patos é influenciada por ventos de regime NE-SW predominantemente. Ventos do quadrante NE (velocidade média 3,6-5,1 m/s) ocorrem durante 22% do ano e ventos do quadrante SW (velocidade média 5,7-8,2 m/s), durante 12%. Os padrões sazonais de ventos são representados por ventos do quadrante NE fortes e freqüentes entre setembro e abril e ventos do quadrante SW de maio a outubro. Estes ventos sopram ao longo do eixo principal da Lagoa e são a principal forçante do sistema da Lagoa dos Patos.

Os regimes de fluxo na Lagoa estão relacionados aos desníveis que ocorrem dentro da Lagoa e na zona costeira. Os ventos exercem grande influência sobre as marés e as correntes no sistema lagunar. Ventos de NE tendem a baixar o nível do mar na barra, impelindo as águas da Lagoa para o Canal do Norte e ocasionando o escoamento das mesmas em direção ao mar (regime de vazante). Os ventos de SW e SE, pelo contrário, elevam o nível do mar na barra, impelindo a água do sistema Lagunar para o interior e formando uma corrente do mar para a Lagoa (regime de enchente) (CALLIARI, 1980).

3.2 CARACTERÍSTICAS HIDROQUÍMICAS

Temperatura e salinidade: A variabilidade temporal e espacial dos parâmetros físico-químicos são resultados da interação entre as forçantes, características regionais do sedimento, e atividades antropogênicas. De maneira geral, as maiores temperaturas e salinidades são relacionadas à variação sazonal da região, ventos e padrões de precipitação, respectivamente (VILAS BOAS, 1990). Condições homogêneas, variando da água completamente doce a completamente salgada, são associadas às altas descargas fluviais e ventos de quadrante NE ou mínimas descargas de água doce e ventos SW, respectivamente. Por outro lado, períodos muito chuvosos e ventos de quadrante SW, acarretam a estratificação vertical devido ao avanço da água salgada pelo fundo do canal. Estratificação lateral da temperatura e salinidade, também pode ocorrer durante períodos de descargas fluviais reduzidas (NIENCHESKI et al., 1997).

Material em suspensão: As principais fontes de material em suspensão são os rios da porção norte da Lagoa (Jacuí, Sinos, Gravataí, Caí, Taquari), na parte central o rio Camaquã, na parte sul o canal São Gonçalo e o processo de erosão são os responsáveis pela adição de material em suspensão. Além disso, a interação entre as características geomorfológicas do estreito canal de entrada e a entrada de água salgada do oceano durante épocas de fortes ventos de SW, favorece a ressuspensão do sedimento depositado no fundo da Lagoa (NIENCHESKI et al., 1994b). Como resultado, a carga de material em suspensão na Lagoa dos Patos tende a aumentar em direção ao oceano e depende fortemente das características de precipitação da bacia hidrográfica que a cerca. Apesar da alta carga de material em suspensão no canal de acesso (cerca de 50 mg/L) e em ambientes rasos (30 mg/L), o oxigênio dissolvido na água tende a ser próximo da saturação ou até mesmo da supersaturação, especialmente próximo ao canal onde há intensa atividade hidrodinâmica (NIENCHESKI et al., 1994a).

Nutrientes: Cálculo do fluxo anual de nutrientes demonstra altos níveis de nitrogênio dissolvido, fosfato e silicato sem nenhum padrão sazonal definido. Os níveis de nutrientes adicionados na parte norte da Lagoa sofrem substancial redução durante o transporte ate atingir o estuário. As altas concentrações de nutrientes dissolvidos e particulados são provavelmente resultado de efluentes e da remobilização do sedimento de fundo na parte mais ao sul do estuário (NIENCHESKI et al., 1994b).

A concentração média de fosfato no canal e na baía que margeia a cidade do Rio Grande é aproximadamente 1 μ M, mas podem atingir 3 μ M durante o verão. As maiores concentrações de fosfato nas baias semi-fechadas ao sul de Rio Grande são provavelmente devido à emissão de efluentes, especialmente das indústrias de fertilizantes (BAUMGARTEN et al., 1995). Concentrações de fosfato e material em suspensão no estuário são baixas durante a influência das descargas fluviais, mas tende a aumentar com a intrusão da água salgada. As concentrações de fosfato podem variar ainda devido a sua adsorção ou desorção do material em suspensão (NIENCHESKI et al., 1994a).

Várias fontes podem adicionar nitrato e amônia na Lagoa. Altas concentrações de nitrato e amônia na parte norte da Lagoa são em parte conseqüência da decomposição de algas e macrófitas e mineralização ao longo deste ambiente. As concentrações nas águas do canal São Gonçalo são provenientes das atividades de agricultura da Bacia Patos-Mirim e pelas descargas de esgoto sem tratamento pela cidade de Pelotas. As altas concentrações nas águas

de superfície no canal de entrada (VILAS BOAS, 1990) da Lagoa e nas áreas que margeiam a cidade de Rio Grande (BAUMGARTEN et al., 1995) parecem ser conseqüência de adição atmosférica das atividades das indústrias de fertilizantes e do esgoto urbano. A Lagoa dos Patos é a fonte dominante de silicato dissolvido (aproximadamente 175µM) para o seu estuário. Embora as concentrações de silicato oscilem ao longo do gradiente salino, ela tende a decrescer de maneira conservativa em direção ao oceano, exceto quando a água doce domina o estuário (NIENCHESKI et al., 1994b).

Metais: as concentrações de metais particulados dependem fortemente da ressuspensão do sedimento de fundo. A ressuspensão do sedimento no canal de entrada da Lagoa resulta em um gradiente de salinidade, material em suspensão e metal particulado que diminui em direção à parte norte da Lagoa; a ação do vento e de ondas, por sua vez, contribuem para as altas concentrações de material em suspensão e conseqüentemente altas concentrações de metais particulados. As concentrações de metais particulados também são resultados das condições ambientais e contribuições antropogênicas. Os fatores de enriquecimento geralmente encontrados (WINDOM et al., 1999) para Ni, V, Ba e Fe sugerem que estes metais ocorrem em níveis naturais. Entretanto, para outros metais (Cu, Zn, Pb, Li, Cr, Cd, As, Ag, Pb), o fator de enriquecimento tende a ser maior em águas com menos sólidos suspensos, indicando contribuição antropogênica (NIENCHESKI et al.. 1994b). Concentrações elevadas de Cu na área estuarina podem ser resultado da drenagem da bacia que recebe as águas do Rio Camaquã, região de grande atividade de mineração. Esporádicos aumentos dos níveis de Cu e Pb pode também refletir adição destes contaminantes pelas atividades industriais na bacia do Lagoa dos Patos (BAUMGARTEN et al., 1995; NIENCHESKI et al., 1994b; VILAS BOAS, 1990).

Em geral pode se dizer, que a Lagoa dos Patos pode ser dividida em três regiões, nas quais processos distintos regem o destino e transformação dos constituintes. Na primeira zona (salinidade 0 a 5-7), a remoção de nutrientes e partículas e a mistura de água doce e a água salgada são as características dominantes, resultando numa alta produção primária, floculação, *"particle scavening"*. A segunda zona (salinidade 7 a 25-27) é caracterizada pelo aumento rápido da salinidade ao longo eixo principal da Lagoa. Nesta região, a regeneração de nutrientes sugere que a remineralização da matéria orgânica é o processo dominante e que a liberação de metais, em associação com este processo, pode contar na distribuição dos metais nesta região. Entretanto, outros processos, como a mobilização do sedimento de fundo pode

também explicar estas observações. A terceira zona (salinidade acima de 27) é dominada pela mistura conservativa. Entretanto, nem sempre este comportamento é observado. Na tentativa de explicar os principais fatores que influenciam este comportamento, várias caracterizações da Lagoa foram realizadas, sempre visando a descrição deste sistema e entendimento de seus processos.

4 ANTECEDENTES

Uma das primeiras tentativas de caracterização do sistema foi feito pelo projeto Espinha de Peixe, onde parâmetros físicos, químicos e biológicos foram levantados no período compreendido entre 06/01 a 03/02 de 1986, num total de 60 estações de amostragem. Destas, 17 estações foram amostradas na região estuarina, e as restantes foram divididas em transectos no sentido Leste-Oeste e Norte-Sul, cobrindo assim todas as regiões da Lagoa.

Uma nova tentativa foi o convênio firmado entre a Secretária da Comissão Interministerial para os Recursos do Mar (CIRM) e a Fundação Universidade Federal do Rio Grande (FURG), que teve como resultado o desenvolvimento do Projeto Lagoa dos Patos (Estrutura e Dinâmica do Sistema Lagoa dos Patos) realizado entre maio de 1987 e abril de 1988. O objetivo deste projeto foi o estudo dos parâmetros geológicos, geoquímicos, hidrofísicos, hidroquímicos, biológicos e sócio-econômicos da região, a fim de conhecer a estrutura e funcionamento do ecossistema em questão, conhecimento necessário para orientar a exploração racional de seus recursos. O resultado da avaliação química deste projeto foi a dissertação intitulada "Distribuição e comportamento dos sais nutrientes, elementos maiores e metais pesados na Lagoa dos Patos – RS" {VILAS BOAS, 1990}.

Entre maio de 1994 e maio de 1996 um contrato de contribuição entre a Comunidade Econômica Européia e a FURG, originou o estudo intitulado "The effect of Nutrient Balance and Physical Factors on the Occurance, Toxicity and Control of Cyanobacterial Blooms in Patos Lagoon, Brazil: a Laboratory and Field Study". Apesar de terem sido levantados parâmetros físicos e químicos na Lagoa dos Patos, o principal objetivo foi avaliar a relação destes parâmetros com as cianobactérias (YUNES et al., 1996), não havendo um estudo temporal e espacial destes parâmetros na Lagoa.

O estudo mais abrangente da Lagoa dos Patos foi realizado pelo "Programa para o Desenvolvimento Racional, Recuperação e Gerenciamento Ambiental da Lagoa dos Patos/Mirim – Pró Mar de Dentro", que foi uma ação conjunta da Secretária de Coordenação

e Planejamento do Estado do Rio Grande do Sul e a Agência de Cooperação Internacional do Japão (FALCÃO, 1998). Durante o período compreendido entre fevereiro de 1999 e janeiro de 2000, foram realizados 11 cruzeiros, onde foram estabelecidas 8 estações dentro do corpo da Lagoa, no seu eixo principal, 3 estações nos principais tributários (Rio Guaíba, Rio Camaquã e Canal do São Gonçalo) e ainda uma estação na plataforma logo em seguida da saída dos Molhes da Barra. Durante as amostragens foi coletada uma imensa gama de dados, incluindo parâmetros químicos, físicos e biológicos. Como resultado foi elaborado um relatório técnico, o qual apresentou a avaliação do sistema que cerca e sobrevive deste meio, onde a qualidade da água é apenas um dos fatores influenciadores da qualidade ambiental (JICA, 2000).

Apesar destes projetos terem conseguido uma caracterização da Lagoa dos Patos, várias questões não foram abordadas, como a interação entre os diversos componentes que regem a qualidade das águas da Lagoa. Além disso, nenhum desses estudos forneceu uma ferramenta de previsão do comportamento do sistema, que permitisse prever a qualidade ambiental deste ambiente sem a necessidade de campanhas de campo, permitindo avaliar situações atípicas nas quais dados de campo são impossíveis de serem obtidos. Neste contexto, os modelos matemáticos se tornam de fundamental importância na análise e avaliação de tal sistema.

5 MODELOS MATEMÁTICOS

Segundo Schonnor (1996) pode-se resumir em três as razões para justificar a elaboração de modelos matemáticos para avaliação ambiental: (1) obter melhor compreensão do transporte e destino de substâncias químicas através da quantificação de suas reações; (2) compreender a evolução e os movimentos das substâncias; (3) determinar possíveis concentrações de exposição química em organismos aquáticos e/ou humanos no passado, presente e futuro, e, prognosticar condições futuras sobre vários cenários que recebem cargas ou alternativas de ações gerenciais.

Porém, existem muitas outras razões que justificam a importância da utilização de modelos matemáticos. Autores como Wiegert (1975) e Jorgensen (1994) ressaltam que esses modelos têm grande valor no preenchimento de lacunas de informações disponíveis, análise de fluxos dentro de diferentes compartimentos e no estudo dos processos ambientais. Segundo estes autores os modelos se tornaram úteis devido à extrema dificuldade de medir todos os

processos simultaneamente, pela impossibilidade de testar hipóteses em campo e pela dificuldade de obter séries temporais longas e confiáveis. Outra vantagem da utilização da modelagem matemática, relaciona-se com o baixo custo e elevado potencial na geração de estimativa de fluxos e dispersão de partículas. O modelo poderá ainda ser utilizado para a geração de cenários de alteração antrópica e simulação preditiva de impactos antrópicos de poluentes no sistema em estudo.

Antes de se escolher um modelo matemático adequado para determinado sistema, deve-se efetuar uma análise crítica com relação à sua aplicabilidade. Se aplicado adequadamente este deverá prever o comportamento do sistema. Os modelos científicos de simulação são geralmente estruturados para fornecer uma descrição matemática bem próxima da realidade, incluindo os principais fenômenos de interesse.

Os modelos de qualidade de água foram divididos em classes por Fitzpatrick (2001) da seguinte maneira:

- Modelos hidrodinâmicos: determinam a circulação, transporte, estratificação e processos de deposição dentro de um receptor d'água;
- Modelos de escoamento urbanos e rurais: determinam a quantidade e qualidade dos poluentes de escoamentos urbanos e rurais;
- Modelos de transporte e de transformação de constituintes químicos: avaliam o transporte e transformação de constituintes químicos.
- Modelos para lençóis d'água: determinam o destino e transporte de poluentes na água do subsolo.

A complexidade de um sistema como a Lagoa dos Patos faz com que seja necessária a utilização de dois modelos em conjunto, um modelo hidrodinâmico e um de transporte e transformação de constituintes químicos.

5.1 MODELOS HIDRODINÂMICOS

Apesar dos modelos hidrodinâmicos terem aplicações independentes no estudo de dinâmica oceânica e costeira, eles freqüentemente são utilizados como base para o estudo de modelagem da qualidade das águas. Visto que o transporte de um poluente num corpo d'água é controlado pelo fluxo da água superficial e pelos processos de mistura, o conhecimento de como as características físicas da batimetria e da costa determinam a circulação e movimento da água é essencial para a modelagem de qualidade de água. Estes modelos podem ser aplicados a lagos, reservatórios, correntes, rios, estuários e sistemas costeiros.

O movimento de águas em rios e correntes é descrito geralmente pela velocidade da água, determinada pelos aportes de água doce e pela batimetria do local. O nível d'água também é um importante fator na determinação do fluxo e velocidade da água. Para estuários e sistemas costeiros a circulação é descrita pela elevação da superfície d'água devido à maré. aportes de água doce, estratificação devido à salinidade e temperatura, ventos, desestratificação influenciada pelo vento e pelo resfriamento térmico.

Os modelos hidrodinâmicos aplicam aproximações numéricas para resolver as equações diferenciais parciais que representam as equações fundamentais da mecânica dos fluidos, Navier-Stokes e do momento. Os modelos resolvem estas equações para predizer a circulação das águas baseados na batimetria, geometria e forçantes ambientais. Dependendo do tipo de corpo d'água, do problema ambiental de interesse e da capacidade do modelo, eles podem ser aplicados para casos unidimensionais, bidimensionais e tridimensionais. A maioria dos modelos hidrodinâmicos representa o ambiente em estudo por grades retangulares ou curvilíneas e aplicam o método de diferenças finitas. Apesar de muitos modelos hidrodinâmicos não terem sua aplicação na qualidade de águas (predição de sistemas de navegação, ondas induzidas devido a tempestades, efeitos de estreitamento de canais, erosão de praias), um grande numero de aplicações desses modelos têm surgido para avaliação da qualidade de água. Os principais modelos hidrodinâmicos utilizados mundialmente são resumidos na Tabela 1.

11

Características relevantes dos modelos hidrodinâmicos

As principais características a serem levadas em conta na escolha de um modelo hidrodinâmicos são: tipo de corpo d'água, escala temporal e espacial e processos físicos disponíveis.

Tipo de corpo d´água

A principio existem 3 classes maiores de corpos d'água às quais os modelos hidrodinâmicos são aplicados: a) lagos e reservatórios; b) corregos e rios; c) estuários e sistemas costeiros. Em geral, em lagos e reservatórios considera-se que a superfície é muito maior que a profundidade e possui altos tempos de residência. Correntes e rios são geralmente caracterizados por serem canais estreitos para o transporte de água através do sistema e têm tempos de residência variáveis. Estuários e sistemas costeiros podem variar significativamente no tamanho. Estes sistemas podem variar em tamanho de 10 km² assim como o estuário do Rio de Potomac até milhares de km² como a Baia de Chesapeak. Os processos determinantes na circulação desses sistemas são a ação da maré e de ventos (FITZPATRICK et al., 2001).

Escalas temporal e espacial

Existem diferenças também entre os modelos na sua capacidade de representar escalas espaciais. A escala espacial pode ser usada como um critério para classificar para o uso em pequena ou grande escala. Alguns modelos podem representar um corpo d'água usando um ou dois volumes completamente misturados (CMV). Estes modelos são mais adequados para um nível de análise menos detalhada. O próximo nível de representação espacial é assumir que existe gradiente somente em uma direção (1-D). Estes modelos podem ser usados para a variação vertical em lagos profundos ou a corrente horizontal em rios. Outros modelos hidrodinâmicos podem ser aplicados em duas dimensões (2-D) para modelar gradientes horizontais (2-DH) e laterais (2-DV) em sistemas estuarinos e rios. Finalmente, existem os modelos capazes de representar os gradientes nas três dimensões (Figura 2). Estes modelos podem representar a batimetria e a linha da costa fornecendo uma resolução muito grande (FITZPATRICK et al., 2001).

Figura 2: Segmentação espacial usada nos modelos hidrodinâmicos.

Também existem diferenças entre os modelos na capacidade de representar as escalas temporais. Alguns modelos são capazes de avaliar somente condições estacionárias, fluxo de água doce, temperatura, radiação solar, etc. Modelos capazes de variar temporalmente as variáveis, são freqüentemente procedimentos computacionais que realizam simulações hidrodinâmicas em pequenos intervalos de tempo, geralmente variando de poucos minutos a dias. Detalhes temporais permitem que alguns modelos representem com maior fidelidade as forçantes ambientais, como a penetração de água doce, radiação solar, ventos, marés, etc (FITZPATRICK et al., 2001).

Processos Físicos

Em geral, a descrição de processos hidrodinâmicos é baseada na lei da conservação de massa, conservação da energia e na conservação de movimento. Para estuários e ambientes costeiros a lei da conservação do sal também é aplicada. Dependendo da questão ambiental avaliada e da complexidade do corpo d'água em estudo, a seleção de um modelo hidrodinâmico apropriado deveria ser baseada também na necessidade e capacidade do modelo simular um ou mais dos seguintes processos (FITZPATRICK et al., 2001):

- Processos de advecção do fluxo, da temperatura e salinidade.
- Processo de difusão horizontal ou dispersão
- Difusão vertical
- Gradiente de pressão barotrópica;

- Gradiente de pressão baroclínica;
- ➤ Ventos;
- Processo de troca de calor na superfície água-ar;
- Descargas de constituintes;
- Evaporação e precipitação;
- > Atrito no fundo, etc.

Tabela 1: Alguns dos principais modelos hidrodinâmico

MODELO	NOME DO MODELO	DESENVOLVEDOR
ADCIRC	Advanced Circulation Model for Oceanic,	University of North Carolina at Chapel
AQUASEA	Coastal and Estuarine Waters	Hill, University of Notre-Dame Vatnaskil Consulting Engineers
BFHHYDRO	Boundary Fitted Hydrodynamics Model	Applied Science Associates, Inc.
BRANCH	Branched-Network Dynamic Flow Model	USGS
C3		Seaconsult Marine Research, Ltd.
CE-QUAL-RIV1	Corps of Engineers - Quality - Rivers	USACE WES
CE-QUAL-W2	Corps of Engineers - Quality - 2D	USACE WES
CH3D-WES	Curvilinear-Hydrodynamics in Three-	USACE WES
	dimensions - Waterways Experiment Station	
CORMIX	Cornell Mixing Zone Model	Cornell University
DEM	Dynamic Estuary Model	U.S. EPA
DYNHYD5	Link-Node Dynamic Hydrodynamic Model	U.S. EPA CEAM
EFDC	Environmental Fluid Dynamics Code	Tetra Tech/VIMS
FESWMS-2DH	Finite-Element Surface-Water Modeling System for 2D Flow in the Horizontal Plane	USGS
FLOW-DELFT3D		WL Delft Hydraulics
GEMSS	Generalized Environmental Modeling System for Surface Waters - Water Quality Module	J.E. Edinger Associates, Inc.
GLLVHT	Generalized, Longitudinal-Lateral-Vertical Hydrodynamics and Transport	J.E. Edinger Associates, Inc.
HEC-RAS	River Analysis System	USACE HEC
HEM1D		Virginia Institute os Marine Science
HEM2D		Virginia Institute os Marine Science
HEM3D		Virginia Institute os Marine Science
MIKE11	Generalized Modeling Package - 1D - Water Quality Module	Danish Hydraulics Institute
MIKE21	Generalized Modeling Package - 2D - Water Quality Module	Danish Hydraulics Institute
MIKE31	Generalized Modeling Package - 3D - Water Ouality Module	Danish Hydraulics Institute
POM	Princeton Ocean Model	Princeton University
RIVMOD-H	River Hydrodynamics Model	U.S. EPA CEAM
RMA-10		Resource Management
		Associates/USACE WES
RMA2-WES		Resource Management
		Associates/USACE WES
SOBEK		WL Delft Hydraulics

5.2 MODELOS DE TRANSPORTE E DE TRANSFORMAÇÃO DE CONSTITUINTES QUÍMICOS

O primeiro modelo de transporte e transformação foi desenvolvido por Streeter (1925) e relacionava a quantidade de oxigênio dissolvido em lagos e rios, com as descargas de esgotos domésticos nestes sistemas. Mais tarde, o trabalho de Streeter foi expandido por O'Connor (1960; 1967) que desenvolveu o modelo para cálculo de balanços de oxigênio dissolvido em estado estacionário em estuários e para rios em regime transiente (O'CONNOR, 1967). Os modelos construídos por O'Connor para estas aplicações utilizavam soluções analíticas para as equações diferenciais parciais da conservação de massa e de movimento. Entretanto, as soluções analíticas requeriam considerações quando aplicadas a sistemas estuarinos e de rios, incluindo geometria constante e para estuários consideração de estado estacionários. Durante o mesmo período, Thomann (1963) começou a desenvolver modelos de diferenças finitas para avaliação para problemas de qualidade de água. Isto permitiu os modelos representarem melhor as características físicas dos sistemas em estudo.

No inicio dos anos 70 foi reconhecido que os nutrientes, na forma de nitrogênio e fósforo, poderiam estimular o crescimento exagerado de fitoplâncton, geralmente resultando em eutroficação do corpo d'água. Problemas associados a eutroficação incluem: crescimento excessivo de algas, sabor e odor quando o corpo d água era usado para abastecimento, e ocorrência de baixos níveis de oxigênio dissolvido, e que era freqüentemente associada à morte de peixes. Conseqüentemente, os modelos matemáticos foram desenvolvidos para avaliar os problemas relacionados à cadeia nutriente/eutroficação/oxigênio dissolvido (FITZPATRICK et al., 2001).

O final dos anos 70, ambientalistas e responsáveis pelo gerenciamento dos recursos hídricos começaram a reconhecer a ameaça que a descarga de contaminantes tóxicos poderiam acarretar a população mundial. Esta preocupação levou ao desenvolvimento de modelos de qualidade de água que tinham como foco a transformação e transporte de micro-poluentes tóxicos (BURNS 1982). Entre os modelos mais conhecidos e mais completos podemos citar os da Tabela 2.

15

Características relevantes dos modelos de transporte e transformação de constituintes químicos

As características que levam a distinguir os modelos de transformação e transporte são: poluentes, processos e métodos disponíveis, nível de análise, tipo de corpo d'água e escalas temporal e espacial.

Processos

Diferenças entre modelos também são encontradas nos constituintes e processos químicos e físicos que representam, assim como:

Temperatura: troca de calor devido a incidência de ondas, condução-convecção, evaporação e precipitação, etc.;

Salinidade: intrusão de água salgada e estratificação do sistema, etc.;

Patogênicos: morte de coliformes, enterococos e outras bactérias, etc.;

Oxigênio dissolvido e DBO: degradação ou oxidação da DBO carbonácea, oxidação ou nitrificação da DBO nitrogênica; reaeração ou troca de oxigênio com a atmosfera, etc.;

Material em suspensão: ressuspensão, sedimentação, floculação, etc.;

Nutrientes: amonificação ou mineralização das formas orgânicas do nitrogênio e fósforo, nitrificação, denitrificação, aumento devido a plantas aquáticas, adsorção e desorção do fósforo inorgânico ao material em suspensão, eutroficação, etc.;

Metais: oxidação, complexação, etc.;

Biomassa e fitoplâncton, fluxo de nutrientes do sedimento e matéria orgânica dissolvida.

Tipo de corpo d´água e escalas temporal e espacial

Esses dois fatores possuem as mesmas características tanto para modelos de transformação quanto para modelos hidrodinâmicos.

MODELO	NOME DO MODELO	DESENVOLVEDOR
AESOP	Advanced Ecological System Modeling Program	HydroQual, Inc.
AQUASEA	C	Vatmaskil Consulting Engineer
BASINS (QUAL2E)		U.S. EPA OST
BATHTUB		USACE WES
BFWASP	Boundary Fitted Eutrophication Modeling System	Applied Science Associates, Inc.
C3	<i></i>	Seaconsult Marine Research, Ltd.
CE-QUAL-ICM	Two-dimensional (horizontal) and three- dimensional water quality model	USACE WES
CE-QUAL-R1	One-dimensional (vertical) Reservoir Water Quality Model	USACE WES
CE-QUAL-RIV1	One-dimensional, dynamic flowand waer quality model for stream	USACE WES
CE-QUAL-W2	Two-dimensional, vertical-longitudinal, hydrodynamic and water quality model	USACE WES
EFDC	Environmental Fluid Dynamics Code	Tetra Tech/VIMS
EUTROMOD		NALMS
GEMSS-WQM	Generalized Environmental Modeling System for Surface Waters - Water Quality Module	J.E. Edinger Associates, Inc.
GLLVHT	Generalized, Longitudinal -Lateral-Vertical Hydrodynamics and Transport	J.E. Edinger Associates, Inc.
HEM1D	5 5 1	Virginia Institute os Marine Science
HEM2D		Virginia Institute os Marine Science
HEM3D		Virginia Institute os Marine Science
HSPF-RCHRES	Hydrological Simulation Program - FORTRAN - Water Quality Module	U.S. EPA CEAM
ISIS-QUALITY		HR Wallingford Ltd.
MIKE11-WQ	Generalized Modeling Package - 1D - Water Ouality Module	Danish Hydraulics Institute
MIKE21-WQ	Generalized Modeling Package - 2D - Water Quality Module	Danish Hydraulics Institute
MIKE31-WQ	Generalized Modeling Package - 3D - Water Quality Module	Danish Hydraulics Institute
PHOSMOD		NALMS
QUAL2E		U.S. EPA CEAM
TPWQM	Tidal Prism Water Quality Model	Virginia Coastal Resource
WAQ-DELFT3D		Management Program/MIMS WL Delft Hydraulics
WASP	Water Quality Analysis Simulation Program	U.S. EPA CEAM

Tabela 2: Alguns dos principais modelos de transformação e transportes de constituintes.

5.3 INTEGRAÇÃO DOS MODELOS HIDRODINÂMICOS COM OS DEMAIS MODELOS DE QUALIDADE DE ÁGUA.

A integração dos modelos hidrodinâmicos e demais modelos de qualidade de água passa por uma conversão dos resultados hidrodinâmicos para obedecer ao formato do modelo de qualidade de água a ser utilizado em seguida. Basicamente existem dois métodos de integração: direta e indireta.

A integração direta consiste da incorporação do modelo de qualidade de água diretamente no modelo hidrodinâmico. Isto é possível quando ambos modelos utilizam o mesmo método numérico de resolução das equações, mesma grade computacional e mesmo passo de tempo. A integração indireta consiste na simulação hidrodinâmica e armazenamento dos resultados para posterior conversão e aplicação do modelo de qualidade a ser utilizado posteriormente. Este método é utilizado quando os modelos, possuem métodos de resolução diferenciados, passos de tempo ou resolução de grades diferentes.

Tipicamente modelos hidrodinâmicos utilizam passos de tempo na ordem de minutos, já o passo utilizado para os demais modelos de qualidade de água depende da escala de tempo do processo biológico ou químico a ser simulado. Estudos de eutroficação geralmente variam de muitas horas a dias. Isto não significa que os modelos que contenham processos de longa duração não sejam simulados em passos pequenos de tempo como os hidrodinâmicos, porém em geral o custo computacional é inviável.

A integração indireta também é utilizada até mesmo em casos que é possível aplicar a integração direta, pois os modelos de qualidade de água possuem muito mais variáveis de estado que os modelos hidrodinâmicos, o que faz com que o modelo tenha que ser rodado muito vezes até que a calibração seja completa e, separando o modelo hidrodinâmico, esse trabalho é simplificado.

6 MODELO DELFT3D

A seguir será apresentada uma descrição dos módulos do programa Delft3D utilizados neste trabalho, resumindo suas principais características e aplicações. O objetivo deste capítulo é facilitar o uso do programa no futuro, fornecendo uma idéia simplificada do modelo. O conteúdo deste capítulo é um resumo do manual fornecido pela WL | Delft Hydraulics.

O Delft3D é pacote de modelos para ambientes aquáticos, que possibilita a interação entre os módulos disponíveis, que são: FLOW (hidrodinâmico), WAQ (qualidade de água), SEDIMENT (transporte de sedimento), MORSYS (morfodinâmico), WAVE (ondas), ECOLOGY (ecologia). A seguir serão apresentadas as características dos módulos utilizados para o desenvolvimento do trabalho: FLOW e WAQ.

6.1 MÓDULO FLOW

O módulo FLOW do modelo Delft-3D consiste em um programa para resolver as equações hidrodinâmicas do escoamento e do transporte de substâncias para os casos bidimensionais e tridimensionais. Algumas das aplicações possíveis deste modelo são: a intrusão de sal em estuários, descarga de rios de água doce em baias, estratificação térmica em lagos e mares, transporte de material dissolvido e poluentes, marés e marés meteorológicas e escoamentos de rios.

As características básicas do módulo FLOW do modelo Delft3D são:

- incluir a força de Coriolis;
- resolver gradientes de densidade devidos a distribuição não uniforme de concentração de salinidade e temperatura;
- possuir modelo de turbulência para levar em consideração a viscosidade e difusividade vertical turbulenta baseado no conceito de "*eddy viscosity*";
- incluir a tensão cisalhante exercida pelo escoamento turbulento no fundo baseada na formulação quadrática de "Chézy" ou "Manning";
- incluir a tensão cisalhante lateral ao longo das fronteiras fechadas;
- incluir a tensão do vento na superfície d'água modelada através da lei quadrática de fricção;

- simular da descarga térmica, descarga de efluentes e entrada de água fria em qualquer local e qualquer profundidade do campo computacional (módulo de advecção difusão);
- simular de transporte de constituintes/contaminantes passivos (módulo de advecção e difusão);
- simular e inundação e secagem de planícies de maré (Fronteira móvel).

As características especiais deste módulo inclui:

- conversão dos coeficientes de tensão no fundo 2D para coeficientes 3D. Um modelo 3D pode ser criado em vários tipos de sistema de coordenadas;
- aninhamento tridimensional das condições de contorno;
- flexibilidade de levar em consideração o efeito de fluxo de calor através da superfície livre (três opções estão disponíveis para este módulo);
- possui três opções para o modelo de fechamento turbulento;
- facilidade de incluir a geração de forças pela maré;
- facilidade de simular a trajetória de partículas;
- facilidade de incluir a variação espacial do vento e da pressão, incluindo interruptor para ligar ou desligar a correção de pressão hidrostática nas fronteiras abertas.

6.1.1 ASPECTOS NUMÉRICOS DO MÓDULO FLOW

6.1.1.1 Discretização Espacial

O módulo FLOW é um modelo numérico baseado no método de diferenças finitas. Para discretizar as equações tridimensionais de águas rasas no espaço, a área modelada é coberta por uma grade curvilínea, esférica ou retangular. Assume-se que a grade computacional é ortogonal e estruturada. Para a discretização das equações tridimensionais para águas rasas as variáveis são arranjadas de uma maneira especial na grade (Figura 3). Este modelo de arranjo das variáveis na grade é denominado grades escalonadas. Este arranjo em particular das variáveis, é chamado de Grade de Arakawa, onde as elevações da água são definidas no centro da célula, enquanto que as componentes da velocidade são definidas nas faces das células.

Figura 3: Elemento da grade escalonada. (+) Elevação da superfície livre; ϕ) Ponto de densidade; (\Rightarrow) Pontos das velocidades, onde u, v e w são as velocidades nas três direções.

Grades escalonadas possuem algumas vantagens como:

- > condições de contorno podem ser implementadas mais simplesmente;
- é possível utilizar um número menor de variáveis de estado discretos em comparação com a discretização de grades não escalonadas, para obter a mesma acurácia;
- grades escalonadas evitam osclações espaciais na elevação da água.

Na direção vertical o sistema de coordenada dita σ é usada. A grade vertical consiste de camadas limitadas por dois planos σ . Isto significa que em toda a área computacional, em relação à profundidade local, o número de camadas é constante. Como resultado uma representação suave da topografia é obtida. As espessuras relativas das camadas, em geral, não são uniformemente distribuídas, o que permite uma maior resolução para as zonas de interesse, tais como próximo da superfície ou do fundo.

6.1.1.2 O método de solução das equações tridimensionais de águas rasas

As velocidades horizontais das camadas verticais adjacentes são acopladas pelo termo de advecção vertical e o termo de viscosidade vertical. O sistema de coordenadas σ pode levar a camadas muito finas em regiões rasas. Para evitar instabilidades induzidas pelo termo de viscosidade vertical, uma integração vertical completamente implícita é usada para os termos de trocas verticais. Isto leva a um sistema de equações tridiagonais na vertical.

As equações para os níveis de água são resolvidas com uma técnica ADI (Alternating Direction Implicit). O método ADI consiste na divisão de um passo de tempo em dois estágios, onde cada estágio conta com meio passo de tempo. Este método calcula as elevações da água implicitamente ao longo das linhas da grade na direção x e η de forma alternada. A direção na qual a integração é implícita muda a cada meio passo de tempo. Desta forma para as elevações, apenas sistemas de equações tridiagonais ao longo das linhas da grade têm de ser resolvidos. A retro substituição das elevações calculadas nas equações de Navier-Stokes, leva aos valores das velocidades horizontais. Estas velocidades horizontais são substituídas na equação da continuidade para calcular a velocidade vertical no sistema de coordenadas σ .

Em meio passo de tempo, no qual o termo de pressão é calculado explicitamente, as equações de quantidade de movimento são resolvidas implicitamente utilizando um esquema interativo Red Black Jacobi na direção horizontal.

6.1.1.3 O método de solução para a equação de transporte

A equação de transporte é resolvida a cada meio passo de tempo. Isto é feito após o cálculo das elevações e das velocidades verticais. Para garantir que toda a massa seja conservada a equação de transporte é resolvida na forma de conservação do fluxo de massa. A integração no tempo segue o procedimento de integração para a equação da continuidade e combina um esquema ADI para a direção horizontal com um esquema completamente implícito para a direção vertical. Estas equações são resolvidas na direção horizontal por um processo interativo, método de Red Black Jacobi.

Para os termos de advecção horizontal, um esquema de diferenças finitas é usado, o qual conserva grandes gradientes e derivadas superiores sem a geração de oscilações espúrias. Para evitar concentrações negativas um operador de difusão é usado, filtro do tipo de Forester. Para a integração da difusão horizontal é aplicado o método de Crack-Nicholson. Termos fontes são integrados explicitamente. Termos sumidouros são integrados implicitamente, para evitar concentrações negativas.

6.2 MÓDULO WAQ

O módulo WAQ do pacote Delft3D é um modelo tridimensional para a representação da qualidade de água de ambientes naturais e artificiais. Este modelo resolve as equações de advecção-difusão-reação para uma grade computacional pré-definida e para uma larga quantidade de substâncias. O WAQ permite grande flexibilidade nas substâncias a serem modeladas, assim como nos processos a serem considerados.

As substâncias possíveis de serem modeladas são: substâncias conservativas (salinidade, cloretos, traçadores), substâncias com decaimento, material em suspensão, temperatura, nutrientes, matéria orgânica, oxigênio, bactérias, metais pesados e micro-poluentes orgânicos. O Delft3D-WAQ permite o usuário especificar uma larga quantidade de processos físicos, químicos, biológicos e ecológicos. Alguns dos processos passíveis de modelagem são: sedimentação e ressuspensão, reaeração de oxigênio, crescimento e mortalidade de algas, mineralização da matéria orgânica, nitrificação e denitrificação, adsorção de metais, volatilização de micro-poluentes, etc.

O módulo permite simular tanto substâncias e processos individualmente, como fazendo qualquer tipo de associação, ou até mesmo modelar um sistema aquático com todos os processos e substâncias.

6.2.1 ASPECTOS NUMÉRICOS DO MÓDULO WAQ

Para modelar o transporte de substâncias, o corpo d'água é dividido em pequenas caixas, onde o conjunto completo de todas pequenas caixas formam a grade computacional. O WAQ usa um volume discreto de água que tem dimensões Δx , Δy , Δz e tem duas superfícies em cada uma das três direções. O transporte ocorre entre os volumes d'água, ou seja, a água que entra numa caixa deve sempre vir de uma ou mais caixas vizinhas. Esta aproximação é uma simplificação da Lei da Conservação da Massa. Este jogo de movimentação da água entre as pequenas caixas é denominado aproximação de volumes finitos.

As equações de transporte de água e de outras substâncias, assim como as equações de reações são resolvidas pelo método de volumes finitos. Todos esquemas numéricos disponíveis no WAQ usam esquemas explícitos de primeira ordem para resolver os termos de reação e os termos fonte.

7 METODOLOGIA

7.1 METODOLOGIA DE CAMPO – Programa Pró -Mar de Dentro

Durante o período compreendido entre fevereiro de 1999 e janeiro de 2000, foram realizados 11 cruzeiros (Tabela 3), onde foram estabelecidas 8 estações dentro do corpo da Lagoa dos Patos no eixo principal, 3 estações nos principais tributários (Rio Guaíba, Rio Camaquã e Canal do São Gonçalo) e ainda uma estação na plataforma logo em seguida da saída dos Molhes da Barra

Cruzeiro	Data	Cruzeiro	Data
1	12/02/99	7	24/08/99
2	03/03/99	8	23/09/99
3	12/04/99	9	04/11/99
4	18/05/99	10	09/12/99
5	23/06/99	11	18/01/00
6	20/07/99		

Tabela 3: Datas dos cruzeiros realizados pelo Programa Mar de Dentro.

As análises foram realizadas pelo Laboratório de Hidroquímica da Fundação Universidade Federal do Rio Grande, utilizando os métodos citados na Tabela 4 e a localização das estações de amostragem estão na Figura 4.
¥7	Volume Procedimento após		D ~		
variaveis	coletado	coleta	Preservaçao	Metodos Ananucos	
Turbidez	25 mL	fechar herméticamente.	-	Turbidímetro Analion	
Sólidos dissolvidos	500 mL	fechar herméticamente.	conservar a frio e ao abrigo da luz	APHA, 1998. Standard Methods for the Examination of Water and Wastewater. 18 th Edition.	
Coliformes totais	500 mL	fechar herméticamente.	-	APHA, 1998. 9221 B. Standard Total Coliform Fermentation Technique (p. 9-48 – 9-51).	
Coliformes fecais	500 mL	fechar hermét icamente.	-	APHA, 1998. 9221 E. Fecal Coliform Procedure (9-54 – 9-55).	
Temperatura do ar	no local	-	-	Uso de termômetro portátil	
Temperatura da	medidos	_	-	Uso de termômetro portátil	
água	no local				
Oxigênio dissolvido	250 mL	adição de R1 + R2	manter no escuro, Na temperatura ambiente e titular em 24 hs.	Método volumétrico de Winckler (Strickland e Parsons, 1972). O percentual de saturação foi calculado segundo Grasshoff (1983).	
Demanda Bioquímica de Oxigênio (DBO)	2 frascos de DBO	-	-	APHA, 1998. Stand ard Methods for the Examination of Water and Wastewater. 18 th Edition. The Kjeldahl Method.	
Demanda Química de Oxigênio (DQO)	600mL	amostra não filtrada	Congelamento imediato. Manutenção no escuro	Método de Pierre Michel, extraído da Revue des travaux de l'Institut des Pêches Maritimes, Tome XXXVI, Fasc. 3, Septembre 1972, ,Nantes, France.	
рН	medido no local	-	-	Uso de potenciômetro portátil	
Nutrientes	-	Filtração imediata	NH4: fixação a bordo seguida de congelamento Outros: congelamento	Baumgarten et al., 1996	
Nitrogênio total na água	250 ml	congelamento imediato	congelamento imediato. Manutenção no escuro	APHA, 1998. Standard Methods for the Examination of Water and Wastewater. 18 th Edition. The Kjeldahl Method.	
Fósforo total na água	1000 ml	adição de 1 ml de HNO ₃ supra puro.	manter em geladeira (4°C)	UNEP (1991). Standard chemical methods for marine environmental monitoring. Reference Methods for Marine Pollution Studies No. 50. Chapter 10. Simultaneous persulfphate oxidation for the determination of total nitrogen and phosphorus compounds.	
Metais dissolvidos: -ferro total -cromo -zinco -alumínio	1000 ml	adição de 1 ml de HNO3 supra puro.	manter em geladeira (4°C)	 Bernard Welz, Atomic Absorption Spectrometry (1985) K. Jakson et al., Anal. Chemistry (1998) 70, 363R B. Baraj, Niencheski. L. F. et al., Fresenius J. Anal. Chemistry,(1999) 364 – 678. MESL. Standard operating procedures. Inorganic Laboratory. Monaco, 1996 	

Tabela 4:Estratégias de amostragem e métodos para os parâmetros analisados (Jica).

Figura 4: Pontos de amostragem no Programa Pró Mar de Dentro.

7.2 METODOLOGIA DE CAMPO – Projeto Espinha

Entre 06/01 a 03/02 de 1986, foram realizados cruzeiros coletando amostras em 60 estações na Lagoa dos Patos. Destas, 17 estações foram amostradas na região estuarina, e as restantes foram divididas em transectos no sentido Leste-Oeste e Norte-Sul, cobrindo assim todas as regiões da Lagoa. No sentido Leste-Oeste foram obtidos dados de margem a margem da região de Tapes e São Lourenço. Enquanto que no sentido Norte-Sul foram obtidos dados do Guaíba até a região da desembocadura da Lagoa (Figuras 5 e 6).

As análises foram realizadas pelo Laboratório de Hidroquímica da Fundação Universidade Federal do Rio Grande, utilizando os métodos citados na Tabela 5.

Tabela 5: Estratégias de amostragem e métodos para os parâmetros analisados (Projeto Espinha).

Darâmotros	Volume	Procedimento após	Procompoão	Métodos Analíticos	
1 ar ametros	coletado	coleta	I Itsel vaçao		
Temperatura da	medidos			Lico do tormômotro portótil	
água	no local	-	-	oso de termometro portati	
		adição de R1 + R2	manter no escuro,	Método volumétrico de Winckler (Strickland e Parsons, 1972).	
Oxigênio	250 mI		Na temperatura	O percentual de saturação foi calculado segundo Grasshoff	
dissolvido	250 IIIL		ambiente e titular em	(1983).	
			24 hs.		
ъЦ	medido			Uso de potenciômetro portátil	
pn	no local	-	-		
			NH4: fixação a		
	-	Filtração imediata	bordo seguida de		
Nutrientes			congelamento	Baumgarten et al., 1996	
			Outros:		
			congelamento		

Figura 5: Pontos de amostragem do Projeto Espinha em toda a Lagoa dos Patos.

Figura 6: Pontos de amostragem do Projeto Espinha no estuário.

7.3 BASE DE DADOS PARA O MODELO MATEMÁTICO

O modelo matemático seja ele qual for, necessita de algumas informações imprescindíveis para sua aplicação, que variam de modelo para modelo e, ao objetivo que o mesmo se propõe (LUIJENDIJK, 2001). O módulo FLOW do modelo Delft3D, necessita como parâmetros de entrada das seguintes informações: batimetria do local em estudo, descarga fluvial, intensidade e direção dos ventos e dados da maré presente no local.

7.3.1 BATIMETRIA

Os dados batimétricos foram obtidos através da digitalização da carta náutica nº 2140 da Diretoria de Hidrografia e Navegação (DHN). As cartas foram digitalizadas e em uma mesa digitalizadora do Laboratório de Oceanografia Geológica da FURG, segundo metodologia descrita em Castelão (1999).

7.3.2 DESCARGAS FLUVIAIS

As descargas fluviais aplicadas ao modelo hidrodinâmico da Lagoa dos Patos, foram as descargas dos rios: Guaíba, Camaquã, São Gonçalo. Os valores foram obtidos com a Agência Nacional de Águas, pelo Sistema de Informações Hidrológicas (HIDRO - <u>http://www.hidroweb.com.br</u>). As descargas encontradas foram médias mensais do período de 01/12/1998 a 01/03/2000, e não as descargas diárias como desejado, apesar do modelo permitir a utilização das descargas médias mensais. A utilização das descargas diárias permitiria uma representação mais real. Para alimentar o modelo, as vazões foram interpoladas (Figura 7), para obter uma distribuição temporal satisfatória.

Figura 7: Descarga média mensal dos principais tributários (FONTE: ANA).

7.3.3 **VENTOS**

As velocidades e as direções dos ventos foram obtidas do Laboratório de Metereologia da FURG. Os valores diários usados nas simulações são apresentados nas Figura 8 e 9.

Figura 8: Valores diários da intensidade do vento (FONTE: Laboratório Metereológico da FURG)

Figura 9: Valores diários da direção do vento (FONTE: Estação Metereológica da FURG)

7.3.4 MARÉ

Foi utilizada uma maré lunar semi-diurna com amplitude de 0,5m, freqüência de 28,8h e fase de 233°. Estes dados foram obtidos de Herz (1977).

7.4 PREPARAÇÃO DO MODELO HIDRODINÂMICO

Devido ao fato deste trabalho ser pioneiro na utilização deste modelo nesta instituição, o capítulo a seguir é um roteiro resumido dos passos a serem seguidos em futuras aplicações.

Para iniciar o modelo hidrodinâmico um arquivo com os dados de entrada deve ser preparado; neste são definidos os valores dos parâmetros de entrada necessários. Muitos parâmetros originam-se de restrições físicas. Os valores da maioria destes parâmetros são definidos pelos fenômenos físicos modelados e pela técnica numérica utilizada para resolver o problema. Dentro da faixa de valores reais possíveis, a solução é provavelmente sensível a escolha dos valores destes parâmetros.

A maioria das informações que o modelo necessita, ficaram armazenadas no arquivo de definição ("mdf"), que pode ser facilmente editado pelo pré processador de dados. Entretanto nem todas informações precisam obrigatoriamente estar neste arquivo, dados de entrada para o modelo podem ser importados e chamados pelo próprio arquivo de definição, com auxílio do processador de entrada de dados.

7.4.1 CONSTRUÇÃO DA GRADE

A porção do ambiente que se deseja simular é representada computacionalmente por uma grade. O Delft3D dispõe do RGFGRID, um aplicativo destinado à criação e manipulação de grades, retangulares, esféricas ou curvilíneas. O modelo hidrodinâmico permite a aplicação de grades curvilíneas ortogonais para a modelagem da área em estudo. Existem duas razões principais para a aplicação deste tipo de grades curvilíneas:

- > o esforço computacional pode ser minimizado pelo uso de grades de grande resolução em áreas de interesse em combinação com grades de baixa resolução distante destas, por exemplo próximo a fronteiras do modelo;
- a representação normal de linhas de costa por contornos tipo escadaria, os quais introduzem viscosidade artificial nos cálculos, pode ser evitado utilizando linhas da grade curvilinear paralelas às fronteira da costa.

A construção da grade computacional é feita de acordo com o objetivo principal do estudo de modelagem, mas deve satisfazer duas restrições de natureza numérica:

- As linhas da grade devem interceptar-se o mais perpendicularmente possível (grade ortogonal) para permitir um código computacionalmente mais eficiente para resolver a hidrodinâmica.
- O espaçamento da grade deve variar suavemente sobre a região computacional, para minimizar erros de pouca acurácia nos operadores de diferenças finitas. Um fator máximo de 1,3 ou 1,4 para o tamanho de segmentos consecutivos da grade é recomendado.

A construção da grade começou com a digitalização dos contornos da Lagoa (Figura 10), os pontos que representam esses contornos foram importados para o editor de grades RGFGRID. A seguir, linhas de referência que sobrepunham aos contornos foram adicionadas manualmente excluindo a Lagoa do Casamento, o Saco de Tapes, o Saco do Rincão, o Saco da Mangueira, Saco do Arraial e o Saco do Rio Grande, com o objetivo de suavizar as margens da Lagoa (Figura 11), facilitando a modelagem da circulação hidrodinâmica. Os pontos de intersecção dessas linhas de referência então foram calculados, ordenados e transformados em uma grade grosseira pelo RGFGRID. O refino da grade foi feito por um procedimento iterativo do editor de grade, que permite a manipulação de cada grade intermediária até a obtenção da resolução (400x20 células) e do layout desejados. Após a obtenção da resolução desejada foi então utilizado o procedimento de ortogonalização, que permitiu obter uma grade completamente ortogonalizada (Figura 12).

Figura 10: Contorno da Lagoa dos Patos

Figura 11: Linhas de referência para transformação em grade.

Figura 12: Grade computacional da Lagoa dos Patos

Essa grade então foi importada para o processador de entrada de dados e nele foi definido que a grade seria dividida em duas camadas, onde cada camada (superfície e fundo) constaria com 50% da profundidade total da Lagoa.

7.4.2 BATIMETRIA

O pacote de modelagem Delft3D possui o aplicativo QUICKIN para geração, interpolação e manipulação de variáveis que variam no espaço, tais como a batimetria. O programa permite que a batimetria utilizada possa ser obtida de cartas náuticas digitalizadas, retirada de um modelo maior para a região, a partir de dados disponíveis (eco-sonda). A batimetria utilizada no modelo deve se assemelhar o máximo da batimetria natural. No entanto, isto não significa que para cada ponto da grade seja necessário atribuir um valor real da batimetria. O QUICKIN permite a interpolação dos dados na estrutura da grade por dois métodos: pela média ou por triangulação.

O método da batimetria média é indicado quando existem mais amostras batimétricas que células da grade, este método consiste na média simples dos pontos contidos em cada célula.

No caso da Lagoa dos Patos os dados batimétricos possuem uma resolução menor que a grade construída, portanto o método indicado nesse caso é o de interpolação triangular, onde uma rede de triangulação foi desenhada de tal forma que os vértices são os valores amostrais e os lados dos triângulos possuam o menor comprimento possível atingindo assim a resolução desejada dos dados (Figura 13 e 14).

Figura 13: Perfil vertical da batimetria no eixo principal da Lagoa dos Patos.

Figura 14: Batimetria da Lagoa dos Patos.

7.4.3 TEMPO DE SIMULAÇÃO

Os dados experimentais disponíveis para comparação e avaliação do modelo foram coletados no período de 12/02/1999 a 17/01/2000, porém as simulações foram conduzidas durante o período de 01/12/1998 a 01/03/2000. Fez-se necessário a utilização de período maior de simulação, pois o modelo levava cerca de 30 dias para atingir as condições normais de circulação e além disso, existe o tempo de residência da Lagoa, onde alterações no sistemas são sentidos em certos pontos da Lagoa apenas cerca de 30 dias posterior ao seu acontecimento. O tempo de residência será discutido posteriormente nos resultados.

O intervalo de integração utilizado na simulação numérica foi de 3 horas, pois foi o intervalo de tempo que deu melhores resultados e não consumiu tanto tempo de simulação.

7.4.4 PROCESSOS

O módulo FLOW, permite introduzir na simulação hidrodinâmic a os seguintes processos, salinidade, temperatura, transporte de constituintes conservativos, vento e ondas. Na modelagem da Lagoa foram escolhidos a salinidade e o vento como processos atuantes. A salinidade foi introduzida nas condições de contorno, enquanto que o vento foi definido como dependente apenas do tempo. Os dados de vento utilizados foram os apresentados no item 7.3.3 e importados pelo processador de entrada de dados.

7.4.5 CONDIÇÕES INICIAIS

As condições iniciais a serem inseridas dizem respeito aos processos escolhidos, no caso em estudo apenas a condição inicial de salinidade é solicitada. Existem três opções de condições iniciais para fornecer ao programa:

- Fazer uso de um arquivo de reinicialização. Neste caso as condições iniciais são determinadas pelo resultado de um caso anterior;
- Usar um arquivo que contenha as condições iniciais;
- As quantidades podem ser definidas como uniforme em toda a região computacional.

As condições iniciais utilizadas foram: salinidade, nível d'água em relação e nível de referência todos iguais a zero. A consideração de salinidade igual a 0 se justifica porque existem áreas da Lagoa que a salinidade praticamente inexiste, já as regiões onde a salinidade existe, ela foi atingida pela forçante de maré imposta na condição de contorno dos Molhes da Barra, que será discutida a seguir.

7.4.6 CONDIÇÕES DE CONTORNO

Existem quatro tipos básicos de condições de contorno que podem ser utilizados no modelo FLOW, cada uma é aplicada para situações diferentes, e em diferentes combinações. Estas condições são: elevação da água na fronteira, velocidade na fronteira, fluxo na fronteira e fronteira de Riemann (Condição fracamente refletiva). A escolha do tipo de condição de contorno depende do fenômeno a ser estudado e dos dados disponíveis.

As fronteiras devem se localizar o mais afastado possível da região de interesse, para evitar que pequenos erros nas condições de contorno possuam influência significativa nos resultados do modelo,. A condição de contorno é prescrita nos pontos chamados de suportes, os quais dividem a fronteira em vários segmentos. Os pontos que ficam entre estes pontos suporte são calculados através de uma interpolação linear da forçante nos pontos suportes vizinhos. O sinal dos pontos suportes pode ser fornecido ao programa com um sinal do tipo de Fourier ou diretamente como série temporal.

No caso da simulação da dinâmica da Lagoa dos Patos, foram fornecidas como condições de contorno, fronteiras fechadas (margens da Lagoa) e fronteiras abertas (limites norte, sul e tributários) (Figura 15). A fronteira norte, correspondente ao Rio Guaíba, e foi considerado como uma fronteira aberta, utilizando como forçante a descarga da Lagoa e foi prescrita como uma série temporal, obtida pela interpolação dos dados mensais, assim como o rio Camaquã e o Canal do São Gonçalo. A fronteira sul, consiste dos Molhes da Barra do Rio Grande. Nesta fronteira foi estabelecida como forçante o nível do mar, levando em conta os dados do item 7.3.4.

Figura 15: Localização das condições de contorno do modelo hidrodinâmico da Lagoa dos Patos.

7.4.7 PARÂMETROS FÍSICOS

Os parâmetros físicos do modelo podem ser separados em duas classes, aqueles que variam espacialmente, e aqueles que são uniformes em toda área modelada. A constante gravitacional, o coeficiente de tensão do vento, os valores de salinidade e temperatura usados na equação do estado para determinar a densidade e o parâmetro de Coriolis, foram fornecidos ao modelo, como sendo as seguintes constantes:

Constante gravitacional	9,81	m^2/s	(Handbook for analytical quality control in
			water and waste-water laboratories)
Densidade da água	1000,00	kg/m³	(Handbook for analytical quality control in
-		-	water and waste-water laboratories)
Densidade do Ar	1,00	kg/m³	(Handbook for analytical quality control in
			water and waste-water laboratories)
Temperatura	15,00	°C	(Handbook for analytical quality control in
			water and waste-water laboratories)
Coeficiente de arrasto do Vento	0,002	m/s	(CASTELÃO, 1999)

O coeficiente de atrito no fundo e os coeficientes de difusividade horizontal e vertical podem variar seus valores espacialmente. Porém como os valores reais destes parâmetros não são conhecidos, definiu-se que estes coeficientes seriam constantes ao longo de toda Lagoa e seus valores foram determinados no processo de validação, como sendo:

Formulação Rugosidade do Fundo	Chezy
Difusividade Horizontal Turbulenta	30,0 m²/s
Difusividade Vertical Turbulenta	$10^4 \text{ m}^2/\text{s}$
Modelo de Turbulência	Algébrico

7.4.8 PARÂMETROS NUMÉRICOS

Tanto os parâmetros numéricos como físicos irão influenciar o resultado dos cálculos. Obviamente, não se deseja que os parâmetros numéricos possuam uma influência muito forte nos resultados computacionais. Portanto, antes de começar o processo de validação do modelo, deve-se verificar se o modelo esta operando fora da área na qual a solução possui influência dos parâmetros numéricos. Como o tamanho da grade foi definido de acordo com a resolução desejada e é fixo, o parâmetro numérico mais importante continua sendo a definição do passo de tempo do modelo. Uma comparação simples dos resultados relevantes para vários passos de tempo revela a região de influência numérica. A seguir são apresentados os parâmetros numéricos exigidos pelo módulo FLOW, obtidos do manual do usuário (Delft3D, FLOW, User Guide, 1999).

Profundidade mínima na qual uma célula da grade é considerada molhada 0,1 m (Threshold Depth)

Intervalo de tempo usado no inicio da simulação para uma transição suave entre 360 min a condição inicial e a condição de contorno (Smoothing Time)

Correção da difusão numérica em pontos de concentração negativa (Forrester sim Filter – horizontal e vertical)

Correção para coordenadas σ , devido a desvantagens das coordenadas σ sim representarem gradientes de profundidades muito grandes

Esquema de Advecção, método numérico para resolução dos termos advectivos Cíclico na equação advecção-difusão para os constituintes

7.4.9 PARÂMETROS DE SAÍDA

Séries temporais podem ser usadas para monitorar o processo em locais pré definidos, as chamadas estações de monitoramento e seções de controle. O processador de entrada do FLOW permite selecionar quais dados históricos são de interesse.

As estações de monitoramento foram definidas conforme a localização dos pontos de amostragem dos cruzeiros realizados, tabela 6 e Figura 4.

_	Pontos de Observação	Latitude	Longitude	Profundidade do Local
_	P1	30° 36′ 00′′′ S	51° 00′ 00′′ W	7,4m
	P2	30° 47′ 00′′ S	51° 07′ 30″ W	6,5m
	P3	31° 00′ 00′′ S	51° 11´ 30´´ W	6,8m
	P4	31° 24′ 00′′ S	51° 23′ 00′′′ W	6,1m
	P5	31° 34′ 00′′ S	51° 40′ 00′′ W	6,7m
	P6	31° 41´ 00´´ S	51° 53´ 30´´ W	7,0m
	P7	31° 43´ 00´´ S	52° 03′ 00′′′ W	7,0m
	P8	31° 56′ 30′′ S	52° 05′ 30′′ W	7,2m
	R1	30° 21´ 42´´ S	51° 03´ 36´´ W	10,0m
	R2	31° 10′ 00′′′ S	51° 48′ 00′′ W	
	R3	31° 48′ 30″ S	52° 22′ 30′′ W	

Tabela 6: Localização das estações de amostragem.

As seções de controle escolhidas foram as seções do Rio Guaíba (3,5km), por ser o principal aporte fluvial e estar localizado no início da Lagoa e a seção na Ponta da Feitoria (30 km), que teve sua localização por estar no fim da Lagoa onde o sistema já recebeu todos os aportes (Figura 16).

A armazenagem dos dados das simulações da hidrodinâmica da Lagoa dos Patos foi feita do período compreendido de 01/12/1998 a 01/02/2000, gravando os resultados a cada 6h.

Figura 16: Localização das secções de controle de vazão.

Através do processador de entrada do FLOW o usuário pode selecionar o tempo de início, o tempo final e o intervalo para escrever as informações do campo nos chamados arquivos mapas. Pode ser feita uma seleção dos processos para os quais as informações de campo devem ser disponíveis.

Todos os intervalos de tempo devem ser fornecidos em minutos e devem ser referenciados à data inicial da simulação. Os parâmetros de tempo devem ser especificados com valores múltiplos do intervalo de integração. Isto inclui o tempo inicial, final e os parâmetros relacionados com dados dependentes do tempo. Os dados dependentes do tempo podem ser especificados em intervalos de tempo não uniforme, mas estes intervalos devem seguir as condições anteriores.

O tempo especificado no primeiro registro de dados dependentes do tempo deve ser menor ou igual a tempo inicial da simulação. O tempo especificado para o último registro de dados dependente do tempo deve ser maior ou igual ao tempo final da simulação. A menos que especificado de outra forma, os valores de dados dependentes do tempo em instantes intermediários são obtidos por interpolação (linear) entre dois valores consecutivos os quais o usuário deve ter especificado. A hora local é expressa com a diferença de horas entre a hora local e a hora GMT. Valores positivos indicam longitudes positivas.

7.5 CONVERSÃO DOS DADOS HIDRODINÂMICOS

A conversão dos resultados obtidos pelo módulo FLOW é necessária para aplicação do módulo WAQ, utilizando os dados hidrodinâmicos. Esse procedimento é exigido devido aos métodos diferenciados de solução das equações diferenciais parciais pelos FLOW e WAQ. O FLOW como já foi mencionado, utiliza o método de diferenças finitas, enquanto que o WAQ resolve as equações pelo método de volumes finitos.

O Delft3D dispõe de um programa denominado COUPLE, que converte os resultados hidrodinâmicos para o formato exigido pelo WAQ, assim como converte a malha de elementos finitos para uma malha de volumes finitos.

Os dados armazenados pelo modelo hidrodinâmico (arquivo "com") devem ser carregados pelo COUPLE. Uma vez carregados, é possível ainda editar a grade, antes da conversão, adicionar camadas ou diminuir o intervalo de integração. Para a Lagoa dos Patos nenhuma alteração foi realizada. Os dados são salvos e armazenados num arquivo "hyd" que posteriormente serão carregados pelo módulo WAQ.

7.6 PREPARAÇÃO DO MODELO DE TRANSPORTE E TRANSFORMAÇÃO DE CONSTITUINTES QUIMICOS

Assim como o FLOW, o módulo WAQ possui um pré-processador gráfico que auxilia na preparação do modelo que simulará a qualidade de água do corpo hídrico em estudo. A seguir serão apresentados os dados necessários ao modelo.

7.6.1 DADOS HIDRODINÂMICOS

Nesta opção permite a seleção dos dados hidrodinâmicos obtidos pelo módulo FLOW e, posteriormente convertidos pelo programa de conversão COUPLE.

7.6.2 COEFICIENTES DE DISPERSÃO

Os coeficientes de dispersão são necessários para a resolução das equações de advecção-difusão-reação. Os valores para estes coeficientes foram obtidos do manual do usuário (Delft3D, WAQ, User Guide, 1999).

Coeficientes de dispersão horizontal	$5 \text{ m}^2/\text{s}$
Coeficiente de dispersão vertical	$10^{-3} \text{ m}^2/\text{s}$

7.6.3 SUBSTÂNCIAS

Neste menu define-se as substâncias que serão modeladas. Aqui devem ser selecionado um arquivo que contém informações sobre as substâncias, os processos correspondentes a estas substâncias e os parâmetros usados para estes processos.

Os arquivos de substâncias são criados pela Ferramenta de Configuração de Processos (PCT). O PCT pode ser ativado neste mesmo menu, selecionando-se a opção "Tools", e em seguida "Run PCT". Quando o PCT é iniciado, aparecem três janelas: Gerenciador de Arquivos, Mensagens e Seleção de Grupos, dividido em Grupo de Substâncias Disponíveis (GSD) e Grupo de Substâncias Selecionado (GSS).

Para criar um arquivo de substância, primeiramente seleciona-se o grupo ou grupos na qual a substância ou substâncias desejadas se localizam. Selecionando-se o grupo escolhido na janela GSS, abre-se uma janela denominada Seleção de Substâncias, dividida em Substâncias Disponíveis (SD) e Substâncias Selecionadas (SS). Em seguida, escolhendo a substância selecionada, torna-se disponível a janela de Seleção de Processos disponíveis para aquela substância. Nesta janela pode-se marcar os processos desejados. Quando um processo é selecionado um botão de edição é ativado. Selecionandoesse botão pode-se editar os parâmetros disponíveis para este processo. Os parâmetros disponíveis podem ser escolhidos como valores fixos ou ainda calculados por outro processo. Uma vez escolhidos todos os parâmetros, processos e substâncias, salve-se esse arquivo. O arquivo salvo terá a extensão ".0", porém o arquivo a ser carregado no processador de entrado do WAQ é o arquivo com a extensão ".sub" gerado automaticamente no mesmo local do arquivo ".0"

7.6.4 TEMPO DE SIMULAÇÃO

As simulações foram conduzidas no mesmo período das simulações hidrodinâmicas (01/12/1998 a 01/03/2000). O intervalo de integração utilizado foi de 6h, o dobro das simulações hidrodinâmicas, já que os processos químicos, físicos e biológicos, aqui contemplados pelo WAQ acontecem em intervalos de tempo maiores. Esse aumento no intervalo de integração economiza tempo e esforço computacional.

7.6.5 CONDIÇÕES INICIAIS

As condições iniciais a serem inseridas no modelo WAQ dizem respeito às concentrações iniciais das substâncias a serem modeladas. Na tabela 7 são mostrados valores utilizados para cada uma das substâncias.

Substância	Concentração Inicial	Substância	Concentração Inicial
Material em	45,060 mg/L	Cromo	0,002 gCr/m ³
Suspensão			
Oxigênio Dissolvido	9,430 g/m³	Cobre	0,001 gCu/m ³
Nitrato	0,165 gN/m ³	Zinco	0,010 gZn/m ³
Nitrito	Não simulado	Chumbo	0,0009 gPb/m ³
Amônio	0,115 g/m³	Níquel	0,0006 gNi/m ³
Nitrogênio Total	0,500 gN/m ³	Cádmio	0,0003 gCd/m ³
Fosfato	0,019 gP/m ³	Ferro	0,036 gFe/m ³
Fósforo Total	Não simulado	Mercúrio	Não simulado
Carbono Orgânico	17,886 gC/m ³	Arsênio	Não simulado
Total			
Sílica	1,840 gSi/m³		

Tabela 7: Concentração inicial das substâncias utilizadas nas simulações (Fonte JICA).

7.6.6 CONDIÇÕES DE CONTORNO

As condições de contorno utilizadas nas simulações da qualidade da água da Lagoa dos Patos, foram os aportes das substâncias dos principais tributários, no Rio Guaíba, no Rio Camaquã e no Canal do São Gonçalo, além do aporte do canal de ligação entre estuário e a Lagoa. Os dados utilizados foram os valores mensais obtidos nos 11 cruzeiros do Programa Mar de Dentro. O módulo WAQ permit e que as condições de contorno variem com a profundidade ou com o tempo, mas não permite a variação simultânea das concentrações com a profundidade e com o tempo. Tendo em vista que os dados coletados variaram muito pouco com a profundidade, foi escolhida a variação temporal das condições de contorno. Em seguida, foi escolhida a interpolação linear dos dados mensais dos contornos. Os valores das concentrações nos tributários, assim como nas estações ao longo da Lagoa estão apresentadas no Anexo B.

7.6.7 PARÂMETROS NUMÉRICOS

Método de Integração: Esquema ADI para modelos 3D (esquema de segunda ordem, na direção horizontal e discretização central, na direção vertical).

7.6.8 PONTOS DE OBSERVAÇÃO

Os pontos de coleta de dados no modelo WAQ foram os mesmos escolhidos para as simulações hidrodinâmicas (Tabela 6).

7.6.9 PARÂMETROS DE SAÍDA

A armazenagem dos dados das simulações da qualidade da água da Lagoa dos Patos foi feita do período compreendido de 01/12/1998 a 01/02/2000, gravando os resultados a cada 6h, assim como as simulações hidrodinâmicas.

8 **RESULTADOS E DISCUSSÃO**

A avaliação da modelagem dos processos químicos que ocorrem na Lagoa foi realizada em duas etapas:

- a) avaliação dos resultados do modelo hidrodinâmico: constou da validação do modelo e obtenção das condições hidrodinâmicas da Lagoa (tempo de residência, velocidade, nível, etc., além de obter a distribuição da salinidade na Lagoa) para serem utilizadas como alimentação para o modelo de qualidade de água (item 8.1).
- b) avaliação dos resultados do modelo de qualidade de água: foram realizadas simulações dos parâmetros relativos à qualidade de água, simulando-se cada um individualmente, com o objetivo de avaliar os processos de cada um deles sem a interferência dos demais (item 8.2).

8.1 MODELO HIDRODINÂMICO

8.1.1 AVALIAÇÃO DO MODELO HIDRODINÂMICO

O Delft3D ainda não havia sido utilizado para uma situação real, por este motivo, antes da sua utilização para o desenvolvimento deste trabalho, ele deveria passar por uma avaliação. Devido a complexidade do seu uso para toda a Lagoa dos Patos, este modelo foi aplicado apenas à região estuarina, tendo sido escolhida a época em que aconteceu o incidente NT Bahamas, pois foram produzidos e disponibilizados muitos dados ambientais úteis para calibrar e validar o referido modelo. Maiores detalhes sobre esta aplicação podem ser obtidos no Anexo A, que traz o artigo intitulado "Avaliação da dispersão e diluição da carga ácida do NT Bahamas no estuário da Lagoa dos Patos através do modelo Delft3D", de R. S. PEREIRA; L. F. NIENCHESKI; M. Vitola e W.T. PINTO, pré-aceito pela Revista Brasileiro de Recursos Hídricos.

8.1.2 VALIDAÇÃO DO MODELO HIDRODINÂMICO

Durante a época em que foram realizados os cruzeiros, foi observado que não haviam sido registrados períodos de chuvas intensas, nem grandes períodos de seca, o que fez com que a salinidade fosse um parâmetro indicador dos processos de transporte continente-oceano e vice-versa. Portanto, a validação do modelo foi feita utilizando a salinidade, procedimento já utilizado por Wang et al. (1999) na Baia de Tampa, Flórida. A distribuição da salinidade deve ser a mais precisa possível, pois é ela que influência todos os processos químicos na Lagoa (NIENCHESKI et al., 1997). Os valores de salinidade obtidos durante os cruzeiros foram comparados com os resultados das simulações nos 8 pontos considerados e são apresentados a seguir de acordo com a importância da salinidade em cada um deles.

Os resultados das simulações, assim como os valores medidos em campo de salinidade, não demonstraram variação vertical. Esse comportamento, se deu devido ao alto grau de mistura encontrado na Lagoa durante os períodos de amostragem.

O ponto 8 (Figura 17) por ser o local mais próximo da ligação com o oceano, região de maior profundidade e presença de cunha salina tem a dinâmica mais complexa. Apesar de todas essas características os resultados das simulações representaram exatamente os valores medidos, indicando um comportamento satisfatório do modelo.

Figura 17: Distribuição da salinidade ao longo do tempo nas estações 8 e 7, indicados pelos pontos P8 e P7. Pontos: salinidade medida em campo; Linha: salinidade simulada.

O ponto 7 (Figura 17) apresentou valores simulados muito próximos aos reais no período de vazante e alguns desvios durante o período de enchente. Entre dezembro de 1999 a janeiro de 2000, valores altos de salinidade (maiores que 25) foram encontrados, enquanto que deveriam ser obtidos valores entre 10 e 15. Isso se deve ao fato do ponto 7 estar localizado no extremo superior do estuário, onde aportam as águas da Lagoa dos Patos e ocasionalmente águas costeiras marinhas. Portanto, é uma região de hidrodinâmica diferenciada favorecida ainda pela quebra batimétrica (de 6m para 1m), e por conseqüência, região de grande mistura a qual não foi reproduzida com fidelidade pelo modelo. Outra explicação pode residir no fato do modelo ter sido abastecido por valores médios das descargas fluviais. Isto pode fazer com que as descargas de água doce, sejam sub ou superestimadas em um determinado momento em relação ao valor real respectivo. Entretanto, esta explicação não pode ser aplicada ao ponto 8, pois esta região diferenciou-se das outras, por estar completamente dominada pela água oceânica, em função de sua localização costeira.

Já, observando o ponto 6 (Figura 18), os resultados simulados coincidem mais com os reais, pois a situação do fluxo é mais estável, por ser uma região de menos turbulência. O ponto 5 também apresenta esse comportamento, porém sempre com valores inferiores aos medidos, assim como no ponto 4 (Figura18), onde os valores de salinidade são ainda menores. Essa defasagem dos valores simulados dos medidos nesses dois pontos, tem como explicação a influência do vento utilizado na simulação, pois o vento aplicado em toda Lagoa foi o vento registrado em Rio Grande e, provavelmente esses locais já sofram influência de ventos da porção mais ao norte do Estado, o que levaria a água salgada até porções mais interiores da Lagoa. Os pontos 1,2 e 3 (Figura 19) não apresentam praticamente nenhuma influência da água salgada, tanto nos valores medidos quanto nos simulados.

48

Figura 18: Distribuição da salinidade ao longo do tempo nas estações P6, P5 e P4 Pontos: salinidade medida em campo; Linha: salinidade simulada.

Figura 19: Distribuição da salinidade ao longo do tempo nas estações P3 e P1. Pontos: salinidade medida em campo; Linha: salinidade simulada.

8.1.3 DILUIÇÃO E DISPERSÃO DA ÁGUA SALGADA

Na análise da diluição e dispersão da salinidade na Lagoa, o modelo comprova que a diluição da água salgada se dá no momento em que ela entra em contato com a água proveniente da Lagoa, e quanto maior for a descarga maior será a diluição da água salgada e menos a mesma se espalhará dentro da Lagoa, ou seja, menor será sua dispersão. Enquanto, que a baixa descarga facilitará a dispersão do sal e dificultará a diluição da água salgada. Uma seqüência da penetração e saída de uma massa de água salgada na Lagoa, durante o período de Nov/1999 a Mar/2000 é representada nas Figuras 20 e 21.

Figura 20: Representação gráfica da intrusão de uma massa de água salgada na Lagoa dos

Patos.

Figura 21: Representação gráfica da expulsão de uma massa de água salgada na Lagoa dos Patos.

Quando a forçante de maré é maior que a forçante fluvial (regime de enchente), ocorre a intrusão de sal, acontecendo a dispersão do mesmo no interior da Lagoa, como se observa na Figura 20, onde a intrusão do sal começa por volta do dia 23/11/1999, atingindo a Ponta da Feitoria no dia 18/12/1999, chegando ao ponto mais distante no dia 07/01/2000 na região de São Lourenço. O regime de vazante permanece até 13/02/2000. No momento em que a forçante fluvial é maior que a forçante de maré a situação se inverte, e a água salgada é expulsa para o mar ao mesmo tempo em que dilui o sal no sistema, tornando o sistema completamente dominado por água doce por volta do dia 01/03/2000 (Figura 21).

Os resultados obtidos pelo módulo FLOW assemelharam-se aos resultados obtidos por Fetter (1998) e Castelão (1999) ambos utilizando o modelo de circulação oceânica da Universidade de Princeton (POM) para a Lagoa dos Patos; Bonilha (1974) que utilizou um modelo matemático simplificado para circulação da Lagoa dos Patos e do Rio Guaíba; e Moller (1996) que realizou simulações hidrodinâmicas da Lagoa dos Patos.

8.1.4 TEMPO DE RESIDÊNCIA

Determinada a distribuição espacial e temporal da salinidade na Lagoa foi possível determinar também o tempo de residência e sua variação sujeita à ação do vento. Para a análise do tempo de residência foi avaliado o deslocamento da massa d'água proveniente do rio Guaíba ao longo da Lagoa. A determinação do tempo de residência foi feita determinando o tempo que essa massa d'água leva para chegar da seção 1 de controle até a seção 2 (Figura 22), conforme o item 7.3.9, Figura 16. Esse procedimento foi realizado com e sem a ação do vento.

Figura 22: (a) Passagem da massa d'água pela seção 1; (b) Passagem da massa d'água pela seção 2.

As simulações para determinação do tempo de residência indicam que o tempo para a água atingir a seção 2 dependem principalmente das descargas do Guaíba e da ação do vento. O tempo de residência obtido do modelo sem a ação do vento variou de 20 dias para períodos de altas vazões de descarga (±11200 m³/s) e 35 dias para as baixas vazões (±4500 m³/s) (Figura 23). Enquanto que aplicando o vento ao modelo obtém-se 18 dias para períodos de altas vazões e vento do quadrante norte e 38 dias para as baixas vazões sujeitas a ventos do quadrante sul (Figura 24). Segundo Niencheski (1994a) o tempo de residência da Lagoa é de

20 dias. Este valor foi obtido levando em conta valores médios de descargas que não foram mencionados. O tempo de residência médio obtido pelo modelo foi de 28 dias, a diferença entre os valores devem estar associada as descargas utilizadas para o cálculo.

Figura 23: Tempo de residência da água na Lagoa. Preto: tempo de residência sem a ação do vento;

Cinza: tempo de residência com ação do vento.

Figura 24: Velocidade média do vento aplicado na simulação hidrodinâmica da Lagoa. Os valores positivos indicam que são ventos de quadrante sul (s), enquanto que os negativos são ventos de quadrante norte (n).

A pequena influência da ação do vento no tempo de residência se deve ao fato de que no período simulado foram constatados ventos de baixa intensidade. Entretanto, esses tempos de residência serão utilizados como indicadores para os processos químicos a serem estudados posteriormente, e não devem ser tomados como definitivos, pois não é levada em conta no cálculo a influência da maré, além da utilização do vento registrado apenas em Rio Grande.

8.2 RESULTADOS DO MODELO DE TRANSPORTE E TRANSFORMAÇÃO DE CONSTITUINTES QUÍMICOS

Os resultados dos parâmetros indicadores da qualidade da água da Lagoa dos Patos, foram analisados individualmente sendo considerado: o material em suspensão, oxigênio dissolvido e DBO, nutrientes (nitrato, nitrito, amônio, nitrogênio total, fosfato, fósforo total, carbono orgânico total, sílica) e metais (cromo, cobre, zinco, chumbo, níquel, cádmio, ferro, mercúrio e arsênio).

8.2.1 VALIDAÇÃO DO MODELO DE TRANSPORTE E TRANSFORMAÇÂO DE CONSTITUINTES QUIMICOS

Para validar o módulo WAQ foram utilizados dados do projeto Espinha de Peixe, realizado em 1986. A escolha pela utilização destes dados foi feita devido ao fato de que durante os cruzeiros realizados foram obtidos dados tanto do eixo principal da Lagoa como de margem a margem, fornecendo uma caracterização de todo o sistema.

Foram realizados os seguintes parâmetros: oxigênio dissolvido, material em suspensão, nitrato, fosfato e silicato. A validação foi feita comparando valores medidos em campo com resultados das simulações. Foram comparados dados do eixo principal e os transectos de Tapes e São Lourenço. Os dados utilizados para a validação do modelo de transformação e transporte estão disponíveis no Anexo C.

No eixo principal da Lagoa, os resultados das simulações mostraram que o modelo não reproduziu perfeitamente os dados reais. Esse resultado era esperado tendo em vista que para a validação do modelo de qualidade de água foram utilizados dados médios anuais de descarga e ventos. Porém de forma geral o modelo representou a tendência do comportamento dos parâmetros avaliados, conforme mostram as Figuras 25 e 26, 27.

Figura 25: Distribuição das concentrações de superfície e fundo do oxigênio dissolvido, e material em suspensão ao longo do eixo principal da Lagoa. Pontos: concentrações medidas em campo; Linha: concentrações simuladas.

Figura 26: Distribuição das concentrações de superfície e fundo do nitrato ao longo do eixo principal da Lagoa. Pontos: concentrações medidas em campo; Linha: concentrações simuladas.

Figura 27: Distribuição das concentrações de superfície e fundo do fosfato e silicato ao longo do eixo principal da Lagoa. Pontos: concentrações medidas em campo; Linha: concentrações simuladas.

Já no transecto São Lourenço, o modelo apresentou melhores resultados para o oxigênio dissolvido e nitrato, pois os valores simulados ficaram bem próximos aos valores reais. Entretanto, para os demais parâmetros os resultados foram menos precisos (Figura 28). Nesta região a validação ficou prejudicada, devido ao fato de que haviam poucas estações de amostragem.

Figura 28: Distribuição das concentrações médias do oxigênio dissolvido, material em suspensão, nitrato, fosfato e silicato ao longo da seção São Lourenço. Pontos: concentrações medidas em campo; Linha: concentrações simuladas.

Os resultados das simulações mostram que na região de Tapes, o modelo demonstra mais precisão, pois a tendência do comportamento dos parâmetros foi obtida (Figuras 29 e 30).

Tendo em vista que o objetivo principal deste trabalho é avaliar os processos que ocorrem no eixo principal da Lagoa, local onde o modelo de qualidade de água apresentou bons resultados, pode-se dizer que o modelo esta apto a ser aplicado para a avaliação dos processos. Assim pode-se passar a fase de aplicação do modelo para avaliação dos processos.

Figura 29: Distribuição das concentrações médias do oxigênio dissolvido, material em suspensão, nitrato e fosfato ao longo da seção Tapes. Pontos: concentrações medidas em campo; Linha: concentrações simuladas.

Figura 30: Distribuição das concentrações médias do silicato ao longo da seção Tapes. Pontos: concentrações medidas em campo; Linha: concentrações simuladas.

8.2.2 APLICAÇÃO DO MODELO

Para o entendimento dos processos o modelo foi aplicado à Lagoa dos Patos utilizando os dados do Programa Pró-Mar de Dentro. Os parâmetros avaliados foram material em suspensão, oxigênio dissolvido, nutrientes e metais pesados. A seguir são apresentados os resultados das simulações de cada um dos parâmetros analisados.

8.2.2.1 Material em Suspensão

Para o entendimento e discernimento dos processos que regem o comportamento do material em suspensão (ressuspensão e sedimentação) na Lagoa dos Patos, apenas os aportes de material em suspensão (MES) foram incluídos no modelo. Assim, todo valor medido em campo superior ao valor simulado correspondente, significa que há a ressuspensão de material, enquanto que valores medidos inferiores aos simulados corresponde ao processo de sedimentação.

Não foi observado variação vertical nas concentrações do material em suspensão tanto nas medidas de campo quanto nos valores simulados.

De acordo com os resultados das simulações, o MES transportado pela descarga da Lagoa teria a concentração quase constante do ponto 1 ao 6, se não houvesse os processos de sedimentação e ressuspensão. Porém o modelo mostra que o processo de sedimentação predomina do ponto 1 ao 6 (Figura 32). Isso se deve ao fato de que a água vinda do rio Guaíba quando atinge o corpo da Lagoa perde velocidade, devido sua maior seção fazendo com que o MES decante.

O modelo mostra que esse comportamento só é diferenciado nos meses de julho, agosto e novembro. Nos meses de julho e agosto, o aumento do MES se dá devido às descargas dos tributários terem sido as maiores registradas, conseqüentemente houve o aumento de MES adicionado a Lagoa, entretanto esse aumento não foi o suficiente para que o modelo atingisse valores tão elevados quanto os medidos em campo. Isso evidencia que nesses meses o processo de ressuspensão é predominante. Portanto, descargas maiores resultam em velocidades de correntes maiores. Aliado a isso, entre os meses de julho e agosto houve uma mudança na direção dos ventos, onde os ventos que eram do quadrante sul passaram a ser do quadrante norte, resultando numa maior turbulência e conseqüentemente a ressuspensão do material que estava depositado no fundo. Já no mês de novembro a ressuspensão se deve ao fato de que no mês anterior foram registrados os ventos de maior intensidade de todo o período em estudo, visto que na Lagoa dos Patos a circulação depende mais das condições metereológicas que da maré. Assim sendo, o vento exerce uma forte influência na ressuspensão do MES na Lagoa (NIENCHESKI et al., 1994b).

Figura 31: Distribuição do material em suspensão ao longo do tempo nas estações P1 e P2. Pontos: concentração do material em suspensão medida em campo; Linha: concentração do material em suspensão simulada.

Figura 32: Distribuição do material em suspensão ao longo do tempo nas estações P3, P4, P5 e P6. Pontos: concentração do material em suspensão medida em campo; Linha: concentração do material em suspensão simulada.

As simulações do aportes de MES para os pontos 7 e 8 resultaram em valores maiores que os demais pontos. Isso se deve à localização destes pontos onde todas as descargas dos tributários já foram realizadas. Comparando os valores simulados com os valores de campo, chega-se a um inesperado resultado, de que nesses pontos a sedimentação é ainda mais predominante que em todos os outros (Figura 33). Era de se esperar que pelas características destes locais, altas concentrações fossem observadas e assim definir que nesses locais a ressuspensão era o principal processo, já que o ponto 7 está localizado na saída do Canal do São Gonçalo, segundo principal tributário da Lagoa dos Patos, e o ponto 8 está localizado na região mais estreita do estuário da Lagoa, região de maior dinâmica e que favorece a ressuspensão de fundo (NIENCHESKI et al., 1999).

Entretanto, esses resultados evidenciam que nesta região poderiam estar acontecendo outros processos que não a ressuspensão, tais como a floculação e adsorção (BURTON, 1976; POSTMA, 1980). Isso pode ser explicado devido ao fato de que a água marinha após penetrar no estuário, ocupa as áreas marginais rasas e atinge a estabilidade hidrodinâmica na ausência de ventos, iniciando assim os processos de floculação, coagulação, precipitação do material dissolvido para produzir novas fases sólidas, adsorção do material dissolvido em fases sólidas já presentes, o que diminui a turbidez da coluna d'água, aumentando a atividade fotossintética, tanto na coluna como no sedimento, processo semelhante ao apresentado por Burton (1976).

No momento em que a estabilidade hidrodinâmica é rompida, seja pelo aporte de água doce ou ação de fortes ventos, inicia-se o processo de ressuspensão do material recém depositado e/ou sedimentado há mais tempo na região estuarina.

Resumindo, existem dois comportamentos distintos do MES.

- (1) Sistema dominado por água doce;
- (2) Sistema dominado por água do mar:
 - a. Ressuspensão devido ao atrito com o fundo, quando da entrada da água no estuário;
 - b. Sedimentação devido a estabilidade hidrodinâmica até que haja a novamente a ressuspensão do material depositado.

Portanto, a situação observada no estudo deve ter se caracterizado por estar nesse último estágio.

Figura 33: Distribuição do material em suspensão ao longo do tempo nas estações P7 e P8. Pontos: concentração do material em suspensão medida em campo; Linha: concentração do material em suspensão simulada.

Dados os resultados, nota-se que não houve nenhuma correlação da concentração do MES e salinidade nas porções norte e central, enquanto que nas regiões sul e estuarina foi observado uma leve tendência de aumento do MES com aumento da salinidade. Nas porções norte e central da Lagoa dos Patos não houve presença significativa de salinidade, o que impede a correlaciona-la com o MES. Já na região sul e estuarina, em meses de enchente, os valores de MES cresceram com o aumento da salinidade, pois a intrusão de água salgada e a geomorfologia desta região, que termina num estreito canal de ligação da Lagoa com o oceano, favorecem a ressuspensão do sedimento de fundo (NIENCHESKI et al., 1999).

8.2.2.2 Oxigênio Dissolvido

Os processos avaliados que envolvem a adição e retirada de oxigênio dissolvido (OD) na Lagoa dos Patos foram os seguintes: denitrificação, nitrificação, reaeração e a oxidação da matéria orgânica por via bacteriana (indicada pela DBO). Cada um destes foram introduzidos individualmente no modelo de qualidade água juntamente com seus respectivos aportes dos principais tributários. Os demais processos disponíveis no modelo não foram utilizados devido à insuficiência de dados disponíveis, como por exemplo a produção primária, já que os dados obtidos pelo projeto Mar de Dentro foram coletados em função das necessidades do modelo utilizado pela Japan International Cooperation Agency (JICA), que são diferentes dos dados exigidos pelo Delft3D, e outros, por não se tratarem de processos relativos à coluna d'água como a demanda de oxigênio pelo sedimento.

Em todos os cruzeiros realizados, a concentração de OD variou de 7 a 14 mg/L ao longo da Lagoa. Não foi observada variação vertical da concentração de OD, com exceção nos meses de Fevereiro e Março de 1999 (verão) quando em algumas estações, os níveis de OD variaram levemente da superfície para o fundo.

Os resultados das simulações da denitrificação e da nitrificação demonstram que devido aos altos níveis de OD na Lagoa esses processos são secundários em relação ao total de oxigênio existente. As simulações mostram que o oxigênio proveniente da denitrificação é responsável por 5,02% do oxigênio total adicionado ao sistema, enquanto que a nitrificação retira do sistema em torno de 4,17% do oxigênio total, valor próximo ao encontrado no estuário de Forth, 7,35 e 6,34% respectivamente (BALLS et al., 1996). Portanto, fica evidente que as altas concentrações de oxigênio não se devem a denitrificação pois em todas as estações e em quase todos os cruzeiros realizados os níveis de OD foram acima da curva de

denitrificação (Figura 34), o que evidencia a presença de outro processo de adição de oxigênio ao ambiente, tais como a reaeração do ambiente e a produção primaria assim como o observado no estuário de Ouse (SANDERS et al., 1997).

Figura 34: Distribuição do OD ao longo do tempo nas estações P1, P3, P5 e P7. Pontos pretos: concentração do OD medida em campo; Linha vermelha: concentração simulada do OD adicionado pelos tributários; Linha azul: concentração simulada do OD adicionado pela denitrificação; Linha verde: concentração simulada do OD dissolvido retirado pela nitrificação.

A presença constante de altos níveis de OD pode ser atribuída ao pequeno "input" de poluentes orgânicos na Lagoa. Quando o processo de aeração é aplicado (Figura 35), torna-se evidente que este processo realmente é o responsável pelas altas concentrações de OD, pois a ação do vento na extensa superfície da Lagoa e em áreas de profundidade rasa permite a introdução constante de oxigênio do ar para a água (NIENCHESKI et al., 1999), mantendo a concentração de OD em níveis de super saturação, condição característica da Lagoa dos Patos,

raramente caindo abaixo da saturação com exceção de algumas áreas marginais (WINDOM et al., 1999). As altas concentrações de OD observadas no cruzeiro de julho evidenciam o efeito da intensa aeração do sistema, pois apesar de nessa época ter havido uma intensa ressuspensão de sedimento rico em matéria orgânica, o consumo de OD foi compensado pela reposição do oxigênio do ar, através da difusão ou ondas. Os níveis de OD mais baixos observados em dezembro são atribuídos às condições climáticas muito calmas. A calmaria das águas nos dias de amostragem limitou a introdução de oxigênio na água, pois a troca de gases da atmosfera para a água se dá devido a fatores como: a temperatura, salinidade e nível de agitação da água. A agitação devido ao vento faz com bolhas de oxigênio se criem na superfície da água e essas sejam carregadas para áreas mais fundas e, como a Lagoa dos Patos é uma lagoa rasa, todas suas lâminas ficam com altos índices de oxigênio.

Figura 35: Distribuição do OD ao longo do tempo nas estações P1, P3, P5 e P7. Pontos: concentração do OD medida em campo; Linha: concentração simulada do OD adicionado pela reaeração.

A baixa contaminação por matéria orgânica no ambiente, resulta na baixa demanda bioquímica de oxigênio. Os valores de DBO encontrados ficaram em torno de 1,36 mg/L O₂, dentro da faixa encontrada por Watson (1992) para o estuário de Forth (1-3 mg/L O₂). Esse consumo representa 6,06% do oxigênio total da Lagoa. Mesmo em estações próximas a áreas de alto potencial de poluição, como o rio Guaíba e o canal do São Gonçalo, a DBO se manteve em níveis baixos (Figura 36), isso se deve à alta capacidade de autodepuração da Lagoa dos Patos.

Figura 36: Distribuição do OD ao longo do tempo nas estações P1 e P7. Pontos: concentração do OD medida em campo; Linha: demanda bioquímica de oxigênio simulada.

Assim sendo, fica evidenciado que a concentração de OD presente na coluna d'água da Lagoa dos Patos se dá devido ao processo físico de aeração através da difusão do oxigênio atmosférico, e não aos processos químicos que nela ocorrem, característica semelhante já observada no estuário de Forth (BALLS et al., 1996). Em contrapartida, os principais processos de consumo de oxigênio identificados na coluna d'água foram a DBO e a nitrificação, porém outro importante processo não contemplado pelo modelo, devido à insuficiência de dados, foi o consumo de oxigênio pelo sedimento, que segundo Zarzur (2001) contribui com redução de oxigênio de 988,1 mg/m²/d no verão e 779,3 mg/m²/d na primavera, constituindo assim um importante processo a ser considerado.

8.2.2.3 Nutrientes

Nitrato

As simulações para a determinação das concentrações de nitrato envolveram o processo de nitrificação (adição de NO_3^-) e denitrificação (remoção de NO_3^-), a fim de identificar o comportamento do nutriente ao longo da Lagoa. A concentração de nitrato variou de 0 a 47µM. Os resultados obtidos pelo modelo se assemelharam aos dados de campo (Figura 37). Devido à insuficiência de dados assim como o oxigênio, alguns processos não foram incluídos no modelo, como o consumo de nutrientes pelo crescimento algal, deposição atmosférica, pontos de despejos de esgotos domésticos e industriais, etc. Esses processos não inseridos podem ser o motivo dos desvios encontrados nos resultados.

Figura 37: Distribuição de nitrato ao longo do tempo nas estações P1, P3, P5 e P7. Pontos: concentração de nitrato medida em campo; Linha: concentração de nitrato simulada.

As concentrações de nitrato não variaram da superfície para o fundo, tanto nos valores simulados quanto nos medidos em campo.

Os resultados das simulações mostram que a concentração de nitrato decresce ao longo da Lagoa em direção ao oceano até o ponto 6 durante os meses de verão, comportamento semelhante ao observado no estuário de Changjiang (TIAN et al., 1993). Isso indica que o processos de denitrificação pelo sedimento ou o consumo bacteriano são predominantes, levando as concentrações de nitrato de 30 para $\pm 15\mu$ M. A partir do ponto 6 até o ponto 8 o nitrato se comporta de maneira conservativa (Figura 38), visto que nessas estações durante o verão elas têm uma influência muito grande da salinidade (em torno de 25) e segundo Windom et al. (1999), o nitrato possui um comportamento conservativo na faixa de salinidade de 10 a 30.

Figura 38: Distribuição de nitrato ao longo das estações de amostragem nos meses de fevereiro e janeiro. Pontos: concentração de nitrato medida em campo; Linha: concentração de nitrato simulada.

Já durante os meses de inverno, onde as descargas dos rios são maiores e conseqüentemente uma maior carga de material é adicionada, não existe uma tendência definida da concentração de nitrato (Figura 39), pois ao mesmo tempo em que esse nitrato é adicionado pelos tributários pode ser removido pela denitrificação ou pelo fitoplâncton, embora este tenha como preferência pela assimilação de nitrogênio na forma de NH_4^+ . Em geral, a maior remoção do nitrato se dá no sedimento, já que a denitrificação ocorre principalmente em ambientes menos ricos em oxigênio (BALLS et al., 1996).

Figura 39: Distribuição de nitrato ao longo das estações de amostragem nos meses de agosto e setembro. Pontos: concentração de nitrato medida em campo; Linha: concentração de nitrato simulada.

Nitrito

A avaliação do comportamento do nitrito foi realizada apenas em função dos dados medidos em campo, pois o módulo WAQ do modelo Delft3D não dispõe desta forma de nitrogênio inorgânico.

No ciclo do nitrogênio, os íons nitrito representam o estado de oxidação intermediário entre o amônio e o nitrato, em regiões com altas concentrações de oxigênio dissolvido suas concentrações são sempre muito baixas (BAUMGARTEN et al., 1996). Nos dados disponíveis dos 11 cruzeiros as concentrações foram sempre baixas (entre 0 e 1µM), visto que o teor de oxigênio na Lagoa sempre foi muito alto esse era o comportamento esperado.

As concentrações de nitrito praticamente não variaram de estação para estação e nem verticalmente. Nota-se um pequeno aumento nos meses de novembro, dezembro e janeiro (Figura 40). Essas maiores concentrações são resultado da redução do nitrato devido à ação bacteriana ou ainda a excreção de fitoplâncton, pois algumas espécies de fitoplâncton quando crescem na presença abundante de nitrato excretam quantidades significativas de nitrito extracelular (BURTON et al., 1976).

69

Figura 40: Distribuição de nitrito ao longo do tempo nas estações P2 e P7.

Amônio

As concentrações de NH_4^+ encontradas durante os cruzeiros ficaram entre 0,5 e 23,5µM, faixa na qual os resultados das simulações se mantiveram (Figura 41).

Nos meses de verão o comportamento do amônio, se assemelhou ao do nitrato, com um decréscimo do ponto 1 ao 6. Porém esse comportamento tem origem distinta, pois nos meses de verão a atividade fitoplanctonica é maior, e visto que a forma do nitrogênio mais assimilável por este é o NH_4^+ (RILEY et al., 1981), justifica assim as concentrações menores de NH_4^+ .

Comportamento contrário é observado nos pontos 6 ao 8, onde a concentração de NH_4^+ aumenta (Figura 42), segundo Windom et al. (1999) em regiões de salinidade mais altas como o caso das estações 6, 7 e 8 o nitrogênio é regenerado na forma de amônio.

Figura 41: Distribuição do amônio ao longo do tempo nas estações P1, P3, P5 e P7. Pontos: concentração do amônio medida em campo; Linha: concentração do amônio simulada.

Figura 42: Distribuição do amônio ao longo das estações de amostragem nos meses de fevereiro e janeiro. Pontos: concentração do amônio medida em campo; Linha: concentração do amônio simulada.

Durante os meses de inverno como setembro (Figura 43b), as concentrações de amônio são maiores que as verificadas no verão (Figura 43a), pois é menor a atividade do fitoplâncton, isso também se justifica porque os maiores inputs desse constituintes se dão nessa época, apesar de no mês de setembro em especifico o input não ter sido o maior, deve-se levar em conta o tempo de residência desse na Lagoa que é cerca de 38 dias, valor obtido pelo modelo, ou seja, as concentrações observadas em setembro têm como influência os inputs de agosto.

Figura 43: (a) Distribuição do amônio ao longo das estações de amostragem no mês de fevereiro. Pontos: concentração do amônio medida em campo; Linha: concentração do amônio simulada. (b) Distribuição do amônio ao longo das estações de amostragem no mês de setembro. Pontos: concentração do amônio medida em campo; Linha: concentração do amônio simulada.

Foi notada uma pequena variação vertical em várias estações de coleta, onde as concentrações foram levemente maiores no fundo (Figura 44), indicando assim a presença de processos relativos ao sedimento como: mineralização de detritos de nitrogênio, consumo de nutrientes pelo crescimento algal, liberação de nutrientes pela mortalidade das algas contidas no sedimento (JICA, 2000).

Figura 44: Distribuição do amônio ao longo do tempo nas estação P6. Linha azul: concentração simulada do amônio no fundo; Linha vermelha: concentração simulada do amônio na superfície.

Nitrogênio Total

As simulações da análise do nitrogênio total (NT), tiveram como objetivo quantificar as formas na qual o N se apresenta, forma inorgânica e orgânica. Portanto, a simulação foi conduzida levando em conta a modelagem do N inorgânico (nitrato e amônio), a diferença da soma desses em relação aos valores observados é derivada nitrogênio orgânico, forma na qual não foi possível simular por falta de dados dessa espécie.

As concentrações de NT variaram de 1,7 a 121,4µM. Não foi verificada nenhuma tendência na variação vertical da concentração de nitrogênio total. Tendo em vista os resultados da Figura 45, observa-se que as formas inorgânicas dissolvidas do N são a menor fração desse nutriente, quando comparado com a forma orgânica. As formas inorgânicas se dividem da seguinte forma: nitrato contribui com cerca de 5,5% do N inorgânico, enquanto que o amônio participa com 5%. Totalizando 10,5% da quantidade de nitrogênio total, valor semelhante ao observado na Baía da Flórida, cerca de 8,9% (FOURQUREAN et al., 1993).

Figura 45: Distribuição do NT ao longo das estações de amostragem nos meses de julho e novembro. Pontos vermelhos: concentração de NT medida em campo; Linha azul: concentração simulada de nitrogênio proveniente do nitrato; Linha verde: concentração simulada de nitrogênio proveniente do amônio.

Essa grande quantidade de nitrogênio orgânico tem como explicação as mais variadas fontes, transporte pelos tributários, fontes antropogênicas, origem bacteriana e de restos orgânicos da flora do sistema, estas fontes são comuns a diversos ambientes semelhantes à Lagoa dos Patos, como a baia de Chesapeake (BAIRD et al., 1995).

Fosfato

Na avaliação do comportamento da concentração de fosfato ao longo da Lagoa foi adicionado ao modelo o processo de adsorção do íon fosfato pelo material em suspensão, visto que este é um dos principais processos de remoção deste nutriente na Lagoa. Os demais processos como a mineralização de detritos de fósforo, desorção do fósforo adsorvido pelo sedimento, consumo de nutrientes pelo crescimento algal, liberação de nutrientes devido à morte de algas, deposição atmosférica, pontos de despejos domésticos e industriais, etc. não foram incluídos por motivos já mencionados anteriormente . Como fonte de fosfato foi introduzido o aporte de fosfato pelos tributários. Além destes, foi novamente simulado o TSM a fim de verificar sua interação com o íon PO_4^{3-} .

Durante as simulações, foi verificada a mesma tendência sazonal da concentração de fosfato das estações 1 a 6, onde a concentração cresce de QuM (outono) até 1,50µM (verão) se mantendo nesse valor durante esta estação. Comportamento esperado, já que durante este

período um gradiente salino foi estabelecido e segundo (NIENCHESKI et al., 1999) em geral a concentração de fosfato cresce com o aumento da salinidade, pois em águas salgadas as concentrações de Ferro não são tão elevadas quanto em águas doces, onde composto de Fe reagem com o fosfato diminuindo suas concentrações.

Os resultados do modelo para o processo de adsorção mostram que as maiores remoções de fosfato pelo material em suspensão são feitas nos meses em que o último atinge as maiores concentrações (Figura 46)

Figura 46: Distribuição do fosfato removido e material em suspensão ao longo do tempo nas estações P1 e P5. Linha vermelha: concentração simulada de fosfato removido; Linha azul: concentração simulada de material em suspensão.

Figura 47: Distribuição do fosfato e material em suspensão ao longo do tempo nas estações P1 e P5. Pontos: concentração simulada de fosfato; Linha: concentração simulada de material em suspensão.

As maiores concentrações de PO_4^- são obtidas quando o TSM está em menor quantidade (Figura 47), confirmando assim as afirmações feitas anteriormente..

No ponto 7, local mais próximo ao canal do São Gonçalo, valores levemente mais altos que os pontos mais ao norte da Lagoa foram verificados, isso se deve ao fato de que o aporte de fosfato deste tributário foi bastante alto, com valores em torno de 1,3μM, mesmo assim a alta concentração de fosfato no canal do São Gonçalo teve um efeito muito pequeno na região estuarina da Lagoa, já que os valores encontrados nesta estação ficaram em torno de 0,5μM (Figura 48), comportamento já observado por (NIENCHESKI et al., 1999)

Figura 48: Distribuição do fosfato ao longo do tempo na estação P7. Pontos: concentração de fosfato no meio da Lagoa; Linha: concentração de fosfato no canal do São Gonçalo.

Comportamento diferenciado é observado no ponto 8, onde mesmo sendo o local de maior concentração de MES, o modelo não seguiu o padrão anterior, onde nos locais de maior concentração de MES foram encontradas as menores concentrações de fosfato (Figura 49) Isso se deve a fontes de fosfato não contempladas pelo modelo já mencionadas. No caso desta estação, a origem das maiores concentrações de fosfato se dá provavelmente do despejo de águas residuais e aporte atmosférico da atividade industrial da região, onde o principal produto é o fertilizante (NIENCHESKI et al., 1994a).

Assim como os demais parâmetros, exceto o amônio, não houve variações das concentrações de fosfato verticalmente.

Figura 49: Distribuição do fosfato ao longo do tempo na estação P8. Pontos: concentração de fosfato medida em campo; Linha: concentração simulada de fosfato.

Fósforo Total

Observando o comportamento das concentrações de fósforo total ao longo da Lagoa, observa-se que durante a estação quente, as concentrações mais elevadas do constituinte (4,00µM) estão localizadas nas estações mais próximas do Rio Guaíba (1,2 e 3), caindo em seguida nos pontos 4 e 5 para 0,50µM e nas demais estações se mantendo em torno de 1,00µM (Figura 50).

Já na estação fria, a concentração de fósforo se mantém em torno de 1,00μM em toda a Lagoa, com exceção da estação mais próxima do Guaíba (3,00μM) evidenciando assim a influência deste tributário nesta estação do ano.

Devido à insuficiência de dados das concentrações de fósforo orgânico, não foi possível a simulação do fósforo total. Portanto a avaliação desse nutriente ficou reduzida a contribuição do fósforo inorgânico no compito geral desse constituinte. Tendo em vista a simulação do fosfato, percebe-se que diferentemente do nitrogênio total a forma inorgânica do fósforo representado pelo íon PO_4^{3-} , tem uma importância significativa no conteúdo total de fósforo da Lagoa, totalizando cerca de 40,2% do fósforo total, valores estes próximos aos encontrados na baia da Florida, aproximadamente 44,7% (FOURQUREAN et al., 1993).

Figura 50: Distribuição do fósforo total ao longo das estações de amostragem nos meses de fevereiro e agosto.

Carbono Orgânico Total (COT)

Para a simulação das concentrações do COT foram introduzidas no modelo os aportes desse constituinte dos principais tributários, assim como a sua concentração média inicial. Deste modo, as concentrações simuladas acima dos valores reais, indicam a adição desse nutriente no sistema, assim como valores simulados inferiores aos abaixo dos reais, apontam a retirada do COT do local em observação.

As concentrações deste nutriente não apresentaram nenhuma variação vertical. Foi percebido que do ponto 1 ao ponto 4, tanto nos períodos de vazante como nos de enchente, as concentrações simuladas e medidas em campo foram muito semelhantes, demonstrando um comportamento praticamente constante desde o Guaíba até próximo ao Camaquã (Figura 51). Esse comportamento praticamente constante neste trecho (em torno de 13 mg/L), indica que as fontes de carbono orgânico, tanto na forma dissolvida como na particulada (material orgânico trazido pelas chuvas e ventos, produção de matéria orgânica pela morte de organismos, liberação de compostos orgânicos durante a fotossíntese das algas, excreção de animais marinhos, fitoplancton e de detritos de organismos mortos) se equivalem as retiradas deste mesmo nutriente pela respiração de organismos vivos, consumo bacteriológico, etc. Apesar do rio Guaíba exercer grande influência nas águas da Lagoa dos Patos (VEECK, 1997), não foram observadas grandes adições de COT pelo Guaíba, capazes de interferir no corpo da Lagoa.

Figura 51: Distribuição do COT ao longo do tempo nas estações P1 e P4. Pontos: concentração de COT medida em campo; Linha: concentração simulada de COT.

A partir da estação 5 a 8, as concentrações de COT medidas em campo, começam a superar os valores simulados (Figura 52). Isso pode ser explicado pelo fato que nesta região existe uma grande quantidade de pradarias submersas que fixam o carbono proveniente dos tributários da Lagoa, podendo exportar anualmente até 2290 g/m² de detritos ricos em carbono (COSTA, 1997).

Tendo em vista que a Lagoa dos Patos possui uma área de drenagem de 180000 km² (HERZ, 1977), o que sugere que uma grande quantidade de matéria orgânica seja transportada pelos rios que deságuam na Lagoa. Conseqüentemente em períodos chuvosos espera-se que o conteúdo de matéria orgânica na Lagoa seja maior como observado no Lago Pontchartrain e estuário de Tamar (BIANCHI et al., 1997; MILLER, 1999). Porém, este comportamento não foi observado na Lagoa dos Patos.

Figura 52: Distribuição do COT ao longo do tempo nas estações P5 e P8. Pontos: concentração de COT medidas em campo; Linha: concentração simulada de COT.

Sílicato

O comportamento do sílicato na Lagoa dos Patos, utilizando o modelo Delft3D, teve como único processo simulado o transporte advectivo desse constituinte, visto que este foi o único possível de ser incluído no modelo.

Os resultados das simulações demonstraram que os valores reais de Si foram sempre inferiores aos valores modelados (Figura 53), o que era de se esperar, pois apenas os aportes de Si dos principais tributários foram considerados (NIENCHESKI et al., 1986).

Figura 53: Distribuição da Si ao longo do tempo na estação P1. Pontos: concentração de Si medida em campo; Linha: concentração simulada de Si.

Segundo (NIENCHESKI et al., 1999), a concentração de Si tem comportamento conservativo de acordo com o gradiente salino. Porém este comportamento não é observado nos dados dos 11 cruzeiros realizados. O caráter não conservativo da Si na região sul da Lagoa (Figura 54), onde fica localizado o estuário, pode ser atribuída em parte a utilização biológica deste constituinte pelas diatomáceas, que são um dos principais componentes da material em suspensão no estuário da Lagoa dos Patos (HARTMANN, 1988), e também devido à remoção inorgânica durante a mistura das água doces da Lagoa com as águas mais salgadas provenientes do oceano, comportamento semelhante ao observado por (BAPTISTA, 1987). Não foram identificadas variações entre as concentrações na superfície e no fundo da sílica.

Figura 54: Distribuição da Si ao longo do tempo na estação P8. Pontos: concentração de Si medida em campo; Linha: concentração simulada de Si.

8.2.2.4 Metais Pesados

Para a avaliação do comportamento dos metais presentes na Lagoa, foi adicionada ao modelo a contribuição natural deste contaminante, assim como a adição pelos tributários, com a intenção de identificar a adição ou remoção dos metais no ambiente. As interações que ocorrem entre o material dissolvido e particulado durante a mistura estuarina, envolve essencialmente três tipos de processos:

- Precipitação do material dissolvido para produzir novas fases sólidas;
- Adsorção do material dissolvido nas fases sólidas já presentes. Estas fases compreendem os minerais litogênicos, fases autigênicas formadas pela

precipitação do material dissolvido para produzir novas fases sólidas, e material orgânico vivo ou detrítico, originários de processos tanto interno como externo ao estuário;

Liberação do material adsorvido na fase sólida para a fase líquida, por dissolução, desorção e processos biológicos autolíticos e respiratórios.

Como cada metal está submetido a processos diferentes, cada metal foi avaliado individualmente. Quando valores reais forem maiores que os valores simulados, algum processo atuou e adicionava o metal ao ambiente, assim valores reais menores que os simulados indicam a remoção do metal.

Cromo (Cr)

Na análise dos resultados do cromo (Cr) tanto nos valores reais como nos simulados, foi observada uma pequena variação vertical em todos os pontos, porém sem apresentar uma tendência espacial ou temporal.

Na avaliação da distribuição espacial do Cr, nota-se que existe a tendência de diminuição das concentrações do ponto 1 ao 6, nos meses de maiores descargas (Figura 55). Isto poderia sugerir a influência do material em suspensão proveniente do Guaíba. Segundo Baisch (1994) o fluxo de oligo-elementos metálicos particulados e dissolvidos para o meio da Lagoa, mostra o aporte de metais provenientes do sistema Guaíba e do Rio Camaquã, estando o material em suspensão contaminado com cobre (Cu), zinco (Zn), chumbo (Pb) e cromo (Cr). Entretanto, nos pontos 7 e 8, onde se nota o aumento das concentrações de Cr, foram os locais de menor concentração de material em suspensão. Portanto, a única fonte deste contaminante seria a atividade industrial desta zona, onde se localiza Rio Grande e Pelotas, o que explicaria as diferenças maiores dos valores reais e dos simulados.

O estado do Rio Grande do Sul é o maior produtor de couro do Brasil, com 23% da produção nacional (cerca de 243632,1 ton/ano; FONTE: Associação das Indústrias de Curtume do Rio Grande do Sul). Esta atividade industrial tem na etapa de curtimento do couro a aplicação de sais de cromo, os quais posteriormente são descartados e nem sempre com o devido tratamento. Apesar da grande quantidade de couro produzido, o processo de curtimento, aparentemente, não influência nas concentrações de cromo encontradas na Lagoa dos Patos. Isso se deve ao fato de que o conteúdo de Cr adicionado a Lagoa, não é suficiente para alterar as concentrações no corpo da Lagoa, pois a Lagoa possui um volume total de água muito grande, resultando na diluição deste contaminante.

Figura 55: Distribuição do Cr ao longo das estações de amostragem no mês de julho. Pontos: concentração de Cr medida em campo; Linha: concentração simulada de Cr.

Nos meses de pequenas descargas como novembro (Figura 56), o modelo indica a adição de Cr, devido a maior carga de material em suspens ão, nas estações que sofrem maior influência do Guaíba (1, 2, 3 e 4). Comportamento diferente nos pontos 5 e 6, onde o modelo indica que existe a retirada do Cr do sistema, pois nessas estações se dá maior taxa de sedimentação do material em suspensão. E nos pontos 7 e 8 as concentrações de Cr se comportam de maneira semelhante ao indicado nos meses de maior descarga.

Figura 56: Distribuição do Cr ao longo das estações de amostragem no mês de julho. Pontos: concentração de Cr medida em campo; Linha: concentração simulada de Cr.

O cromo foi analisado nas suas formas $Cr^{II} e Cr^{VI}$. Os dados de campo mostram que as duas formas contribuem quase que na mesma proporção em todos os meses e em todas estações de amostragem, excetuando a estação mais próxima ao Guaíba (Figura 57). A forma hexavalente do Cr é a mais tóxica e sua origem provavelmente deve ser proveniente, com destaque para o complexo couro-calçadista do Vale do Rio dos Sinos. Também deve ser considerado que as águas de refrigeração industriais são fontes em potencial de Cr.

Figura 57: Distribuição das formas Cr^{II} e Cr^{VI} ao longo das estações de amostragem. Linha azul: concentração de Cr^{VI} ; Linha vermelha: concent ração de Cr^{III} .

Cobre (Cu)

As concentrações de cobre (Cu) não apresentaram qualquer variação vertical. Asim como na maioria dos nutrientes avaliados, essa característica se deve ao alto grau de agitação das águas da Lagoa devido à dinâmica intensa, resultando na homogeneidade vertical.

Ao longo dos 11 cruzeiros e 8 estações de amostragem, foram percebidas pequenas variações nas concentrações de Cu. A avaliação dos resultados das simulações mostra que não existem grandes adições ou retiradas de Cu na Lagoa. Tanto os valores reais como a simulação mostraram que, nos meses em que havia um gradiente salino bem definido (dezembro, janeiro e fevereiro) o cobre apresentou uma distribuição conservativa (Figura 58), como já havia sido observado na Lagoa dos Patos por Niencheski (1994b), comportamento similar ao da maioria dos estuários, como no estuário de Gironde (MICHEL et al., 2000).

Figura 58: Distribuição do Cu ao longo das estações de amostragem no mês de dezembro. Pontos: concentração de Cu medida em campo; Linha: concentração simulada de Cu.

Nos meses em que a Lagoa estava dominada pela água doce proveniente da descarga dos tributários, a simulação aponta que existe a adição de Cu em praticamente todas as porções da Lagoa (Figura 59). As grandes descargas dos tributários que deságuam na Lagoa, trazem consigo um grande conteúdo de Cu. Na região estuarina as principais fontes são os esgotos domésticos, oficiais e clandestinos e, da refinaria de petróleo, dos efluentes de industrias de fertilizantes e pesqueira, da grande movimentação do porto de Rio Grande e até das tintas antiferrugem utilizadas nas embarcações, que possuem óxidos de cobre em sua composição (FRANÇA, 1998). Na parte norte da Lagoa, que está sob influência do rio Guaíba as fontes de cobre são os efluentes da zona industrial e despejos de água provenientes de esgotos. Na parte central, deságua o rio Camaquã, que capta águas provenientes de plantações, onde o Cu está na composição de muitos defensivos agrícolas e atividades de mineração (ROSA, 2002). Nessa região é grande a atividade de mineração onde o Cu é usado intensamente (NIENCHESKI et al., 1997). Na parte sul e estuário, o comportamento é diferenciado: no ponto 7 há evidencias de aporte de Cu proveniente das águas do canal São Gonçalo, que recebe uma grande quantidade de despejos de esgotos da cidade de Pelotas (200000 habitantes). Entretanto, na região localizada a estação 8, o modelo indica que existe a retirada de Cu, as concentrações mais baixas podem estar associadas a constituição do sedimento desta região, pois quanto mais perto da desembocadura do estuário, mais teor de areia tem o sedimento (NIENCHESKI et al., 1994b), dificultando a retenção de metais, como também a hidrodinâmica do estuário, favorecendo a entrada de água oceânica através de cunhas salinas e promovendo uma diluição das concentrações de Cu (FRANÇA, 1998).

Figura 59: Distribuição do Cu ao longo das estações de amostragem no mês de agosto. Pontos: concentração de Cu medida em campo; Linha: concentração simulada de Cu.

Zinco (Zn)

Tanto os resultados de campo, como o modelo não identificaram qualquer variação tendência vertical da concentração de Zn, assim como já verificado com o Cr.

As simulações do comportamento do Zn na Lagoa, indicaram que nas regiões de baixa salinidade, como a estação 2 (todos os cruzeiros) e a 7 (período de vazante) houve sempre a retirada de Zn da Lagoa, com exceção do mês de novembro, em que em todas estações de amostragem indicaram a adição deste metal (Figura 60).

Figura 60: Distribuição do Zn ao longo do tempo nas estações P2 e P7. Pontos: concentração de Zn medida em campo; Linha: concentração simulada de Zn.

O processo de remoção de Zn, nas regiões de baixa salinidade se dá provavelmente a incorporação deste metal ao fitoplâncton, como observado por Windom et al. (1999) e semelhante ao encontrado por Szymanowska (1999) nos lagos Boszkowo, Dominickie e Wielkie na Polônia. As altas concentrações de Zn encontradas na Lagoa dos Patos, também foram encontradas por Friedrich (*em preparação*) na Lagoa Mirim, que se comunica com a Lagoa dos Patos através do canal do São Gonçalo, o que pode indicar que o Zn é proveniente da própria geologia da região (Figura 61).

Figura 61: Distribuição do Zn ao longo das estações de amostragem no mês de novembro. Pontos: concentração de Zn medida em campo; Linha: concentração simulada de Zn.

Nos cruzeiros onde foi encontrado um gradiente de salinidade estabelecido, era esperada a adição deste metal, nas regiões de alta salinidade (5 e 25), devido a remineralização da matéria orgânica (WINDOM et al., 1999), mas não foi este o comportamento das concentrações de Zn, que decresceu do ponto 1 ao 8 (Figura 62), o que sugere que processos como a diluição, oxidação de sedimento anóxico ressuspendido e diferentes taxas de sedimentação resultem na redução da concentração de metais (HATJE et al., 2001).

Figura 62: Distribuição do Zn ao longo das estações de amostragem nos meses de dezembro e janeiro. Pontos: concentração de Zn medida em campo; Linha: concentração simulada de Zn.

Chumbo (Pb)

Tanto na simulação quanto nos dados reais das concentrações de chumbo, não foi verificado variação entre superfície e fundo, assim como já observado na maioria dos parâmetros analisados.

Observando a variação temporal das concentrações de Pb, nota-se que em praticamente em todos meses há a retirada de Pb da Lagoa (Figura 63), exceto nos meses de setembro e novembro. Isto indica que o Pb proveniente dos tributários está se depositando no fundo da Lagoa, comportamento semelhante ao do MES.

Figura 63: Distribuição do Pb ao longo do tempo nas estações P2 e P7. Pontos: concentração de Pb medida em campo; Linha: concentração simulada de Pb.

Já nos meses de novembro e setembro as simulações indicam que há a adição de Pb na Lagoa, tendo em vista o comportamento do material em suspensão, que evidenciou que no mês de novembro ocorreu a ressuspensão do sedimento, é razoável afirmar que o Pb também foi ressuspenso, aumentando suas concentrações na coluna d'água. No mês de setembro o mesmo comportamento foi verificado, só que com menor intensidade. Logo após esses meses as concentrações de Pb tendem a diminuir novamente.

Analisando espacialmente a distribuição das concentrações de chumbo, verifica-se que não há nenhuma tendência definida conforme já observado por Windom et al. (1999).

Níquel (Ni)

O comportamento vertical das concentrações de Ni seguiu o padrão dos demais metais já analisados anteriormente, excetuando o cromo que apresentou uma pequena variação vertical.

Os resultados das simulações indicam que temos em geral a adição do metal nos meses de vazante (Figura 65) e remoção nos meses de enchente (Figura 64).

A remoção deste metal nos meses de enchente se deve à influência da água salgada na Lagoa, que resulta no comportamento conservativo do metal, conforme já observado por Windom et al. (1999) no estuário da Lagoa dos Patos, e por Hatje et al. (2001) no estuário de Port Jackson (Austrália), em períodos que estes estuários estão sob a ação de águas oceânicas.

Figura 64: Distribuição do Ni ao longo das estações de amostragem nos meses de dezembro e janeiro. Pontos: concentração de Ni medida em campo; Linha: concentração simulada de Ni.

A adição do Ni pode ser explicada pela rápida mudança de salinidade na Lagoa a partir de março, pois águas com salinidade são dominadas por cátions monovalentes (Na⁺ e K⁺), enquanto que em águas doces as espécies dominantes são os cátions divalentes (Ca⁺⁺ e Mg ⁺⁺) essa mudança tem um efeito significante nas reações de troca, que envolvem o sedimento. A adição de Ni na Lagoa dos Patos devido a esse comportamento, já havia sido observado por Windom et al. (1999). Somando-se a esse efeito, Hatje et al. (2001) verificou que o Ni tem um tempo de residência grande na coluna d´água quando está bem misturada, que foi o caso durante todos cruzeiros realizados neste trabalho.

Figura 65: Distribuição do Ni ao longo das estações de amostragem nos meses de novembro e setembro. Pontos: concentração de NI medida em campo;Linha:concentração simulada de Ni.

Cádmio (Cd)

As concentrações de Cd assim como os demais metais, não apresentaram variação entre a superfície e fundo.

Analisando-se os resultados das simulações e comparando com os valores reais, percebe-se que na estação 1 existe preferencialmente a adição de Cd neste ponto (Figura 66), devido provavelmente a influência das descargas do Rio Guaíba que recebe despejos industriais e águas do esgoto urbano da região cidade de Porto Alegre.

Figura 66: Distribuição do Cd ao longo do tempo nas estações P1. Pontos: concentração de Cd medida em campo; Linha: concentração simulada de Cd.

Nas demais estações, nota-se que há a retirada de Cd da Lagoa nos meses de maior vazão (julho, agosto e setembro) e adição nos meses de menor descarga (entre outubro e fevereiro) (Figura 67), comportamento semelhante ao encontrado por Michel (2000) e inverso ao observado por Zwolsman et al. (1997), nos estuário de Gironde e Scheldt, respectivamente. O comportamento contrário observado no estuário de Scheldt, é devido ao estado anóxico daquele ambiente (ZWOLSMAN et al., 1997).

Figura 67: Distribuição do Cd ao longo do tempo nas estações P6 e P8. Pontos: concentração de Cd medida em campo; Linha: concentração simulada de Cd.

A adição de Cd nos meses de baixas descargas pode ser explicada devido à intrusão da água salgada na Lagoa, pois o Cd presente no sedimento e na coluna d'água, na presença de íons CI tende a formar complexos solúveis, que elevariam as concentrações de Cd na Lagoa, processo observado por Guieu (2002) no delta do rio Danúbio e (ELBAZ-POULICHET et al., 1996) no rio Rhône. Por outro lado, a remoção de Cd na Lagoa nos meses de altas descargas, pode ser explicada pelo processo de adsorção deste metal aos sólidos suspensos (ANDRADE et al., 2000), visto que nos meses de maiores descargas os tributários aumentam em muito a sua contribuição de sólidos suspensos para a Lagoa.

Ferro (Fe)

A avaliação do comportamento deste metal foi feita através apenas das medições de campo, já que o modelo Deft3D-WAQ não inclui este na sua relação de metais pesados. Assim como a maioria dos demais metais as concentrações Fe não apresentaram variação vertical significante.

Os dados de campo evidenciaram apenas uma tendência espacial nos meses de dezembro 1999 e janeiro de 2000, onde as concentrações diminuíram quase que linearmente do Rio Guaíba até canal de saída da Lagoa para o mar (Figura 68). Nos demais meses os valores variam aleatoriamente em torno de um valor (julho = 27 μ M, setembro = 38 μ M, novembro = 31 μ M).

Figura 68: Distribuição do Fe ao longo das estações de amostragem nos meses de dezembro e janeiro. Pontos: concentração de Fe medida em campo; Linha: concentração simulada de Fe.

As maiores concentrações encontradas nas estações ao norte da Lagoa são provenientes da forma coloidal do Fe, característica dessa região. Enquanto que as menores concentrações na parte sul se deve ao encontro do Fe com a água de origem marinha, ocorrendo, então a floculação e finalmente a precipitação, diminuindo as concentrações de Fe da coluna d´água e enriquecendo desta forma o sedimento (FRANÇA, 1998).

Mercúrio (Hg) e Arsênio (As)

Os dados experimentais demonstraram que as concentrações de Hg e Ar ficaram sempre abaixo de 0,5 e 5,0 µg/L, respectivamente. Estes valores indicam que a presença destes metais é praticamente nula. Assim sendo, foi impossível alimentar o modelo e executar as simulações destes metais.

9 CONSIDERAÇÕES FINAIS

- A avaliação dos processos que governam a qualidade da água da Lagoa dos Patos, foi realizada sem levar em conta os processos entre sedimento de fundo e a coluna d'água. Apesar do sedimento ter grande influência nas características físicas, químicas e biológicas, não foi possível realizar simulações que contivessem processos relacionados ao sedimento. O Programa Pró-Mar de Dentro coletou amostras do sedimento em todos cruzeiros, mas em apenas dois deles foram apresentados os resultados, não sendo suficientes para preencher as necessidades do modelo;
- Apesar de ter sido avaliado o processo de reaeração da Lagoa, não foi analisado nenhum outro processo relativo a interface ar-água. O transporte de constituintes pela atmosfera é bastante significativo nesta Lagoa, devido a imensa superfície de contato entre estes dois sistemas. Portanto, ao longo do trabalho foram apenas propostas prováveis relações entre eles;
- Outro fator importante que deve ser levado em consideração é a influência de ondas, tanto nos Molhes da Barra quanto no interior da Lagoa. A geração de ondas dentro da Lagoa devido à ação de ventos, pode ser decisiva na qualidade das águas, principalmente em áreas rasas;
- Tendo em vista que se fez uso de dados obtidos para a aplicação do modelo da JICA, limitações ocorreram devido à ausência de dados necessários para o modelo do presente estudo. Tanto dados metereológicos como hidrológicos contínuos no tempo, são imprescindíveis para a aplicação de qualquer modelo que se proponha a representar a circulação ou qualidade das águas de um corpo hídrico;
- Na avaliação da qualidade da água de um sistema tão complexo como a Lagoa dos Patos, a necessidade do conhecimento de todos ecossistemas que cercam e dependem dele, é tão ou mais importante que a necessidade de dados químicos, físicos, biológicos, metereológicos e etc.;

- As várias limitações e considerações utilizadas ao longo do trabalho, não impediram que vários pontos fossem destacados sobre os processos que ocorrem na Lagoa. assim como permitiu uma avaliação do modelo em uma situação real. Destaca-se assim:
 - a. Entre os nutrientes apenas o nitrato e fosfato apresentaram alguns valores acima dos níveis máximos estipulados, levando-se em conta a Resolução nº 20 do CONAMA (1986);
 - b. O nitrogênio nas formas de nitrato, nitrito e amônio, representam uma pequena parcela no compito geral deste nutriente. A maior fonte de nitrogênio é forma orgânica proveniente do transporte pelos principais tributários e resto orgânico da flora e fauna do siste ma que compõem cerca a Lagoa;
 - c. O fosfato se apresenta como umas das principais fontes de fósforo para a Lagoa. O processo que rege o comportamento do fosfato é a adsorção do fosfato pelo material em suspensão, apesar dos grandes aportes antropogênicas na região de Rio Grande;
 - d. As principais fontes de carbono orgânico na Lagoa dos Patos são a extensa área de pradarias submersas na região sul e estuarina, que fornecem ao sistema detritos ricos em carbono, além dos detritos orgânicos provenientes dos rios que deságuam nesta Lagoa;
 - e. Apesar de quase todos os metais pesados sofrerem influências não naturais, em nenhuma das estações e em nenhum dos cruzeiros de amostragem, foi identificada contaminação. Os níveis dos metais ficaram sempre bem inferiores aos valores máximos estipulados pela Resolução nº do CONAMA (1986);

f. O comportamento dos metais Cr, Cu e Pb é influenciado diretamente por ações antropogênicas. Enquanto que Cd, Fe e Ni têm suas distribuições determinadas tanto por fatores antrópicos quanto naturais. E por último, os resultados indicam que as concentrações de Zn ao longo da Lagoa dependem principalmente de aspectos naturais.
10 CONCLUSÕES

A avaliação da qualidade das águas da Lagoa dos Patos, utilizando o modelo Delft3D, le vou as seguintes conclusões:

- A utilização da salinidade para a validação do modelo se mostrou adequada, já que esta variável representou adequadamente os processos de transporte, incluindo a advecção e a dispersão;
- A simulação hidrodinâmica demonstrou que a circulação da Lagoa, depende fundamentalmente dos ventos que atuam sobre ela e, do regime de chuvas da bacia hidrográfica, que acaba desaguando na Lagoa por meio dos tributários;
- A simulação da qualidade das águas da Lagoa dos Patos, indicou que o comportamento tanto do material em suspensão quanto do oxigênio dissolvido, é regido pelos processos físicos de sedimentação e reaeração atmosférica, respectivamente;
- O módulo FLOW do modelo Delft3D através de sua interface intuitiva, permite a entrada de dados para simulações de maneira simplificada. Os processos disponíveis permitem que a simulação da circulação do ambiente, seja bastante próxima à realidade. O FLOW se mostrou eficiente e confiável para a simulação hidrodinâmica da Lagoa dos Patos, já que conseguiu representar com fidelidade a situação física ao qual foi submetido;
- O módulo WAQ aplicado na avaliação dos processos relativos ao material em suspensão, oxigênio dissolvido e nutrientes, demonstrou um bom desempenho. Este módulo permite a simulação da maioria dos nutrientes e de uma grande quantidade de processos, possibilita tanto a simulação de cada parâmetro individualmente como a interação entre qualquer um destes parâmetros ou todos eles. A facilidade na entrada dos dados e composição dos cenários a serem estudados, tornam o módulo WAQ um modelo ideal nos estudos de qualidade de água e eutrofização. Entretanto, o WAQ não possui a mesma flexibilidade

quando se trata de metais pesados. Apesar dos metais possuírem comportamento e processos diversos, o WAQ dispõe de poucos processos, além de dispor dos mesmos processos para todos os metais. Apesar de admitir que metais e demais parâmetros sejam simulados simultaneamente, o WAQ não permite a interação entre eles;

Os modelos disponibilizados por empresas privadas (que possuem código fechado) têm suas maiores aplicações na área de consultoria ambiental, porque sua utilização garante a qualidade dos resultados sem a perda de tempo com desenvolvimento, atualização periódica do programa e suporte a possíveis problemas. Porém na área científica, a aplicação desses modelos não traz grandes contribuições, pois nesta área, o desenvolvimento de um modelo, mesmo que bem mais simples, traz consigo a necessidade de embasamento teórico e prático, que é o objetivo de toda ciência.

11 RECOMENDAÇÕES

- Recomenda-se que na aplicação deste modelo em trabalhos futuros, sejam obtidos um maior número de dados, tanto na escala temporal como na espacial, para cada parâmetro para alimentar o modelo, assim como obter os parâmetros específicos para este modelo. No desenvolvimento deste trabalho ficou evidente que se faz necessário a utilização das descargas diárias dos principais tributários, assim como a utilização de uma distribuição espacial do vento;
- Além da utilização de mais dados de entrada, seria importante a utilização de uma grade que represente com maior precisão os contornos da Lagoa. Deveriam ser incluídos todas as pequenas baías, para avaliar a influência destes na circulação da Lagoa;
- Recomenda-se, também, que o modelo seja aplicado apenas na região estuarina, pois a disponibilidade de dados para esta região é muito maior, possibilitando obter melhores resultados.

12 REFERÊNCIAS BIBLIOGRÁFICAS

Handbook for analytical quality control in water and waste-water laboratories 1972.

Delft3D, FLOW, User Guide 1999. 180p.

Delft3D, WAQ, User Guide 1999. 200p.

ANDRADE, S. J.; PUCCI, A. E.; MARCOVECCHIO, J. E. Cadmium concentrations in the Bahía Blanca Estuary (Argentina). Potential effects of dissolved cadmium on the diatom. **Oceanologia.** v.42, n.p. 505-520, 2000.

BAIRD, D.; ULANOWICZ, R. E.; BOYNTON, W. R. Seasonal Nitrogen Dynamics in Chesapeake Bay: a Network Approach. Estuarine, Coastal and Shelf Science. v.41, p. 137-162, 1995.

BAISCH, P. Les oligo-elements metalliques du systeme fluvio-lagunaire dos Patos, Flux et devenir (Bresil). 1994. 345 p. Tese (Doutorado em Geologia Marinha) - Universidade de Bourdeaux, Bourdeaux, 1994.

BALLS, P. W.; BROCKIE, N.; DOBSON, J.; JONHSTON, W. Dissolved Oxygen and Nitrification in the Upper Forth Estuary During Summer (1982-92): Patterns and Trends. **Estuarine, Coastal and Shelf Science.** v.42, p. 117-134, 1996.

BAPTISTA, J. R. Flutuações Temporais dos elementos nutrientes dissolvidos do material em suspensão e das características físicas da água na parte sul do estuário da Lagoa dos Patos e praia do Cassino. IN: Simpósio sobre ciclagem de nutrientes em ecossistemas aquáticos e terrestres. São Paulo: Acta Limnol, 1987. p. 29 - 46.

BAUMGARTEN, M. G.; ROCHA, J. M.; NIENCHESKI, L. F. Manual de análises em oceanografia química. Rio Grande: Ed. FURG, 1996. 132 p.

BAUMGARTEN, M. G. Z.; NIENCHESKI, L. F. Qualidade das águas que margeiam a cidade do Rio Grande: nutrientes e detergentes dissolvidos. Atlântica. v.17, 1995.

BIANCHI, T. S.; ARGYROU, M. E. Temporal and Spatial Dynamics of Particulate Organic Carbon in the Lake Pontchartrain Estuary, Southeast Louisiana, U.S.A. Estuarine, Coastal and Shelf Science. v.45, n.p. 557-569, 1997.

BONILHA, N. F. **Circulação em lagos : um modelo matemático simplificado aplicado ao Rio Guaíba e Lagoa dos Patos.** 1974. Dissertação (Mestrado em Engenharia Civil) -Universidade Federal do Rio Grande do Sul, Porto Alegre, 1974.

BURTON, J. D. Basic Properties and processes in estuaries chemistry. IN: BURTON, J. D.; LISS, P. S. Estuarine Chemistry. London: Academic Press, 1976. p. 1 - 36.

BURTON, J. D.; LISS, P. S. Estuarine chemistry. London: Academic Press, 1976.

CALLIARI, L. J. Aspectos sedimentológicos e ambientais na região estuarial da Lagoa dos Patos. 1980. 190 p. Dissertação (Mestrado em Geociências) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 1980.

CASALAS, A. B. Modelo matemático de circulação e de qualidade das águas do estuario do rio Guaíba. IN: Simpósio Brasileiro de Hidrologia e Recursos Hidrícos. São Paulo: ABRH, 1985. p. 419 - 433.

CASTELÃO, R. M. **Estudo da dinâmica da Lagoa dos Patos através da modelagem numérica.** 1999. 83f. Monografia (Graduação em Oceanologia) - Fundação Universidade Federal do Rio Grande, Rio Grande, 1999.

COSTA, C. S. B. Irregularly Flooded Marginal Marshes. IN: SEELIGER, U.; ODEBRECHT, C.; CASTELLO, J. P. **Subtropical Convergence Environments.** Germany: Springer, 1997. p. 73 - 78.

ELBAZ-POULICHET, F.; GARNIER, J.; GUAN, D. M.; MARTIN, J. M.; THOMAS, A. J. **The Conservative Behavior of Trace Metals (Cd, Cu, Ni and Pb) and As in the Surface Plume of Stratified Estuaries. Estuarine, Coastal and Shelf Science.** v.42, n.p. 289-310, 1996.

FALCÃO, L. L. Programa Mar de Dentro, Uma Ação Regional. Revista Eletrônica do Mestrado em Educação Ambiental da FURG. v.1998.

FETTER, A. R. H. Estudo da circulação e processos de mistura da Lagoa dos Patos através do modelo de circulação oceânica da Universidade de Princeton (POM). 1998. Oceanografia (Mestrado) - Fundação Universidade Federal do Rio Grande, Rio Grande, 1998.

FITZPATRICK, J.; IMHOFF, J. Water Quality Models: A Survey and Assessment. **Project 99 - WSM - 5 by Water Environment Research Foundation.** v.102 p., 2001.

FOURQUREAN, J. W.; JONES, R. D.; ZIEMAN, J. C. Processes Influencing Water Column Nutrients Characteristics and Phosphorous Limitation of Phytoplankton Biomass in Florida Bay, FL, USA: Interferences from Spatial Distributions. **Estuarine, Coastal and Shelf Science.** v.36, p. 295-314, 1993.

FRANÇA, R. G. Metais pesados nos sedimentos do sul da Lagoa dos Patos: Identificação do melhor normalizante geoquímico. 1998. 90p. Dissertação (Mestrado em Engenharia Oceânica) - Fundação Universidade Federal do Rio Grande, Rio Grande, 1998.

FRIEDRICH, A. C. Avaliação da qualidade da água da Lagoa Mirim - RS. 2000. Dissertação (Mestrado em Engenharia Oceânica) - Fundação Universidade Federal do Rio Grande, Rio Grande, 2000.

GARCIA, C. A. E. Hydrographic Characteristics. IN: SEELIGER, U.; ODEBRECHT, C.; CASTELLO, J. P. Subtropical Convergence Environmental. Germany: Springer-Verlag, 1997. p. 20 - 24.

GUIEU, C.; MARTIN, J. M. The Level and Fate of Metals in the Danube River Plume. Estuarine, Coastal and Shelf Science. v.54, n.p. 501-512, 2002.

HARTMANN, C. Utilização de dados digitais do mapeamento temático para obtenção dos padrões de distribuição do material em suspensão da desembocadura da Lagoa dos Patos. 1988. Oceanografia (Mestrado) - Instituto de Pesquisas Espaciais, São Paulo, Brasil, 1988.

HARTMANN, C. **Dinâmica, distribuição e composição do material em suspensão na região sul da Laguna dos Patos.** 1996. 363 p. Tese (Doutorado em Geociências) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 1996.

HATJE, V.; BIRCH, G. F.; HILL, D. M. Spatial and Temporal Variability of Particulate Trace Metals in Port Jackson Estuary, Australia. **Estuarine, Coastal and Shelf Science.**v.53, n.p. 63-77, 2001.

HERZ, R. **Circulação da águas de superfície da Lagoa dos Patos.** 1977. 722f. Tese (Doutorado em Oceanografia) - Faculdade de Filosofia Letras e Ciências Humanas. Departamento de Geografia.Universidade de São Paulo, São Paulo, 1977.

JICA, A. I. d. C. d. J. Estudo do gerenciamento ambiental da bacia hidrográfica das lagoas do Patos e Mirim na República Federativa do Brasil. Tokio: Kokusai Kogyo: Pacific Consultants International, 2000.

JORGENSEN, S. E. Fundamentals of Ecological Modelling. Amsterdam: Elsevier, 1994.

LUCA, S. J. Simulação de qualidade de água em bacias hidrográficas com aproveitamentos hidroelétricos em cascata IN: Edital CT-HIDRO 01/2001. 2001.

LUIJENDIJK, A. P. Validation, calibration and evaluation of Delft3D-FLOW model with ferry measurements. 2001. 92p. Dissertação (Mestrado) - Delft Hydraulics University, Delft, 2001.

MENDONÇA, A. S. F. Desenvolvimento de sistema de suporte à decisão para subsídio à outorga de uso de água de rios, lagos e reservatórios considerando fontes pontuais e difusas. IN: Edital CT-HIDRO 01/2001. 2001.

MICHEL, P.; BOUTIER, B.; CHIFFOLEAU, F. Net Fluxes of Dissolved Arsenic, Cadmium, Copper, Zinc, Nitrogen and Phosphorus from the Gironde Estuary (France). Estuarine, Coastal and Shelf Science. v.51, n.p. 541-462, 2000.

MILLER, A. E. J. Seasonal Investigations of Dissolved Organic Carbon Dynamics in the Tamar Estuary, U.K. **Estuarine, Coastal and Shelf Science.** v.49, n.p. 891-908, 1999.

MOLLER, O. J. Hydrodinamique de la Lagune dos Patos (30°S Brésil): mesures et modélisation. 1996. 199f. Tese (Doutorado em Oceanografia) - L'Universite Bourdeaux, Bourdeaux, 1996.

NIENCHESKI, L. F.; BAPTISTA, J. R.; HATTMAN, C.; FILMANN, G. Caracterização hidrológica de três regiões distintas no estuário da Lagoa dos Patos. Acta Limnologia Brasil. v.1, n.p. 47-64, 1986.

NIENCHESKI, L. F.; BAUMGARTEN, M. G. Environmental Chemistry. IN: SEELIGER, U.; ODEBRECHT, C.; CASTELLO, J. P. **Subtropical Convergence Environmental.** Germany: Springer-Verlag, 1997. p. 20 - 24.

NIENCHESKI, L. F.; BAUMGARTEN, M. G.; FILMANN, G.; WINDOM, H. L. Nutrients and Suspended Matter Behavior in the Patos Lagoon Estuary (Brazil). IN: PERILLO, G. M. E.; PICCOLO, M. C.; PIZO-QUIVIRA, M. P. **Estuaries in South America.** Berlim: Springer, 1999. p. 67 - 81.

NIENCHESKI, L. F.; WINDOM, H. L. Nutrient Flux and Budget in Patos Lagoon estuary. **The Science of the Total Environment.** v.149, p. 53-60, 1994a.

NIENCHESKI, L. F.; WINDOM, H. L.; SMITH, R. Distribution of Particulate Trace Metal in Patos Lagoon Estuary (Brazil). Marine Pollution Bulletin. v.28, n.2, p. 96-102, 1994b.

O'CONNOR, D. J. Oxygen balance of an estuary. J.Sanit.Engrg.Div. v.86, n.p. 35-55, 1960.

O'CONNOR, D. J. The temporal an spatial distribution of dissolved oxygen in streams. Water Resources. v.3, n.p. 65-79, 1967.

POSTMA, H. Sediment Transport and Sedimentation. IN: OLAUSSON, E.; CAIO, I. Chemistry and Biogeochemistry of Estuaries. New York: John Willey, 1980. p. 86 - 153.

RILEY, J. P.; CHESTER, R. Introduction to Marine Chemistry. London: Academic Press, 1981. 465p.

ROSA, M. L. **Concentrações de metais pesados na biota e sedimentos do estuário da Lagoa dos Patos.** 2002. 244p. Dissertação (Mestrado em Engenharia Oceânica) - Fundação Universidade Federal do Rio Grande, Rio Grande, 2002.

SANDERS, R.; KLEIN, C.; JICKELLS, C. Biogeochemical Nutrients Cycling in the Upper Great Ouse Estuary, Norfolk, U.K. Estuarine, Coastal and Shelf Science. v.44, p. 543-555, 1997.

SCHONNOR, J. Environmental Modeling. Wiley Interscience, 1996.

STREETER, H. W.; PHELPS, E. B. A study of the pollution and natural purification of the Ohio River. III: Factors concerned in the phenomena of oxidation and reaeration, Bull. **U.S.Public Health Service.** v.146, n.1925.

SZYMANOWSKA, A.; SAMECKA-CYMERMAN, A.; KEMPERS, A. J. Heavy Metals in Three Lakes in West Poland. Ecotoxicology and Environmental Safety. v.43, n.p. 21-29, 1999.

THOMANN, R. V. Mathematical model for dissolved oxygen J.Sanit.Engrg.Div. v.89, n.p. 1-30, 1963.

TIAN, R. C.; HU, F. X.; MARTIN, J. M. Summer Nutrient Fronts in the Changjiang (Yantze River) Estuary. Estuarine, Coastal and Shelf Science. v.37, p. 27-41, 1993.

VEECK, L. Influência do Rio Guaíba sobre a Lagoa dos Patos: uma abordagem dinâmica a partir de balanços de massa. 1997. Trabalho de obtenção do Titulo de Oceanologia (Graduação) - Fundação Universidade Federal do Rio Grande, 1997.

VILAS BOAS, D. F. Distribuição e comportamento dos sais nutrientes, elementos maiores e metais pesados na Lagoa dos Patos - RS. 1990. Mestrado (Oceanografia Biológica) - Fundação Universidade do Rio Grande, Rio Grande, 1990.

WANG, P. F.; MATIN, J.; MORRISON, G. Water Quality and Eutrophic ation in Tampa Bay, Florida. Estuarine, Coastal and Shelf Science. v.49, p. 1-20, 1999.

WATSON, F. Investigation into key chemical fluctuations and relationships in the Forth estuary with particular reference to suspended solids, particulate organic carbon, biochemical oxygen demand (BOD) and dissolved oxygen. 1992. Msc) - Napier University, 1992.

WIERGERT, R. G. Simulation models of ecosystems . IN: Annual Review of Ecology and Systematics. 1975. p. 311 - 338.

WINDOM, H. L.; NIENCHESKI, L. F.; SMITH, R. G. Biogeochemistry of Nutrients and Trace Metals in the Estuarine Region Patos Lagoon (Brazil). Estuarine, Coastal and Shelf Science. v.48, p. 113-123, 1999.

YUNES, J. S.; NIENCHESKI, L. F.; CODD, G. A. The effect of nutrient balance and physical factors on th occurrence, toxicity and control of cianobacterial blooms in the Patos Lagoon, Brazil: a laboratory and field study. Rio Grande: 1996. s/p.

ZARZUR, S. Consumo de oxigênio pelo sedimento e fluxos de regeneração bêntica de nutrientes nas áreas rasas do estuário da Lagoa dos Patos. 2001. 142 p. Dissertação (Mestrado em Oceanografia Física, Química e Biológica) - Fundação Universidade Federal do Rio Grande, 2001.

ZWOLSMAN, J. J. G.; VAN ECK, G. T. M.; VAN DER WEIDJEN, C. H. Biochemistry of dissolved trace me tals (cadmium, copper, zinc) in the Sheldt estuary, southwestern Netherlands: Impact of seasonal variability. Geochimica and Cosmochimica Acta. v.61, n.p. 1635-1652, 1997.

ANEXO A

(Artigo pré-aceito pela Revista Brasileira de Recursos Hídricos)

AVALIAÇÃO DA DISPERSÃO E DILUIÇÃO DA CARGA ÁCIDA DO NT BAHAMAS NO ESTUÁRIO DA LAGOA DOS PATOS ATRAVÉS DO MODELO DELFT

R. S. PEREIRA; L. F. H. NIENCHESKI; M. VITOLA; W. T. PINTO Fundação Universidade Federal do Rio Grande – Laboratório de Hidroquímica Caixa Postal 474 – CEP 96201-900 – Rio Grande, RS dqmhidro@furg.br

RESUMO

A modelagem e simulação computacional têm se tornado importantes ferramentas num dos maiores objetos de estudo da área científica, a qualidade da água. Os modelos numéricos se propõem a simular tanto os processos de transporte como os processos químicos que ocorrem num corpo hídrico. Modelos já têm sido empregados em larga escala em todo o mundo, porém nenhum modelo de gualidade de água foi utilizado para avaliar a situação da Lagoa dos Patos – RS. Um dos pré-requisitos para a aplicação de um modelo de gualidade de água é o desenvolvimento de um modelo hidrodinâmico capaz de representar com fidelidade a dinâmica do sistema em estudo. Para este trabalho foi utilizado o módulo FLOW do sistema de modelagem Delft3D. O módulo FLOW é um modelo hidrodinâmico que acopla a equação de transporte de substancias conservativas, este modelo resolve as equações de águas rasas utilizando diferencas finitas, fazendo uso do método de integração ADI (Alternating Direction Implicit). Portanto, este trabalho tem a intenção primeiro de validar o modelo hidrodinâmico Delft3D do estuário da Lagoa dos Patos, fazendo uso do banco de dados obtido durante o incidente com o NT Bahamas, onde 12000 toneladas de ácido tiveram que ser descarregadas no canal do Porto de Rio Grande - RS. Na seqüência, com o modelo hidrodinâmico validado, procurou-se avaliar os processos de dispersão e diluição do ácido ao longo do canal. A va lidação do modelo de dispersão foi feita comparando os dados de concentração de ácido obtidos durante o acidente com os resultados das simulações. A avaliação da dispersão e diluição do ácido foi feita pela distribuição e deslocamento da mancha de ácido no interior da Lagoa. Os resultados das simulações ficaram muito próximos aos valores reais obtidos durante o incidente, o que evidencia a validação do modelo, pois representou bem a situação física ao qual foi submetido. A análise da dispersão e diluição do ácido demonstrou que as altas descargas da Lagoa durante o incidente fizeram com que a diluição do contaminante fosse bastante rápida e não permitisse que o ácido se espalhasse para áreas mais interiores do estuário. Finalizando, o modelo Delft3D se mostrou confiável para análise da diluição e dispersão do ácido, assim como pode no futuro auxiliar na tomada de decisões em casos semelhantes ao NT Bahamas.

ABSTRACT

The modeling and simulation became important tools in a significant subject of study of the scientific area, the water quality. Numeric models intend to simulate both the transport and chemical processes that happen in a water body. Models have already been used in wide scale all over the world, even so no water quality model have been used to evaluate the Patos Lagoon – RS situation. A condition to apply a water quality model is the development of a hydrodynamic model able to represent the dynamic of the system in study. Therefore, this work has the intention of first validating the hydrodynamic DelftT3D model for Patos Lagoon, using the database obtained during the incident with NT Bahamas, where 12,000 tons of acid had to be discharged in the canal of Rio Grande Harbor (Brazil, RS). In the

sequence, with the hydrodynamic model validated, an estimation of the dispersion and dilution of the acid along the canal was performed. The validation of the dispersion model was made by comparing the data of acid concentration obtained during the accident with the results of the simulations. The evaluation of the dispersion and dilution of the acid was made by the distribution and displacement of the acid stain inside the Lagoon. The results of the simulations were very close to the real values measured during the incident, what indicates the model validation, because it represented quite well the physical situation to which it was submitted. The analysis of the dispersion and dilution of the acid spreading in interior areas of the estuary. Concluding, the Delft3D model is reliable for analysis of the dilution and dispersion of the acid, as well as it can give support in taking decisions in cases similar to NT Bahamas.

INTRODUÇÃO

A qualidade da água é hoje em dia um dos maiores objetos de estudo da área cientifica. E para tais estudos têm sido empregados vários métodos de pesquisa, desde a caracterização da água até a previsão dos processos que nela ocorrem. Uma das ferramentas cada vez mais utilizadas é constituída por modelos matemáticos que se propõem a simular tanto os processos de transporte como os processos químicos que ocorrem num corpo hídrico.

Modelos já têm sido empregados em larga escala em todo o mundo, porém nenhum modelo de qualidade de água foi utilizado para avaliar a situação da Lagoa dos Patos - RS. Um dos pré-requisitos para a aplicação de um modelo de qualidade de água é o desenvolvimento de um modelo hidrodinâmico capaz de representar com fidelidade a dinâmica do sistema em estudo. Neste trabalho foi utilizado o módulo hidrodinâmico FLOW do software Delft3D da WL | Delft Hydraulics, que consiste em um modelo destinado a resolver as equações hidrodinâmicas do escoamento (Equações da conservação da quantidade de movimento е da conservação de massa) e do transporte de substâncias (equação advecção-difusão).

Em agosto de 1998, o navio tanque NT Bahamas aportou em Rio Grande transportando ácido sulfúrico concentrado (98%). Devido a problemas operacionais, a água do estuário inundou os tanques misturando-se com o ácido, produzindo uma mistura ácida, que em contato com o metal do navio gerou gases e alto risco de explosão, devido à alta pressão. A única alternativa encontrada pelas autoridades envolvidas foi permitir que as 12000 toneladas de ácido restantes fossem descarregadas de forma controlada no canal do Porto de Rio Grande. Durante o monitoramento do incidente. foram realizadas coletas em diferentes pontos do eixo principal do canal, a fim de avaliar a diluição do ácido. Os dados obtidos nas coletas são uma combinação de todos os processos de transporte de massa, que dependem de dois fenômenos principais, segundo Schonnor (1996), a advecção e a dispersão.

Portanto, este trabalho tem a intenção primeiro de validar o modelo hidrodinâmico Delft3D para o estuário da Lagoa dos Patos, fazendo uso do banco de dados obtido durante o incidente com o NT Bahamas, amplamente estudado pelo Laboratório de Hidroquímica da FURG. Na seqüência, com o modelo hidrodinâmico validado, procurou-se avaliar os processos de dispersão e diluição do ácido ao longo do canal.

ÁREA DE ESTUDO

O incidente ocorreu no terminal da empresa de fertilizantes Serrana SA (Latitude 32°03'035 S e Longitude 52°04'292 W, na proa do navio), localizado no canal do Porto de Rio Grande - RS, na região estuarina da Lagoa dos Patos, na Figura 1 é mostrada a localização do NT Bahamas.

A Lagoa dos Patos tem uma superfície

de 10360km², com cerca de 250km de comprimento e 40km de largura e se comunica com o Oceano Atlântico por um estreito canal ao sul da Lagoa. A circulação da Lagoa depende principalmente de dois fatores: ventos e descarga fluvial. Ventos nordeste (NE), dominantes na região, forçam fluxos em direção ao mar (vazante). Ventos do quadrante sul, mais freqüentes nos meses de inverno, invertem esta situação (enchente) (HERZ, 1977).

O derramamento do ácido ocorreu no final do inverno (entre 03 e 13 de Setembro de 1998), época na qual o regime da Lagoa era de vazante, provocado pela forte descarga de água doce, devido àgrande incidência de chuvas. Nestas condições, o fluxo de água doce tende a se manter em direção ao mar, mesmo com os ventos dominantes do sudoeste (SW), característicos da época (NIENCHESKI et al., 1998).

Figura 1: Localização da área de estudo.

A Lagoa drena uma bacia hidrográfica de quase 200000km², que é caracterizada pela alta descarga no inverno e primavera e baixa descarga durante o verão e outono. A média anual é em torno de 1000m³/s, com média sazonal de 700m³/s no verão e acima de 3000m³/s no inverno (MOLLER, 1996). O pH normal da região estudada, por se tratar de um ambiente estuarino, se encontra geralmente entre 7 e 8,2 (neutro a levemente alcalino).

MODELO HIDRODINÂMICO

Para este estudo foi empregado o módulo FLOW do sistema de modelagem integrado de fluxo e transporte da WL Delft Hydraulics para ambientes aquáticos. módulo FLOW 0 é um modelo hidrodinâmico que possui a equação de transporte acoplada. Todas as condições hidrodinâmicas e de transporte são determinadas pelo módulo hidrodinâmico podem ser FLOW, e os resultados utilizados como "input" para os demais módulos, como o de transporte de sedimentos, ecologia, ondas, morfologia e o de qualidade da água.

O módulo FLOW resolve as equações águas rasas para estados não de estacionários em 2 ou 3 dimensões. O sistema de equações consiste nas equações do movimento, continuidade e de transporte de substâncias conservativas. Para a solução deste sistema de equações é utilizado o método de diferenças finitas, empregando a técnica ADI (Alternating Direction Implicit). Essa técnica divide cada passo de tempo em dois, onde o primeiro passo é implícito na coordenada x e explicito direção y e o segundo explicito para x e implícito para у.

O primeiro passo a ser realizado foi a criação da grade que representa computacionalmente a porção do ambiente a simular. O Delft3D dispõe do RGFGRID, um programa destinado à criação e manipulação de grades, que podem ser retangulares, esféricas ou curvilíneas. De acordo com o apresentado na área de estudo, o ambiente a ser modelado possui um contorno muito irregular, não podendo ser representado por uma grade retangular ou esférica. Contornos irregulares podem levar a erros significativos na discretização. Para reduzir estes erros utilizou-se uma grade curvilínea.

Devido àdif iculdade de determinar as condições de contorno no canal, foi modelado o estuário inteiro. Portanto, a área do estuário foi digitalizada e importada para o editor de grades e, de posse do contorno (Figura 2), foram utilizadas linhas de referência que se sobrepunham aos contornos do estuário (Figura 3). Essas linhas foram transformadas pelo programa numa grade grosseira, que foi sendo refinada até se obter uma resolução que permitisse uma reprodução dos processos de transporte a mais realista possível. As células da grade foram preenchidas com a batimetria do local (Figura 4), utilizando a média dos valores de profundidade de cada célula da grade, o que é o mais adequado quando se possui muitos valores para cada célula.

Figura 2: Contorno do estuário da Lagoa dos Patos.

Figura 3: Linhas de referência para transformação em grade.

Figura 4: Grade e batimetria adotada para a simulação.

Com a grade pronta, foram definidas para o modelo, as fronteiras fechadas (margens da Lagoa) e as fronteiras abertas (limites norte e sul). A fronteira norte, correspondente a ligação do estuário com à Lagoa, foi considerada como uma fronteira aberta, utilizando como forçante a descarga da Lagoa, a qual foi prescrita como uma série temporal. A fronteira sul consiste dos Molhes da Barra do Rio Grande. Nesta fronteira foi estabelecido como forçante o nível do mar, levando em conta uma maré lunar semidiurna com amplitude de 0,5m. As descargas do estuário da Lagoa dos Patos foram obtidas com a Agência Nacional de Águas. Os dados de maré foram fornecidos pela Capitania dos Portos da Marinha Brasileira, enquanto que a batimetria do local foi fornecida pelo Porto de Rio Grande.

A análise do incidente utilizando o Delft3D foi conduzida por um período de 15 dias divididos da seguinte maneira: 2 dias antes do início do derramamento, 11 dias de derramamento e 2 dias após o fim do derramamento do ácido. O bombeamento do ácido para o canal foi feito de forma controlada. O ácido só era lançado quando a corrente era em direção ao mar, em caso contrário o bombeamento era parado. Isso fez com que durante os 11 dias de alijamento da carga tenham sido realizados 16 ciclos de derramamento de ácido, com diferentes tempos de duração.

O ácido foi descarregado sob a justificativa de que a advecção (transporte de material dissolvido ou particulado muito fino na velocidade de deslocamento do fluxo de água. Pode ocorrer na direção longitudinal, transversal e vertical) seria o mecanismo de transporte controlador, de forma aue contaminante 0 seria transportado em direção ao oceano devido a grande vazão de descarga da lagoa. Todavia na simulação, foi necessário considerar os efeitos da dispersão, a fim de estimar a concentração de ácido com maior precisão.

O ácido sulfúrico foi considerado uma substância conservativa, ou seja, não haveria interação dele com o meio de forma alguma, não havendo reações químicas nem decomposição biológica, somente poderia haver a diluição ou concentração dele no sistema. De acordo com a consideração de contaminante conservativo, o modelo de dispersão consiste na introdução de uma fonte de ácido no modelo hidrodinâmico da Delft3D (Figura 6).

As condições e parâmetros de entrada no modelo foram os mesmos observados

na época do incidente (descarga da Lagoa de 3000m³/s para a fronteira norte, maré semidiurna com amplitude de 0,5m na fronteira sul e vento com intensidade de 5m/s na direção sudoeste, e taxa de bombeamento de ácido de 0,05m³/s com concentração de 10kg/m³).

Figura 5: Pontos de monitoramento da concentração de ácido no modelo.

RESULTADOS E DISCUSSÃO

O modelo FLOW foi validado comparando os dados obtidos do monitoramento durante o acidente com os resultados da simulação. A simulação foi conduzida do dia 01/09/1998 as 00h00min até o dia 15/09/1998 as 00h00min, utilizando um intervalo de 5 min de integração. As condições iniciais utilizadas foram: salinidade, nível d´água em relação ao nível de referência, e concentração de ácido todos iguais a zero.

Para as simulações foram escolhidos 5 pontos de monitoramento dentro do modelo. Os pontos 2, 3 e 5 foram escolhidos para coincidir com os pontos de amostragem feitos pela FURG e os pontos 1 e 4 para controle do modelo (Figura 6). O modelo calcula a concentração de ácido sulfúrico e essa concentração foi transformada em pH para a comparação com dados obtidos durante o incidente.

Figura 6: a) Ponto 2; b) Ponto 3; c) Ponto 5 de monitoramento.

Percebe-se que os valores calculados pelo modelo foram muito próximos aos valores reais (Figura 7), o que evidencia que o modelo é válido, pois representou bem a situação física ao qual foi submetido. Depois de concluída esta importante etapa que nos dá as condições hidrodinâmicas do sistema estuarino, deu-se início ao estudo da diluição e dispersão do contaminante.

O descarregamento do ácido no canal foi feito numa época que havia sido constatado alto índice pluviométrico, fazendo com que o regime de vazante fosse muito intenso. Utilizando as mesmas condições (intensidade e direção do vento, vazão de descarga da Lagoa, maré) para a simulação do acidente foi verificada a seguinte característica da dispersão do contaminante:

Figura 7: a) Situação no inicio do ultimo ciclo de bombeamento do ácido; b) após 2h do inicio; c) após 5h do fim e d) após 11h do fim do bombeamento.

Segundo o observado nas Figuras 7b e 7c logo que o ácido é descartado ele toma a direção do oceano e 11h após cessar o derramamento a concentração no ponto de lançamento atinge níveis normais novamente, conforme a Figura 7d. O regime de altas vazões (3000m3/s) faz com que a diluição do contaminante seja bastante rápida. A grande descarga também não permite que o ácido se espalhe para áreas mais interiores do estuário, ou seja, inibe a dispersão do poluente. Isso pode ser constatado na Figura 8, onde se nota que a concentração de ácido no ponto 1 é zero, enquanto que no ponto de descarte do ácido altas concentrações são observadas.

A consideração feita no estudo de que o ácido sulfúrico é uma substância conservativa foi comprovada, pois devido às altas vazões o ácido teve um tempo de residência muito baixo dentro do estuário que combinado com as baixas concentrações devido à diluição fizeram com que o ambiente pouco se alterasse.

Apesar de danos ao ambiente terem acontecido (MIRLEAN et al., 2001), estes foram os menores possíveis. Graves prejuízos ao sistema poderiam ter ocorrido, se na época o regime fosse de enchente, pois o ácido poderia ter atingido áreas de berçários, assim como promover uma possível solubilização dos metais do ambiente, tornando-os biodisponíveis (NIENCHESKI et al., 2001).

Figura 8: Comparação da concentração do ácido nos pontos 1 e 2.

CONCLUSÃO

O modelo se mostrou confiável para análise da diluição e dispersão do ácido, pois seus resultados representaram bem a situação física apresentada. As simulações realizadas demonstraram que o processo de advecção foi realmente o controlador durante o lançamento, o ácido foi sempre arrastado pelo fluxo de água e m direção ao oceano, impedindo que o contaminante se dispersasse e entrasse em contato com porções mais interiores do estuário, ecologicamente mais frágeis.

O Delft3D de acordo com os resultados apresentados, pode auxiliar na tomada de decisões em casos semelhantes ao Bahamas, avaliando todas as variantes envolvidas e possíveis, além de poder vir a ser uma importante ferramenta para a avaliação dos processos físicos e químicos, bem como dos processos biogeoquimicos que ocorrem na Lagoa e desta forma estimar quando necessário a qualidade da água da Lagoa dos Patos.

REFERÊNCIAS BIBLIOGRÁFICAS

HERZ, R. **Circulação da águas de superfície da Lagoa dos Patos.** 1977. 722f. Tese (Doutorado em Oceanografia) - Faculdade de Filosofia Letras e Ciências Humanas. Departamento de Geografia.Universidade de São Paulo, São Paulo, 1977.

MIRLEAN, N. et al. The Effect of Accidental Sulfuric Acid Leaking on Metal Distributions in Estuarine Sediment of Patos Lagoon. **Marine Pollution Bulletin.** v.42, n.11, p. 1114-1117, Sept./2001.

MOLLER, O. J. Hydrodinamique de la Lagune dos Patos (30°S Brésil): mesures et modélisation. 1996. 199f. Tese (Doutorado em Oceanografia) - L'Universite Bourdeaux, Bourdeaux, 1996.

NIENCHESKI, L. F. et al. O incidente com o navio Bahamas, carregado de ácido sulfúrico no porto da cidade de Rio Grande (RS): sua inundação e remoção. **Revista pesquisa Naval.** v.14, 197-207, Oct./2001.

L. F.; BESNICK, NIENCHESKI, B.: BAUMGARTEN. M. G. Avaliação da qualidade hídrica. IN: ASMUS, L. M.; Monitoramento TAGLIANI. R. Β. emergencial dos efeitos do derramamento do ácido do navio Bahamas no estuário da Lagoa dos Patos: Relatório Técnico. Rio Grande: FURG, 1998. 58 - 68p.

SCHONNOR, J. **Environmental Modeling.** Wiley Interscience, 1996.

ANEXO B

(Dados obtidos pelos 11 cruzeiros realizados pelo projeto Mar de Dentro)

Legenda:

Cruzeiro 1

T ar: Temperatura do ar

T água: Temperatura da água

O.D.: Oxigênio Dissolvido

Sat. O.D.: Saturação de Oxigênio dissolvido

MES: Material em suspensão

TKN: Nitrogênio Total Kjedahl

M.O.: Matéria orgânica

Sol. Vol.: Sólidos Voláteis

Sol. Susp.: Sólidos Suspensos

Sol. Totais: Sólidos Totais COT.: Carbono Orgânico Total P tot: Fósforo Total N tot: Nitrogênio Total DBO5: Demanda bioquímica de oxigênio (5 dias) DQO: Demanda química de oxigênio Colif. Totais: Coliformes Totais Colif. Fecais: Coliformes Fecais

09-10-1	1/02/1999	Hora	T ar	T.água	Salinidade	Condutividade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	MES	TKN	M.O.	Sol. Vol.	Sol. Susp.
Feve	ereiro		°C	°C	(sonda)	(mmho/cm)		mg/l	%	(NTU)	(m)	mg/l	(mg/l)	(mg/l O2)	(mg/l)	(mg/l)
R1	S	-	22,500	24,200	0,000	-	7,500	8,400	-	20,000	-	-	0,710	4,000	16,000	33,300
R1	F	-	22,500	24,100	0,000	-	7,000	8,500	-	91,000	-	-	1,300	6,000	113,000	95,000
P1	S	-	22,500	24,500	0,000	-	8,000	8,100	-	94,000	-	-	1,000	5,000	25,000	64,000
P1	F	-	22,500	24,500	0,000	-	8,000	7,900	-	77,000	-	-	0,780	5,000	27,000	50,000
P2	S	-	22,500	24,600	0,000	-	8,300	8,500	-	71,000	-	-	1,510	4,000	24,000	38,000
P2	F	-	22,500	23,900	0,000	-	8,100	8,200	-	65,000	-	-	0,890	4,000	26,000	5,000
P3	S	-	22,400	26,200	0,200	-	8,300	8,800	-	51,000	-	-	0,480	4,000	43,000	29,500
P3	F	-	22,400	24,000	0,400	-	8,100	7,900	-	51,000	-	-	0,540	3,000	38,000	18,000
P4	S	-	22,000	25,200	3,000	-	7,700	8,200	-	2,000	-	-	0,410	2,000	463,000	2,400
P4	F	-	22,000	23,900	3,000	-	7,600	8,200	-	3,000	-	-	0,380	3,000	509,000	6,000
P5	S	-	22,000	24,500	3,500	-	7,600	7,700	-	1,900	-	-	0,530	2,000	580,000	3,000
P5	F	-	22,000	23,900	3,500	-	7,400	8,100	-	2,100	-	-	0,540	3,000	978,000	4,000
P6	S	-	22,000	24,100	4,000	-	7,700	8,200	-	3,600	-	-	0,400	3,000	662,000	4,400
P6	F	-	22,000	23,800	4,400	-	8,100	8,100	-	2,100	-	-	0,470	2,000	847,000	7,800
P7	S	-	22,000	23,800	11,700	-	8,100	7,900	-	2,600	-	-	0,470	4,000	3765,000	4,700
P7	F	-	22,000	23,600	21,300	-	8,100	7,300	-	3,600	-	-	0,630	2,000	6376,000	4,000
P8	S	-	22,000	22,000	29,000	-	8,400	8,200	-	2,000	-	-	0,240	5,000	28739,000	3,600
P8	F	-	22,000	23,100	31,000	-	8,400	8,700	-	3,600	-	-	0,300	6,000	9682,000	7,900
01	S	-	23,700	24,400	31,100	-	8,400	7,500	-	6,100	-	-	0,410	6,000	4825,000	13,600
01	F	-	23,700	22,800	31,200	-	8,400	7,600	-	17,000	-	-	0,370	5,000	8940,000	30,700
R2	S	-	-	-	-	-	-	-	-	23,000	-	-	0,420	4,000	71,000	25,300
R3	S	-	-	-	-	-	-	-	-	63,000	-	-	0,460	7,000	40,000	72,500

09-10-11/	/02/1999	Sol. Totais	СОТ	Fosfato	Amônio	Nitrito	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb
Fever	eiro	(mg/l)	(mg/l C)	μM	μM	μM	μM	μM	(mg/l Cl)		μM	mg/l	µg/L	µg/L	μg/L	μg/L	μg/L
R1	R1	74,000	5,000	-	<7,143	0,286	14,286	-	5,000	-	3,226	-	-	-	-	-	-
R1	R1	146,000	8,000	-	<7,143	0,357	7,143	-	5,000	-	2,258	-	-	-	-	-	-
P1	P1	148,000	6,000	-	<7,143	0,071	28,571	-	3,000	-	4,516	-	-	-	-	-	-
P1	P1	154,000	6,000	-	<7,143	0,143	42,857	-	3,000	-	1,613	-	-	-	-	-	-
P2	P2	123,000	4,000	-	7,143	0,214	21,429	-	5,000	-	3,871	-	-	-	-	-	-
P2	P2	154,000	6,000	-	7,143	0,214	35,714	-	7,000	-	5,161	-	-	-	-	-	-
P3	P3	274,000	5,000	-	7,143	0,143	28,571	-	82,000	-	3,548	-	-	-	-	-	-
P3	P3	250,000	6,000	-	<7,143	0,071	21,429	-	67,000	-	3,226	-	-	-	-	-	-
P4	P4	3069,000	12,000	-	7,143	0,143	-	-	1650,000	-	0,323	-	-	-	-	-	-
P4	P4	3339,000	49,000	-	7,143	0,000	-	-	1650,000	-	0,645	-	-	-	-	-	-
P5	P5	3786,000	35,000	-	<7,143	0,143	-	-	1900,000	-	0,323	-	-	-	-	-	-
P5	P5	4309,000	15,000	-	<7,143	0,143	-	-	1900,000	-	0,645	-	-	-	-	-	-
P6	P6	4419,000	20,000	-	<7,143	0,286	-	-	2150,000	-	0,968	-	-	-	-	-	-
P6	P6	48,000	49,000	-	7,143	0,214	-	-	2150,000	-	0,645	-	-	-	-	-	-
P7	P7	15342,000	29,000	-	<7,143	0,214	-	-	7000,000	-	0,968	-	-	-	-	-	-
P7	P7	24463,000	54,000	-	7,143	0,286	-	-	10400,000	-	1,613	-	-	-	-	-	-
P8	P8	55385,000	41,000	-	7,143	0,143	-	-	16000,000	-	1,290	-	-	-	-	-	-
P8	P8	38794,000	66,000	-	<7,143	0,214	-	-	16800,000	-	1,613	-	-	-	-	-	-
01	01	34252,000	235,000	-	<7,143	0,429	-	-	17200,000	-	2,581	-	-	-	-	-	-
01	01	38477,000	514,000	-	<7,143	1,429	-	-	16600,000	-	1,613	-	-	-	-	-	-
R2	R2	25,300	6,000	-	7,143	0,143	14,286	-	1,000	-	1,613	-	-	-	-	-	-
R3	R3	176,000	9,000	-	<7,143	0,286	7,143	-	8,000	-	2,258	-	-	-	-	-	-

09-10-1	1/02/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Cianeto	Colif. Totais	Colif. Fecais	Clorofila-a
Fev	ereiro	μg/L	μg/L	μg/L	μg/L	μg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	-	-	-	-	-	-	16,000	ND	2000,000	160,000	24,600
R1	R1	-	-	-	-	-	-	20,000	ND	4400,000	2,000	28,370
P1	P1	-	-	-	-	-	-	14,000	ND	1600,000	<0,99	12,500
P1	P1	-	-	-	-	-	-	16,000	ND	610,000	<0,99	12,370
P2	P2	-	-	-	-	-	-	15,000	ND	340,000	<0,99	8,720
P2	P2	-	-	-	-	-	-	18,000	ND	370,000	9,000	7,460
P3	P3	-	-	-	-	-	-	16,000	ND	190,000	<0,99	4,390
P3	P3	-	-	-	-	-	-	13,000	ND	220,000	<0,99	3,420
P4	P4	-	-	-	-	-	-	34,000	ND	2000,000	<0,099	0,740
P4	P4	-	-	-	-	-	-	30,000	ND	3300,000	<0,099	1,010
P5	P5	-	-	-	-	-	-	24,000	ND	2500,000	<0,099	0,890
P5	P5	-	-	-	-	-	-	32,000	ND	3700,000	<0,099	1,280
P6	P6	-	-	-	-	-	-	-	ND	1900,000	<0,099	0,980
P6	P6	-	-	-	-	-	-	-	ND	9200,000	<0,99	0,750
P7	P7	-	-	-	-	-	-	-	ND	1600,000	<0,99	0,970
P7	P7	-	-	-	-	-	-	-	ND	2000,000	3,000	0,760
P8	P8	-	-	-	-	-	-	-	ND	300,000	10,000	1,150
P8	P8	-	-	-	-	-	-	-	ND	60,000	<0,99	5,690
01	01	-	-	-	-	-	-	-	ND	<0,99	<0,99	3,610
01	01	-	-	-	-	-	-	-	ND	10,000	<0,099	7,060
R2	R2	-	-	-	-	-	-	17,000	ND	9200,000	30,000	-
R3	R3	-	-	-	-	-	-	24,000	ND	2400,000	20,000	-

02-03/0	3/1999	Hora	T ar	T.água	Salinidade	Condutiv	idade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	MES	TK	N M	atéria Orgâni	ica	Sol. V	/ol.	Sol. Susp.
Mai	rço		°C	°C	(sonda)	(mmho/	cm)		mg/l	%	(NTU)	(m)	mg/l	(mg	/I)	(mg/l O2)		(mg	/I)	(mg/l)
R1	S	-	-	28,900	0,000	0,030	0	9,180	10,890	141,820	17,000	-	8,570	0,20	00	5,000		25,0	00	25,300
R1	F	-	-	27,700	0,000	0,010	0	8,630	8,810	112,820	26,000	-	18,570	0,64	0	5,000		30,0	00	30,700
P1	S	-	-	28,110	0,000	0,010	0	8,310	10,030	128,410	30,000	-	10,500	0,27	0	4,000		18,0	00	16,000
P1	F	-	-	26,660	0,000	0,010	0	7,920	8,420	105,960	29,000	-	28,250	0,16	60	3,000		15,0	00	16,000
P2	S	-	-	27,590	0,000	0,030	0	8,230	10,410	133,330	54,000	-	9,710	0,22	20	4,000		37,0	00	37,300
P2	F	-	-	26,430	0,000	0,050	0	7,440	8,580	107,970	55,000	-	60,290	0,17	0	4,000		7,00	00	59,000
P3	S	-	-	27,710	0,720	1,520	0	7,870	9,710	124,310	14,000	-	6,290	NI)	3,000		10,0	00	9,100
P3	F	-	-	26,560	0,830	1,690	0	7,730	8,420	105,960	14,000	-	10,000	NI)	3,000		11,0	00	1,800
P4	S	-	-	27,470	2,640	5,190	0	7,160	9,290	120,300	3,000	-	1,600	NI)	4,000		69,0	00	2,400
P4	F	-	-	26,790	3,130	6,010	0	7,160	8,010	102,940	2,300	-	1,000	NI)	4,000		369,0	000	5,200
P5	S	-	-	27,370	3,290	6,350	0	6,620	9,610	123,530	3,500	-	1,800	NI)	5,000		412,0	000	1,600
P5	F	-	-	26,490	3,470	6,890	0	7,250	8,490	111,160	3,100	-	5,000	NI)	5,000		1644,0	000	1,000
P6	S	-	-	27,780	3,710	7,190	0	7,350	10,090	129,710	3,300	-	2,600	NI)	5,000		1866,	000	6,400
P6	F	-	-	27,810	3,720	7,190	0	7,500	8,810	115,360	3,100	-	3,750	NI)	5,000		1580,	000	1,200
P7	S	-	-	27,900	3,460	6,720	0	6,660	8,810	115,360	3,700	-	2,200	NI)	5,000		1400,0	000	2,600
P/	F	-	-	27,220	9,040	25,12	20	7,440	/,530	100,080	5,100	-	4,200	NI)	6,000		829,0	000	6,800
P8	F		-	27,380	29.250	12,30	0	7,030	6,660	93 560	5,000	-	12,850	NI	, ,	3,000		67.0	00	13 000
01	S		-	26,230	31 330	49.26	50 50	7,850	8,650	127.860	0,900		6 500	NI	<i>,</i>	5,000		23173	000	10,000
01	F	-	-	24,240	32,240	48,76	50 50	8.040	8.810	125,970	1.200	-	6,400	NI	ý)	4.000		16847	,000	28.600
R2	S	-	-	-	-	-	-	-	_	-	22,000	-	-	NI)	5,000		23.0	00	23 400
R3	S	-	-	-	-	-		-	-	-	45,000	-	-	0.43	50 0	6.000		41.0	00	41.000
02-03/0	3/1999	Sol.	Totais	сот	Fosfato	Amônio	Nitrit	0	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb	
02-03/0 Mai	3/1999 rço	Sol. (r	Totais ng/l)	COT (mg/l C)	Fosfato µM	Amônio µM	Nitrit µM	0	Nitrato µM	Silicato µM	Cloretos (mg/l Cl)	N/P	P tot µM	N tot mg/l	Cr(III) µg/L	Cr(VI) µg/L	Cu µg/L	Zn µg/L	Pb µg/L	
02-03/0 Mar R1	3/1999 rço R1	Sol. (r 53	Totais ng/l) 3,000	COT (mg/l C) 8,000	Fosfato μM 0,876	Amônio μM 10,533	Nitrit μM 0,733	0 }	Nitrato μM 13,620	Silicato µM 24,500	Cloretos (mg/l Cl) 5,000	N/P 23,413	P tot µM	N tot mg/l	Cr(III) µg/L	Cr(VI) µg/L	Cu µg/L -	Zn µg/L -	Pb µg/L -	
02-03/0 Mar R1 R1	3/1999 rço R1 R1	Sol. (r 53 64	Totais ng/l) 3,000 4,000	COT (mg/l C) 8,000 1,000	Fosfato μM 0,876 0,165	Amônio μM 10,533 9,667	Nitrit μM 0,733 0,573	3	Nitrato μM 13,620 10,958	Silicato µM 24,500 35,500	Cloretos (mg/l Cl) 5,000 4,000	N/P 23,413 96,697	P tot µM	N tot mg/l -	Cr(III) µg/L - -	Cr(VI) µg/L -	Cu µg/L - -	Zn μg/L -	Pb μg/L -	
02-03/0 Mar R1 R1 P1	3/1999 rço R1 R1 P1	Sol. (r 53 64 90	Totais ng/l) 3,000 4,000 0,000	COT (mg/l C) 8,000 1,000 5,000	Fosfato μM 0,876 0,165 0,474	Amônio μM 10,533 9,667 10,000	Nitrit μM 0,733 0,573 0,000	0 3 3)	Nitrato μM 13,620 10,958	Silicato μM 24,500 35,500 35,000	Cloretos (mg/l Cl) 5,000 4,000 5,000	N/P 23,413 96,697	P tot µM - - -	N tot mg/l - -	Cr(III) µg/L - -	Cr(VI) µg/L - - -	Cu µg/L - -	Zn μg/L - -	Pb μg/L - -	
02-03/0 Mar R1 R1 P1 P1 P1	3/1999 rço R1 R1 P1 P1 P2	Sol. (r 53 64 90 64	Totais ng/l) 3,000 4,000 0,000 4,000	COT (mg/l C) 8,000 1,000 5,000 6,000	Fosfato μM 0,876 0,165 0,474 0,124	Amônio μM 10,533 9,667 10,000 4,400 2,522	Nitrit μM 0,733 0,573 0,000 0,273	0	Nitrato μM 13,620 10,958 - 10,143 12,575	Silicato µM 24,500 35,500 35,000 36,000 24,500	Cloretos (mg/l Cl) 5,000 4,000 5,000 5,000	N/P 23,413 96,697 - 57,954	P tot μM - - -	N tot mg/l - - -	Cr(III) µg/L - - -	Cr(VI) µg/L - - - -	<u>Си</u> µg/L - - -	Zn μg/L - - -	Pb μg/L - - -	
02-03/0 Man R1 P1 P1 P2 P2	3/1999 rço R1 R1 P1 P1 P2 P2	Sol. (r 53 64 90 64 12	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 0,000	COT (mg/l C) 8,000 1,000 5,000 6,000 7,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113	Amônio μM 10,533 9,667 10,000 4,400 3,533 2,100	Nitrit μM 0,733 0,573 0,000 0,273 0,213	0	Nitrato μM 13,620 10,958 - 10,143 12,575	Silicato μM 24,500 35,500 35,000 36,000 34,500	Cloretos (mg/l Cl) 5,000 4,000 5,000 5,000 5,000 5,000 9,000	N/P 23,413 96,697 - 57,954 5,579	P tot μM - - - -	N tot mg/ - - - - -	Cr(III) µg/L - - - -	Cr(VI) µg/L - - - - - - -	Cu µg/L - - - -	Zn μg/L - - - - -	Pb μg/L - - - - -	
02-03/0 Man R1 P1 P1 P2 P2 P2 P2	3/1999 rço R1 R1 P1 P1 P2 P2 P2 P2	Sol. (r 53 64 90 62 12 10	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 8,000 4,000	COT (mg/l C) 8,000 1,000 5,000 6,000 7,000 1,000	Fosfato µM 0,876 0,165 0,474 0,124 1,113 0,134 0,200	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400	Nitrit μM 0,733 0,573 0,000 0,273 0,213 0,000 0,253	0	Nitrato μM 13,620 10,958 - 10,143 12,575 - -	Silicato μM 24,500 35,500 35,000 36,000 34,500 55,000 43,000	Cloretos (mg/l Cl) 5,000 4,000 5,000 5,000 5,000 9,000 9,000 4,000	N/P 23,413 96,697 - 57,954 5,579 -	P tot μM - - - - - -	N tot mg/l - - - - -	Cr(III) µg/L - - - - - - - -	Cr(VI) µg/L - - - - - - - -	Cu µg/L - - - - - - -	Zn μg/L - - - - - -	Pb µg/L - - - - - - -	
02-03/0 Man R1 R1 P1 P2 P2 P3 P3	3/1999 rço R1 P1 P1 P2 P2 P3 P3	Sol. (r 53 64 90 64 12 10 72 73	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 8,000 4,000 9,000	COT (mg/LC) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 1,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733	Nitrit μM 0,733 0,573 0,000 0,273 0,213 0,213 0,000 0,353 0,273	0	Nitrato μM 13,620 10,958 - 10,143 12,575 - 15,411	Silicato μM 24,500 35,500 35,000 36,000 34,500 55,000 43,000 57,000	Cloretos (mg/ Cl) 5,000 4,000 5,000 5,000 9,000 9,000 410,000	N/P 23,413 96,697 57,954 5,579 - 38,485	P tot μM - - - - - - -	N tot mg/l - - - - - - -	Cr(III) μg/L - - - - - -	Cr(VI) µg/L - - - - - - - - -	Cu μg/L - - - - - -	Zn μg/L - - - - - - - - -	Pb µg/L - - - - - - - - -	
02-03/0 Mar R1 R1 P1 P2 P2 P2 P3 P3 P4	3/1999 rço R1 R1 P1 P2 P2 P3 P3 P4	Sol. (r 53 64 90 64 12 10 72 73 73	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 8,000 4,000 9,000 12,000	COT (mg/l C) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 1,200	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467	Nitrit μM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,273 0,000 0,353 0,273	0	Nitrato µM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383	Silicato μM 24,500 35,500 35,000 36,000 34,500 55,000 43,000 57,000 38,000	Cloretos (mg/l Cl) 5,000 5,000 5,000 9,000 9,000 410,000 410,000	N/P 23,413 96,697 - 57,954 5,579 - 38,485 - #DIV/01	P tot μM - - - - - - - - -	N tot mg/l - - - - - - - - -	Cr(III) μg/L - - - - - - - - -	Cr(VI) µg/L - - - - - - - - -	Cu μg/L - - - - - - - -	Zn μg/L - - - - - - - - - - - -	Pb µg/L - - - - - - - - - - -	
02-03/0 Mai R1 P1 P2 P2 P3 P3 P4 P4	3/1999 rço R1 P1 P1 P2 P2 P3 P3 P4 P4	Sol. (r 53 64 90 64 12 10 72 73 231 231	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 8,000 4,000 9,000 12,000 57,000	COT (mg/LC) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,125	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000	Nitrit µM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,273 0,693 0,433 0,433	0	Nitrato μM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667	Silicato μM 24,500 35,500 36,000 34,500 55,000 43,000 57,000 38,000 107,500	Cloretos (mg/l Cl) 5,000 5,000 5,000 9,000 9,000 410,000 410,000 1500,000	N/P 23,413 96,697 - 57,954 5,579 - 38,485 - #DIV/0! 26172	P tot µM	N tot mg/ - - - - - - - - - - - - -	Cr(III) μg/L - - - - - - - - - - - - - -	Cr(VI) µg/L - - - - - - - - - - - -	Cu µg/L - - - - - - - - - - - - -	Zn µg/L - - - - - - - - - - - - - - - -	Pb μg/L - - - - - - - - - - - - - - - - - - -	
02-03/0 Man R1 P1 P2 P2 P3 P3 P3 P4 P4 P5	3/1999 rço R1 R1 P1 P2 P2 P3 P3 P4 P4 P5	Sol. (r 53 64 90 64 12 10 73 73 231 231 235 339	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 8,000 4,000 9,000 12,000 37,000 30,000	COT (mg/LC) 8,000 5,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,175 0,000	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067	Nitrit μM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,273 0,693 0,643 0,443	0	Nitrato μM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512	Silicato μM 24,500 35,500 35,000 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500	Cloretos (mg/l Cl) 5,000 5,000 5,000 5,000 9,000 410,000 410,000 1500,000 1500,000	N/P 23,413 96,697 - 57,954 5,579 - 38,485 - #DIV/0! 26,172 #DIV/0!	P tot µM	N tot mg/ - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) μg/L - - - - - - - - - - - - -	Cu µg/L - - - - - - - - - - - - -	Zn µg/L - - - - - - - - - - - - - - - - - -	Pb μg/L - - - - - - - - - - - - - - - - - - -	
02-03/0 Mai R1 P1 P1 P2 P2 P3 P3 P4 P4 P4 P5 P5	3/1999 rço R1 R1 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5	Sol. (tr 53 64 90 64 12 10 72 73 231 285 339 475	Totais ng/l) 3,000 4,000 0,000 2,000 4,000 2,000 8,000 4,000 9,000 12,000 77,000 33,000	COT (mg/LC) 8,000 1,000 5,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,175 0,000 0,742	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333	Nitrit μM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,273 0,693 0,433 0,413 0,513	0	Nitrato μM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512 1,249	Silicato μM 24,500 35,500 35,000 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 123,500	Cloretos (mg/l Cl) 5,000 4,000 5,000 5,000 9,000 9,000 410,000 1500,000 1500,000 1800,000	N/P 23,413 96,697 - 57,954 5,779 - 38,485 - #DIV/0! 26,172 #DIV/0! 10,742	P tot μM	N tot mg/ - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) μg/L	Cu µg/L - - - - - - - - - - - - -	Zn µg/L - - - - - - - - - - - - -	Pb μg/L	
02-03/0 Mai R1 P1 P2 P2 P3 P3 P3 P4 P4 P4 P5 P5 P6	3/1999 rço R1 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6	Sol. (r 53 64 12 100 72 73 231 285 339 475 528	Totais ng/l) 3,000 4,000 2,000 8,000 4,000 2,000 12,000 9,000 12,000 33,000 8,000 8,000 88,000 88,000	COT (mgl C) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000 10,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,175 0,000 0,742 0,000	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333 2,730	Nitrit μM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,273 0,693 0,433 0,413 0,513 0,353	0	Nitrato µM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512 1,249 6,116	Silicato μM 24,500 35,500 35,000 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 123,500 114,300	Cloretos (mg/l Cl) 5,000 4,000 5,000 5,000 9,000 410,000 1500,000 1500,000 1500,000 1800,000 2050,000	N/P 23,413 96,697 - 57,954 5,579 - 38,485 - #DIV/0! 26,172 #DIV/0! 10,742 #DIV/0!	P tot μM	N tot mg/ - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) μg/L - - - - - - - - - - - - - - - - - - -	Cu µg/L - - - - - - - - - - - - -	Zn μg/L - - - - - - - - - - - - - - - - - - -	Pb μg/L - - - - - - - - - - - - - - - - - - -	
02-03/0 Mai R1 P1 P2 P2 P3 P3 P3 P4 P4 P4 P5 P5 P6 P6	3/1999 rço R1 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P6	Sol. (r 5: 6: 90 12 10 73 231 235 339 475 528 500	Totais ng/l) 3,000 4,000 2,000 8,000 4,000 2,000 18,000 2,000 9,000 12,000 77,000 23,000 58,000 88,000 22,000	COT (mg/l C) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000 6,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,175 0,000 0,742 0,000 0,742 0,000	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333 2,730 5,000	Nitrit µM 0,733 0,573 0,000 0,273 0,000 0,353 0,0273 0,693 0,433 0,413 0,513 0,353 0,433 0,353 0,433	0	Nitrato µM 13,620 10,958 - 10,143 - 15,575 - - 2,383 3,667 3,512 1,249 6,116 0,691	Silicato µM 24,500 35,500 35,000 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 114,300 71,500	Cloretos (mg/l Cl) 5,000 4,000 5,000 9,000 410,000 410,000 1500,000 1500,000 1800,000 1800,000 2050,000	N/P 23,413 96,697 - 57,954 5,579 - #DIV/0! 26,172 #DIV/0! 10,742 #DIV/0! #DIV/0!	P tot μM - - - - - - - - - - - - -	N tot mg/l - - - - - - - - - - - - - - - - - - -	Cr(III) <u>µg/L</u> - - - - - - - - - - - - -	Cr(VI) μg/L - - - - - - - - - - - - -	Cu µg/L - - - - - - - - - - - - -	Zn μg/L - - - - - - - - - - - - - - - - - - -	Pb μg/L - - - - - - - - - - - - -	
02-03/0 Mai R1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7	3/1999 rço R1 R1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7	Sol. (r 52 66 90 12 10 72 73 233 285 339 475 526 506 406	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 8,000 4,000 2,000 8,000 3,000 8,000 3,000 3,000 38,000 22,000 22,000	COT (mg/l C) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000 10,000 61,000 37,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,000 0,742 0,000 0,742 0,000 0,000 0,000 0,000 0,000 0,000	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333 2,730 5,000 1,560	Nitrit µM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,433 0,413 0,513 0,513 0,43	0	Nitrato µM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512 1,249 6,116 0,691 0,691 2,226	Silicato μM 24,500 35,500 35,500 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 123,500 114,300 71,500	Cloretos (mg/l Cl) 5,000 5,000 5,000 9,000 410,000 410,000 410,000 1500,000 1500,000 1800,000 1800,000 1900,000	N/P 23,413 96,697 - 57,954 55,79 - - 38,485 - - - #DIV.0! 26,172 #DIV.0! 10,742 #DIV.0! 10,742 #DIV.0!	P tot μM - - - - - - - - - - - - -	N tot mg/l - - - - - - - - - - - - - - - - - - -	Cr(III) <u>µg/L</u> - - - - - - - - - - - - -	Cr(VI) μg/L - - - - - - - - - - - - -	Cu μg/L - - - - - - - - - - - - - - - - - - -	Zn μg/L - - - - - - - - - - - - - - - - - - -	Pb μg/L - - - - - - - - - - - - - - - - - - -	
02-03/0 Mai R1 P1 P2 P3 P3 P4 P5 P5 P6 P6 P7 P7	3/1999 rço R1 P1 P1 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7	Sol. (r 52 66 90 66 12 10 72 73 231 235 339 475 528 500 466 661	Totais ngf) 3,000 4,000 0,000 4,000 2,000 8,000 12,000 77,000 23,000 38,000 32,000 88,000 88,000 88,000 88,000 18,000	COT (mg/l C) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000 10,000 37,000 114,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,000 0,000 0,742 0,000 0,742 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333 2,730 5,000 1,550 3,667	Nitrit µM 0,733 0,573 0,000 0,273 0,000 0,353 0,023 0,693 0,413 0,513 0,455 0,45	0	Nitrato µM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512 1,249 6,116 0,691 2,256 3,352	Silicato μM 24,500 35,500 35,500 36,000 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 123,500 114,300 71,500 146,700 59,500	Cloretos (mg/l Cl) 5,000 4,000 5,000 5,000 9,000 9,000 410,000 410,000 1500,000 1500,000 1800,000 2050,000 2050,000 3400,000	N/P 23,413 96,697 - 57,954 5579 - 38,485 - #DIV.0! 26,172 #DIV.0! 10,742 #DIV.0! 10,742 #DIV.0! 40,081	P tot μM	N tot mg/l - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) μg/L - - - - - - - - - - - - -	Cu μg/L - - - - - - - - - - - - - - - - - - -	Zn μg/L - - - - - - - - - - - - - - - - - - -	Pb µg/L - - - - - - - - - - - - -	
02-03/0 Man R1 P1 P2 P2 P3 P3 P4 P4 P4 P5 P5 P6 P6 P7 P7 P7 P8	3/1999 rço R1 P1 P1 P2 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7 P8	Sol. (r (r (r (r (r (r) (r)	Totais ng/l) 3,000 4,000 2,000 4,000 2,000 8,000 2,000 12,000 12,000 33,000 38,000 38,000 38,000 52,000 58,000 50,000	COT (mgl C) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000 10,000 61,000 37,000 114,000 43,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,062 0,000 0,412	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333 2,730 5,000 1,560 3,667 2,800	Nitrit µM 0,733 0,577 0,000 0,273 0,000 0,353 0,273 0,693 0,433 0,513 0,513 0,453 0,453 0,43	0	Nitrato µM 13,620 10,958 - 10,143 12,575 - 2,383 3,667 3,512 1,249 6,116 0,691 2,256 3,352 2,423	Silicato μM 24,500 35,500 35,000 36,000 34,500 55,000 38,000 107,500 87,500 123,500 114,300 71,500 146,700 47,300	Cloretos (mgl Cl) 5,000 4,000 5,000 5,000 5,000 5,000 9,000 9,000 9,000 9,000 1500,000 1500,000 1500,000 1800,000 2050,000 2050,000 3400,000 3200,000	N/P 23,413 96,697 - 57,954 5,579 - #DIV.0! 26,172 #DIV.0! 10,742 #DIV.0! 10,742 #DIV.0! 40,981 #DIV.0! 8,511	P tot μM	N tot mg/l - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) μg/L - - - - - - - - - - - - - - - - - - -	Cu µg/L - - - - - - - - - - - - -	Zn μg/L - - - - - - - - - - - - - - - - - - -	Pb µg/L - - - - - - - - - - - - -	
02-03/0 Mai R1 P1 P2 P2 P3 P3 P4 P4 P4 P5 P5 P6 P6 P6 P7 P7 P7 P8 P8	3/1999 rço R1 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8	Sol. (r (r (r (r (r (r) (r)	Totais ng/) 3,000 4,000 0,000 4,000 2,000 8,000 4,000 9,000 12,000 77,000 33,000 88,000 88,000 52,000 88,000 50,000 80,000 80,000 80,000 80,000	COT (mg/L C) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000 10,000 61,000 37,000 114,000 43,000 239,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,000 0,742 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,412 0,567	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333 2,730 5,000 1,560 3,667 2,800 6,000	Nitrit μM 0,733 0,573 0,000 0,213 0,000 0,353 0,433 0,413 0,353 0,413 0,353 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433	0	Nitrato µM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512 1,249 6,116 0,691 2,256 3,352 2,255 2,423 2,192	Silicato μM 24,500 35,500 35,000 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 123,500 114,300 71,500 447,300 76,900	Cloretos (mg/l Cl) 5,000 4,000 5,000 5,000 5,000 5,000 9,000 9,000 9,000 410,000 1500,000 1500,000 1800,000 2050,000 1900,000 3400,000 3200,000 14800,000	N/P 23,413 96,697 - 57,954 5,579 - #DIV.0! 26,172 #DIV.0! 101V.0! 40,981 #DIV.0! 40,981 #DIV.0! 12,488	P tot μM	N tot mg/l - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) µg/L	Cu µg/L - - - - - - - - - - - - -	Zn μg/L - - - - - - - - - - - - - - - - - - -	Pb µg/L - - - - - - - - - - - - -	
02-03/0 Mai R1 R1 P1 P2 P3 P4 P5 P6 P7 P7 P8 O1	3/1999 rço R1 P1 P1 P2 P2 P3 P3 P4 P4 P4 P5 P6 P6 P7 P7 P7 P8 P8 O1	Sol. (r 52 66 12 10 72 733 231 285 336 475 522 500 468 661 935 2511 530	Totais mg/) 3,000 4,000 2,000 4,000 2,000 12,00	COT (mg/LC) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000 10,000 61,000 37,000 114,000 43,000 239,000 149,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,000 0,000 0,742 0,000 0,742 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,062 0,000 0,412 0,567 0,268	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 7,333 2,730 5,000 1,560 3,667 2,800 6,000 3,467	Nitrit μM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433	0	Nitrato µM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512 1,249 6,116 0,691 2,256 3,352 2,423 2,423 2,192 5,220	Silicato μM 24,500 35,500 35,500 35,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 123,500 114,300 71,500 46,700 59,500 47,300 76,900 41,000	Cloretos (mg/l Cl) 5,000 4,000 5,000 9,000 9,000 410,000 1500,000 1500,000 1500,000 1500,000 1500,000 1500,000 1300,000 1400,000 3200,000 3200,000 14800,000 17200,000	N/P 23,413 96,697 - 57,954 5,579 - #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 8,511 #DIV/0! 8,511	P tot μM	N tot mg/ - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) μg/L	Cu µg/L - - - - - - - - - - - - -	Zn μg/L - - - - - - - - - - - - - - - - - - -	Pb μg/L	
02-03/0 Mai R1 R1 P1 P2 P3 P4 P5 P6 P7 P8 O1	3/1999 rço R1 P1 P2 P2 P3 P3 P4 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8 O1 O1	Sol. (r 52 66 12 10 72 73 231 235 528 5500 466 661 933 251 5300 460	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 8,000 4,000 2,000 8,000 3,000 5,000 5,000 58,000 58,000 58,000 50,000 88,000 50,000 18,000 90,000 90,000	COT (mg/l C) 8,000 1,000 5,000 7,000 1,000 6,000 7,000 1,000 6,000 7,000 1,000 36,000 19,000 31,000 61,000 37,000 114,000 43,000 316,000	Fosfato μM 0,876 0,165 0,474 0,124 1,113 0,134 0,299 0,000 0,175 0,000 0,742 0,000 0,742 0,000 0,062 0,000 0,412 0,567 0,268 0,175	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333 2,730 5,000 1,560 3,667 2,800 6,000 3,467	Nitrit μM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,433 0,333 0,433 0,333 0,433 0,433	O Image: Constraint of the second secon	Nitrato µM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512 1,249 6,116 0,691 2,256 3,352 2,423 2,192 5,220 5,350	Silicato μM 24,500 35,500 35,500 36,000 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 123,500 114,300 71,500 146,700 59,500 47,300 76,900 41,000 63,500	Cloretos (mg/l Cl) 5,000 4,000 5,000 9,000 410,000 1500,000 1500,000 1500,000 1500,000 1500,000 2050,000 2050,000 3400,000 3400,000 17200,000 17800,000	N/P 23,413 96,697 - 57,954 5,579 - 38,485 - #DIV/0! 26,172 #DIV/0! 40,981 #DIV/0! 40,981 #DIV/0! 8,511 12,485 12,935 28,878	P tot μM	N tot mgA - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) μg/L	Cu µg/L - - - - - - - - - - - - -	Zn μg/L -	Pb μg/L - - - - - - - - - - - - -	
02-03/0 Mair R1 R1 P1 P2 P3 P4 P5 P6 P7 P8 O1 R2	3/1999 rço R1 P1 P1 P2 P2 P3 P3 P4 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8 O1 O1 R2	Sol. (r	Totais ng/l) 3,000 4,000 0,000 4,000 2,000 8,000 4,000 2,000 8,000 57,000 57,000 53,000 88,000 52,000 88,000 12,000 19,000 92,000 3,000	COT (mg/l C) 8,000 1,000 5,000 6,000 7,000 1,000 6,000 7,000 1,000 6,000 7,000 12,000 36,000 19,000 31,000 10,000 37,000 114,000 43,000 239,000 149,000 31,6,000 7,000	Fosfato μM 0,876 0,165 0,474 1,113 0,134 0,299 0,000 0,000 0,000 0,742 0,000 0,742 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,062 0,000 0,062 0,000 0,062 0,000 0,062 0,000 0,062 0,000 0,062 0,000 0,062 0,000 0,062 0,268 0,175	Amônio μM 10,533 9,667 10,000 4,400 3,533 3,400 6,067 9,733 3,467 3,000 4,067 7,333 2,730 5,000 1,560 3,667 2,800 6,000 3,467 3,067	Nitrit µM 0,733 0,573 0,000 0,273 0,213 0,000 0,353 0,434 0,43	0	Nitrato µM 13,620 10,958 - 10,143 12,575 - 15,411 - 2,383 3,667 3,512 1,249 6,116 0,691 2,256 3,352 2,423 2,423 2,423 2,423 2,423 2,520 5,350 -	Silicato μM 24,500 35,500 35,500 35,500 36,000 34,500 55,000 43,000 57,000 38,000 107,500 87,500 123,500 114,300 71,500 47,300 76,900 41,000 63,500	Cloretos (mg/l Cl) 5,000 4,000 5,000 5,000 9,000 9,000 410,000 410,000 410,000 1500,000 1500,000 1500,000 2050,000 2050,000 3400,000 3200,000 17800,000 3,000	N/P 23,413 96,697 - 57,954 5,579 - 38,485 - 4DIV.0! 26,172 #DIV.0! 10,742 #DIV.0! 10,742 #DIV.0! 10,742 #DIV.0! 12,488 12,935 28,878	P tot μM	N tot mgA - - - - - - - - - - - - - - - - - - -	Cr(III) µg/L - - - - - - - - - - - - -	Cr(VI) μg/L - - - - - - - - - - - - -	Cu µg/L - - - - - - - - - - - - -	Zn μg/L -	Pb μg/L	

02-03/	03/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Cianeto	Colif. Totais	Colif. Fecais	Clorofila-a
Ma	arço	μg/L	μg/L	μg/L	μg/L	µg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	-	-	-	-	-	1,900	20,000	ND	>2420	40,000	20,980
R1	R1	-	-	-	-	-	1,700	20,000	ND	2000,000	<0,99	49,200
P1	P1	-	-	-	-	-	0,900	15,000	ND	300,000	12,000	15,420
P1	P1	-	-	-	-	-	1,100	10,000	ND	70,000	<0,99	13,780
P2	P2	-	-	-	-	-	0,800	19,000	ND	>2420	60,000	12,570
P2	P2	-	-	-	-	-	0,500	20,000	ND	200,000	<0,99	10,830
P3	P3	-	-	-	-	-	0,800	9,000	ND	>24200	60,000	3,730
P3	P3	-	-	-	-	-	0,400	12,000	ND	>24200	<10	3,140
P4	P4	-	-	-	-	-	0,500	26,000	ND	12000,000	150,000	2,180
P4	P4	-	-	-	-	-	0,600	31,000	ND	>24200	5000,000	2,740
P5	P5	-	-	-	-	-	0,800	20,000	ND	>24200	990,000	2,480
P5	P5	-	-	-	-	-	0,700	12,000	ND	>24200	300,000	2,450
P6	P6	-	-	-	-	-	0,700	-	ND	>24200	>24200	1,380
P6	P6	-	-	-	-	-	0,700	-	ND	>24200	60,000	1,350
P7	P7	-	-	-	-	-	1,100	25,000	ND	>24200	3900,000	2,500
P7	P7	-	-	-	-	-	0,600	-	ND	6900,000	30,000	2,140
P8	P8	-	-	-	-	-	0,600	-	ND	>24200	1200,000	4,350
P8	P8	-	-	-	-	-	0,700	-	ND	2600,000	30,000	2,230
01	01	-	-	-	-	-	0,700	-	ND	>242000	1300,000	0,310
01	01	-	-	-	-	-	1,000	-	ND	11200,000	60,000	0,800
R2	R2	-	-	-	-	-	0,700	14,000	ND	3900,000	440,000	15,600
R3	R3	-	-	-	-	-	1,000	20,000	ND	2420,000	20,000	7,450

11-12/0	4/1999	Hora	T ar	T.água	Salinidade	Condutividade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	MES	TKN	Matéria Orgânica	Sol. Vol.	Sol. Susp.
Ab	ril		°C	°C	(sonda)	(mmho/cm)		mg/l	%	(NTU)	(m)	mg/l	(mg/l)	(mg/l O2)	(mg/l)	(mg /l)
R1	S	18:10	22,000	21,000	0,000	0,030	7,560	9,290	120,970	42,000	-	67,140	0,510	6,000	22,000	37,000
R1	F		22,000	21,000	0,000	0,010	7,080	8,810	112,820	46,000	-	25,430	0,560	5,000	20,000	25,500
P1	S	20:00	20,000	21,000	0,000	0,010	7,560	9,770	125,130	34,000	-	31,000	0,960	4,000	18,000	46,500
P1	F		20,000	21,000	0,000	0,010	7,900	9,770	120,710	36,000	-	36,000	0,510	3,000	18,000	41,000
P2	S	21:26	20,000	20,940	0,000	0,030	7,800	9,770	125,130	42,000	-	61,430	0,480	4,000	17,000	47,500
P2	F		20,000	20,960	0,000	0,050	7,770	10,350	129,200	42,000	-	52,290	0,740	3,000	21,000	72,000
P3	S	23:00	20,000	21,020	1,350	2,410	7,390	10,010	129,630	4,900	-	25,400	0,220	2,000	437,000	22,000
P3	F		20,000	21,050	1,390	2,480	7,400	9,610	122,180	5,200	-	11,530	0,050	3,000	657,000	13,800
P4	S	01:45	20,000	21,000	3,110	5,330	7,840	9,830	125,030	2,200	-	6,870	0,370	5,000	566,000	11,400
P4	F		20,000	22,490	22,530	33,970	7,860	8,550	121,560	2,700	-	12,530	0,260	5,000	2269,000	4,000
P5	S	03:45	20,000	20,590	4,930	8,060	6,750	10,330	132,790	1,400	-	11,250	0,310	5,000	1402,000	0,800
P5	F		20,000	22,470	24,030	36,800	7,060	9,850	139,150	1,400	-	0,480	0,360	6,000	1065,000	0,800
P6	S	05:20	20,000	20,100	3,360	5,710	6,940	10,970	141,030	4,300	-	132,800	0,290	5,000	1966,000	7,000
P6	F		20,000	20,370	4,470	7,330	7,170	9,530	124,790	4,900	-	392,570	0,290	4,000	3302,000	7,400
P7	S	07:10	20,000	20,120	4,350	7,100	7,060	9,450	123,750	3,500	-	4,530	0,050	6,000	1875,000	3,000
P7	F		20,000	20,230	5,130	8,290	6,760	9,770	129,390	4,800	-	8,400	0,040	7,000	778,000	8,000
P8	S	09:15	20,000	20,030	4,780	7,750	7,050	10,010	131,090	11,000	-	18,400	0,400	8,000	1487,000	24,800
P8	F		20,000	19,700	6,660	10,420	6,770	10,570	132,470	21,000	-	30,400	0,310	6,000	3938,000	95,500
01	S	11:30	22,000	21,110	23,720	34,670	8,070	9,370	132,360	11,000	-	24,400	0,480	4,000	3410,000	52,300
01	F		22,000	21,530	33,120	47,020	7,950	9,130	132,720	7,800	-	20,400	0,240	4,000	4293,000	84,200
R2	S	-	-	-	-	-	-	-	-	39,000	-	-	0,340	5,000	12,000	34,300
R3	S	-	-	-	-	-	-	-	-	52,000	-	-	0,210	6,000	2,000	90,500

11-12	/04/1999		Sol. Totai	s	СОТ	Fosfat	o Amônio	Nitrito	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb
Α	bril		(mg/l)		(mg/l C)	μM	μM	μM	μM	μM	(mg/l Cl)		μM	mg/l	μg/L	μg/L	μg/L	μg/L	μg/L
R1	R1		106,000		10,000	0,031	12,600	0,224	3,827	30,500	5,000	435,572	-	-	-	-	-	-	-
R1	R1		106,000		2,000	1,206	18,760	0,188	4,253	43,000	5,000	16,215	-	-	-	-	-	-	-
P1	P1		131,000		7,000	0,041	12,530	0,175	0,632	34,500	27,000	306,815	-	-	-	-	-	-	-
P1	P1		134,000		7,000	0,124	5,140	0,159	2,312	35,500	29,000	44,523	-	-	-	-	-	-	-
P2	P2		102,000		8,000	0,320	6,080	0,093	0,487	49,500	6,000	19,166	-	-	-	-	-	-	-
P2	P2		115,000		7,000	0,000	5,430	0,110	2,816	13,000	13,000	#DIV/0!	-	-	-	-	-	-	-
P3	P3		1751,000		11,000	0,000	8,330	0,278	2,140	36,500	750,000	#DIV/0!	-	-	-	-	-	-	-
P3	P3		1972,000		9,000	0,052	6,080	0,102	0,559	68,000	750,000	119,160	-	-	-	-	-	-	-
P4	P4		0,010		-	0,371	8,760	0,204	0,939	38,000	1850,000	24,121	-	-	-	-	-	-	-
P4	P4		7141,000		-	0,186	4,990	0,556	0,255	55,500	2800,000	27,649	-	-	-	-	-	-	-
P5	P5		5508,000		-	0,000	7,750	0,216	3,521	92,300	2700,000	#DIV/0!	-	-	-	-	-	-	-
P5	P5		6018,000		-	0,000	8,250	0,093	0,452	138,700	2800,000	#DIV/0!	-	-	-	-	-	-	-
P6	P6		5172,000		-	0,200	6,950	0,118	0,293	139,900	1900,000	34,9 23	-	-	-	-	-	-	-
P6	P6		7474,000		-	0,000	3,540	0,118	0,599	128,700	2300,000	#DIV/0!	-	-	-	-	-	-	-
P7	P7		6033,000		-	0,000	5,360	0,200	0,512	145,900	2800,000	#DIV/0!	-	-	-	-	-	-	-
P7	P7		5144,000		-	0,000	8,040	0,151	0,532	71,300	3500,000	#DIV/0!	-	-	-	-	-	-	-
P8	P8		5536,000		-	0,175	9,630	0,196	0,160	47,700	3400,000	55,113	-	-	-	-	-	-	-
P8	P8		9232,000		-	0,000	5,930	0,110	0,414	60,900	4200,000	#DIV/0!	-	-	-	-	-	-	-
01	01		24900,000)	-	0,351	4,890	0,138	0,392	68,900	16400,000	14,106	-	-	-	-	-	-	-
01	01		31724,000)	-	0,392	4,990	0,515	0,216	62,700	20200,000	13,020	-	-	-	-	-	-	-
R2	R2		130,000		16,000	-	-	-	-	-	4,000	-	-	-	-	-	-	-	-
R3	R3		180,000		29,000	-	-	-	-	-	11,000	-	-	-	-	-	-	-	-
-									•			•							
								-											
11-12	/04/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Ciane	to	Colif. Totais	Colif	. Fecais	(Clorofila-a	_			
А	bril	µg/L	µg/L	µg/L	µg/L	µg/L	(mg/I O2)	(mg/I O2)	(mg/l C	CN)	(NMP/100ml)	(NM	P/100ml)						
R1	R1	-	-	-	-	-	1,900	29,000	-		> 2420	14	0,000		20,980				
R1	R1	-	-	-	-	-	1,200	21,000	-		> 2420	12	0,000		49,200				
P1	P1	-	-	-	-	-	1,900	19,000	-		130,000	1	,000,		15,420				

P1 P1 - - - 1,900 19,000 - 130,000 1,000 1. P1 P1 - - - - 1,600 19,000 - 320,000 1,000 1. P2 P2 - - - 1,500 16,000 - 320,000 1,000 1.	,420 ,780 ,570
P1 P1 1,600 19,000 - 320,000 1,000 12 P2 P2 1,500 16,000 - 320,000 1,000 12	,780 ,570
P2 P2 1.500 16.000 - 320.000 1000 11	,570
P2 P2 1,500 16,000 - 260,000 1,000 10	,830
P3 P3 1,600 14,000 - 2500,000 <10 3	730
P3 P3 0.800 17.000 - 1100,000 <10 3	140
P4 P4 1,000 22,000 - 660,000 <10 22	180
P4 P4 0,500 1000,000 <10 2	740
P5 P5 0.800 24200,000 <10 2	480
P5 P5 1,100 5200,000 <10 2	450
P6 P6 1,000 25,000 - 560,000 10,000 1	380
P6 P6 1,400 2800,000 <10 I	350
P7 P7 1,000 420,000 <10 2	500
P7 P7 0,500 640,000 <10 2	140
P8 P8 0,700 1700,000 60,000 44	350
P8 P8 0,900 2500,000 20,000 2	230
01 01 0,900 620,000 40,000 0	310
01 01 0.600 100.000 <10	800
R2 R2 2,200 21,000 - 9800,000 80,000 1.	,600
R3 R3 2,200 24,000 - 1600,000 20,000 77	450

17-18/05/1	1999	Hora	T ar	T.água	Salinidade	Condutiv	idade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	Ν	AES	TKN	Matéria Or	gânica	Sol. V	Vol.	Sol. Susp.
Maio)		°C	°C	(sonda)	(mmho/	cm)		mg/l	%	(NTU)	(m)	1	mg/l	(mg/l)	(mg/l C	02)	(mg	g/I)	(mg/l)
R1	S	07:00	16,000	18,190	0,000	0,01	0	7,010	10,730	113,520	28,000	0,350	57	7,140	0,180	4,000		19,0	000	26,700
R1	F		16,000	18,200	0,000	0,01	0	6,920	10,730	113,520	57,000		55	5,710	0,160	5,000		35,0	000	93,500
P1	S	03:15	16,000	18,430	0,000	0,01	0	7,330	10,890	115,220	24,000	noite	24	4,290	0,040	3,000		61,0	000	19,000
P1	F		16,000	18,990	0,000	0,01	0	7,230	10,570	111,830	24,000		20	5,290	ND	2,000		58,0	000	28,000
P2	S	02:15	16,000	18,330	0,010	0,01	0	7,220	10,410	110,140	54,000	noite	62	2,290	0,050	3,000		23,0	000	20,500
P2	F		16,000	18,330	0,010	0,01	0	7,530	11,210	118,610	54,000		10	0,290	ND	3,000		23,0	000	64,000
P3	S	00:50	18,000	18,330	0,960	1,64	0	7,100	7,370	111,830	5,300	noite	9	,250	ND	3,000		166,	000	3,400
P3	F		18,000	18,340	1,180	2,00	0	6,890	9,930	106,180	4,000		7	,750	ND	2,000		199,	000	2,300
P4	S	22:00	17,000	18,080	3,480	5,53	0	7,660	10,410	112,690	1,600	noite	14	4,800	0,210	4,000		578,	000	4,400
P4	F		17,000	18,040	3,980	7,60	0	7,600	11,690	126,560	4,400		7	,000	0,030	2,000		805,	000	20,600
P5	S	20:00	17,000	18,220	5,220	8,08	0	7,560	11,050	121,130	1,200	noite	10	5,200	0,040	3,000		2774,	,000	3,800
P5	F		17,000	18,600	8,420	12,75	50	7,650	10,830	119,990	1,900		22	2,800	0,430	3,000		1501,	,000	9,000
P6	S	18:40	17,000	18,310	5,350	8,26	0	7,310	10,410	114,110	2,000	noite	9	,600	0,560	3,000		1687,	,000	4,000
P6	F		17,000	18,170	5,740	6,79	0	7,470	10,410	114,110	5,300		22	2,800	ND	3,000		770,0	000	9,200
P7	S	17:45	17,000	17,880	5,750	8,76	0	8,050	9,610	105,330	4,800	1,000	12	2,200	ND	3,000		4552,	,000	11,000
P7	F		17,000	17,890	5,750	8,76	0	7,810	10,410	114,110	5,100		14	4,000	0,540	3,000		1478,	000	11,400
P8	S	15:45	18,000	17,330	8,080	11,91	0	7,810	9,130	101,170	3,400	1,200	24	4,800	0,140	3,000		2444,	,000	4,300
P8	F		18,000	17,330	25,020	33,60	00	7,880	9,450	116,750	22,000		12	2,000	ND	3,000		3974,	,000	68,000
01	S	13:30	19,000	18,220	24,800	-		8,130	10,150	123,920	2,400	3,000	18	8,200	0,480	3,000		3479,	000	5,000
01	F		19,000	17,700	29,200	-		8,260	8,650	109,370	2,900		12	2,600	0,240	3,000		28554	1,000	9,300
R2	-	-	-	-	-	-		-	-	-	19,000	-		-	0,090	4,000		15,0	000	19,000
R3	-	-	-	-	-	-		-	-	-	72,000	-		-	0,070	6,000		30,0	000	122,000
17-18/05/1	1999	Sol.	Totais	СОТ	Fosfato	Amônio	Nitrit	0	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb	
Maio)	(n	ng/l)	(mg/l C)	μM	μM	μM		μM	μM	(mg/l Cl)		μM	mg/l	μg/L	μg/L	μg/L	μg/L	μg/L	
R1	R1	92	2,000	3,000	0,870	4,290	0,020)	46,040	0,463	4,000	5,989	-	-	-	-	-	-	-	
R1	R1	17.	5,000	7,000	1,020	3,640	0,090)	38,310	1,098	4,000	6,949	-	-	-	-	-	-	-	
P1	P1	35	8,000	12,000	0,850	5,780	0,170)	9,930	0,753	140,000	8,786	-	-	-	-	-	-	-	
P1	P1	35	1,000	71,000	0,410	2,270	0,030)	22,080	1,705	136,000	7,152	-	-	-	-	-	-	-	
P2	P2	12	8,000	11,000	0,780	0,910	0,020)	15,560	0,518	12,000	1,566	-	-	-	-	-	-	-	
P2	P2	14	0,000	16,000	1,520	3,250	0,380)	13,090	0,642	13,000	5,411	-	-	-	-	-	-	-	
P3	P3	114	2,000	29,000	0,560	13,570	0,120)	6,350	0,656	57,000	25,593	-	-	-	-	-	-	-	
P3	P3	124	9,000	20,000	0,290	12,730	0,060)	5,160	0,421	58,000	44,964	-	-	-	-	-	-	-	
P4	P4	391	0,000	-	0,990	0,450	0,060	,	2,470	1,650	1700,000	0,604	-	-	-	-	-	-	-	
P4	P4	494	2,000	-	0,170	1,500	0,040	,	2,030	1,194	2230,000	0,024	-	-	-	-	-	1 750	-	
P5	P5	/45	3,000	-	0,170	3,960	0,010	,	3,100	1,774	2650,000	23,470	-	-	0,220	0,300	0,560	1,/50	0,320	
P5 P6	P5 P6	676	0,000	-	0,140	4,870	0,000	,	3,440	1,802	2050,000	54,/80 7,221	-	-	2,160	0,220	1,150	2,780	0,360	
P 0	P 0	604	7,000	-	0,170	1,170	0,020	,	3,810	1,230	2930,000	1,551	-	-	2,100	0,400	2,020	0,540	0,370	
P7	P7	004	8,000	-	0,850	13,700	0,030	,	2,830	1,002	3130,000	10,008	-	-	0.160	0,800	1,550	2,940	0,170	
P /	P7	993 701	5,000	-	0,210	1,730	0,120	,	5,790	1,230	5400,000	10,499	-	-	0,100	0,410	1,100	1,740	0,230	
P / P 8	P / P 8	100	3,000 16,000	-	0,200	2,340	0,090	,	4,550	2,403	4200,000	8 225	-	-	0,074	0,320	1,170	2,680	0,190	
P8	P 8	1614	52 000		0,500	2,140	0,070		5 760	1,026	7800.000	5 005	-		0,010	0,530	0.560	1.080	0,450	
01	01	269	08,000	-	1,530	1.490	0,220		3 520	2,000	14200.000	2 423	-		0,100	0,330	3.060	4 100	0,120	
01	01	556	64.000	-	1,530	2,210	0,680)	5.080	1.429	18000.000	3,727	-	-	0.220	0.090	1.020	2.800	0,540	
R2	R2	96	5.000	-	7.610		0,120)	10.520	0.601	4.000	-	-	-	-	-	-	-		
		~		-	.,						.,			+		-	I		+	
R3	R3	23	2,000	8,000	0,900	-	0,110)	4,400	0.54.5	10,000	-	-	-	-	-	-	-	-	

17-18/	05/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Cianeto	Colif. Totais	Colif. Fecais	Clorofila -a
М	aio	μg/L	µg/L	μg/L	μg/L	μg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	-	-	-	-	-	0,900	17,000	ND	1100,000	1,000	20,980
R1	R1	-	-	-	-	-	1,300	18,000	0,006	1200,000	370,000	49,200
P1	P1	-	-	-	-	-	1,600	16,000	ND	200,000	0,000	15,420
P1	P1	-	-	-	-	-	1,300	22,000	ND	220,000	0,000	13,780
P2	P2	-	-	-	-	-	1,300	14,000	ND	140,000	2,000	12,570
P2	P2	-	-	-	-	-	0,700	13,000	ND	320,000	0,000	10,830
P3	P3	-	-	-	-	-	0,700	27,000	ND	100,000	0,000	3,730
P3	P3	-	-	-	-	-	0,500	33,000	ND	100,000	0,000	3,140
P4	P4	-	-	-	-	-	0,800	20,000	ND	4000,000	0,000	2,180
P4	P4	-	-	-	-	-	0,800	-	ND	16000,000	0,000	2,740
P5	P5	0,410	0,030	4,120	< 0,5	< 5	1,100	-	ND	650,000	0,000	2,480
P5	P5	1,120	0,040	4,830	< 0,5	< 5	1,000	-	ND	0,000	0,000	2,450
P6	P6	1,330	0,034	23,200	< 0,5	< 5	1,300	-	ND	200,000	0,000	1,380
P6	P6	0,800	0,021	9,700	< 0,5	< 5	0,700	-	ND	600,000	0,000	1,350
P7	P7	6,160	0,052	3,630	< 0,5	< 5	1,200	-	ND	200,000	0,000	2,500
P7	P7	0,760	0,050	2,660	< 0,5	< 5	1,200	-	ND	400,000	10,000	2,140
P8	P8	1,700	0,280	5,700	< 0,5	< 5	1,000	-	ND	300,000	40,000	4,350
P8	P8	0,770	0,048	3,700	< 0,5	< 5	< 0,1	-	ND	2400,000	200,000	2,230
01	01	1,400	0,084	22,400	< 0,5	< 5	3,100	-	ND	200,000	0,000	0,310
01	01	1,510	0,072	14,580	< 0,5	< 5	0,600	-	ND	10,000	0,000	0,800
R2	R2	-	-	-	-	-	7,900	12,000	ND	9200,000	30,000	15,600
R3	R3	-	-	-	-	-	1,400	23,000	ND	2400,000	20,000	7,450

23-24/0	6/1999	Hora	T ar	T.água	Salinidade	Condutividade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	MES	TKN	Matéria Orgânica	Sol. Vol.	Sol. Susp.
Ju	nho		°C	°C	(sonda)	(mmho/cm)		mg/l	%	(NTU)	(m)	mg/l	(mg/l)	(mg/l O2)	(mg/l)	(mg/l)
R1	S	07:30	16,000	15,000	0,010	0,000	6,850	8,970	88,960	43,000	0,250	32,290	0,330	6,000	22,000	18,000
R1	F		16,000	14,990	0,010	0,000	6,860	9,050	89,760	36,000		30,570	0,360	6,000	22,000	20,000
P1	S	01:40	15,000	14,800	0,130	0,220	6,630	10,090	100,090	40,000	noite	26,290	0,130	4,000	56,000	22,500
P1	F		15,000	14,730	0,180	0,290	6,660	10,330	102,470	35,000		17,710	0,120	4,000	44,000	32,000
P2	S	00:15	15,000	14,870	0,340	0,560	6,460	10,330	102,470	21,000	noite	17,710	0,140	3,000	74,000	15,600
P2	F		15,000	14,870	0,340	0,560	6,620	10,330	102,470	21,000		13,710	0,110	3,000	75,000	34,000
P3	S	22:50	15,000	14,810	0,260	0,450	6,780	11,290	112,000	22,000	noite	22,000	0,200	3,000	64,000	15,000
P3	F		15,000	14,680	0,690	1,100	6,780	10,010	99,290	22,000		27,020	0,240	3,000	64,000	23,700
P4	S	20:00	15,000	14,840	0,730	1,160	7,000	12,250	121,530	12,000	noite	17,250	0,230	4,000	1449,000	9,700
P4	F		15,000	13,860	6,290	8,650	7,000	9,530	96,020	12,000		8,600	0,230	4,000	134,000	10,800
P5	S	18:15	15,000	14,900	3,210	4,750	7,510	11,210	111,520	2,200	noite	1,330	0,150	5,000	612,000	3,000
P5	F		15,000	13,830	6,630	9,100	6,990	9,610	96,830	2,800		3,440	0,030	6,000	1698,000	4,000
P6	S	16:40	15,000	14,390	3,110	4,630	7,100	11,210	111,520	1,700	3,700	3,070	0,170	5,000	1160,000	3,000
P6	F		15,000	14,690	4,240	6,210	6,810	11,130	110,730	2,800		2,930	0,130	4,000	2771,000	5,000
P7	S	15:30	16,000	15,170	3,670	5,420	6,810	12,810	130,230	2,100	3,500	2,940	0,150	3,000	2201,000	3,000
P7	F		16,000	14,770	4,720	6,790	6,920	11,210	113,950	1,900		2,600	0,090	3,000	1320,000	4,000
P8	S	13:00	20,000	15,340	4,080	5,990	6,620	10,010	99,570	8,400	0,900	23,800	0,090	3,000	1322,000	11,200
P8	F		20,000	15,220	4,110	6,020	6,860	10,330	102,760	9,100		17,600	0,200	3,000	1604,000	51,200
01	S	10:20	19,000	14,970	19,370	24,990	7,570	8,570	96,030	5,000	2,500	0,230	ND	2,000	3781,000	31,800
01	F		19,000	14,440	29,120	35,900	7,410	6,410	76,320	4,000		1,480	ND	3,000	6866,000	71,600
R2	-	-	-	-	-	-	-	-	-	180,000	-	147,330	0,550	16,000	45,000	197,000
R3	-	-	-	-	-	-	-	-	-	110,000	-	158,570	0,460	12,000	32,000	162,000

23-24/0	6/1999	Sol. Totais	СОТ	Fosfato	Amônio	Nitrito	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb
Jun	ho	(mg/l)	(mg/l C)	μM	μM	μM	μM	μM	(mg/l Cl)		μM	mg/l	μg/L	µg/L	µg/L	μg/L	µg/L
R1	R1	101,000	5,000	0,420	18,680	0,050	44,480	155,200	16,000	149,810	-	-	-	-	-	-	-
R1	R1	97,000	7,000	3,290	21,940	0,110	47,540	115,630	2,000	21,180	-	-	-	-	-	-	-
P1	P1	244,000	6,000	0,790	3,400	0,070	9,570	30,820	75,000	16,560	-	-	-	-	-	-	-
P1	P1	268,000	6,000	0,430	5,130	0,000	37,440	34,270	86,000	98,590	-	-	-	-	-	-	-
P2	P2	458,000	6,000	0,260	4,810	0,040	7,620	25,890	102,000	47,200		-	-	-	-	-	-
P2	P2	463,000	3,000	1,580	6,760	0,040	34,150	27,370	189,000	25,960	-	-	-	-	-	-	-
P3	P3	394,000	5,000	0,230	9,790	0,000	23,060	19,480	150,000	140,180	-	-	-	-	-	-	-
P3	P3	397,000	4,000	0,200	6,110	0,060	32,140	24,900	160,000	187,070	-	-	-	-	-	-	-
P4	P4	3387,000	-	0,210	4,920	0,010	33,540	29,830	1100,000	179,230	-	-	-	-	-	-	-
P4	P4	852,000	27,000	0,210	3,940	0,020	8,750	39,690	400,000	59,190	-	-					
P5	P5	3631,000	-	0,000	3,610	0,000	8,250	34,760	1800,000		-	-	0,400	0,110	1,130	3,600	0,310
P5	P5	5035,000	-	0,000	2,100	0,000	3,720	75,200	1900,000		-	-	1,610	2,120	1,620	3,600	0,280
P6	P6	4071,000	-	0,000	2,860	0,010	2,510	126,970	1850,000		-	-	0,240	0,590	1,320	3,100	0,320
P6	P6	6491,000	-	0,040	4,160	0,010	30,940	61,390	2050,000	950,820	-	-	0,160	0,450	1,620	5,200	0,800
P7	P7	5670,000	-	0,030	4,160	0,000	6,710	51,530	2200,000	401,790	-	-	0,330	0,120	0,810	2,200	0,280
P7	P7	5710,000	-	0,160	7,190	0,000	7,530	44,130	2600,000	94,760	-	-	0,320	0,090	0,960	4,400	0,310
P8	P8	5240,000	-	0,860	3,180	0,060	5,870	36,740	2600,000	10,640	-	-	0,310	3,700	2,700	4,750	0,820
P8	P8	5508,000	-	0,860	8,490	0,000	11,170	60,400	3000,000	22,960	-	-	0,570	0,100	1,220	6,300	0,220
01	01	20487,000	-	0,270	7,630	0,010	6,430	67,310	11600,000	51,390	-	-	0,620	0,080	1,320	2,400	0,380
01	01	33802,000	-	0,790	8,170	0,080	7,790	67,800	16800,000	20,370	-	-	0,350	0,650	1,700	3,800	0,500
R2	R2	308,000	17,000	0,540	8,600	0,210	10,980	27,370	2,000	36,630	-	-	-	-	-	-	-
R3	R3	204,000	15,000	0,470	16,950	0,240	31,570	25,890	10,000	103,470	-	-	-	-	-	-	-

23-24	/06/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Cianeto	Colif. Totais	Colif. Fecais	Clorofila -a
Ju	mho	μg/L	μg/L	μg/L	μg/L	μg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	-	-	-	-	-	1,000	19,000	ND	670,000	190,000	1,830
R1	R1	-	-	-	-	-	1,000	16,000	ND	2400,000	390,000	1,400
P1	P1	-	-	-	-	-	1,000	21,000	ND	20,000	3,000	4,520
P1	P1	-	-	-	-	-	0,700	22,000	ND	12,000	0,000	3,870
P2	P2	-	-	-	-	-	0,600	27,000	ND	12,000	0,000	4,640
P2	P2	-	-	-	-	-	0,500	29,000	ND	15,000	0,000	4,700
P3	P3	-	-	-	-	-	0,700	32,000	ND	10,000	0,000	3,010
P3	P3	-	-	-	-	-	0,500	27,000	ND	10,000	0,000	2,560
P4	P4	-	-	-	-	-	0,700	37,000	ND	30,000	0,000	4,270
P4	P4						0,600	47,000	ND	30,000	0,000	2,570
P5	P5	0,230	0,120	30,000	< 0,5	< 5	1,200	46,000	ND	0,000	0,000	1,550
P5	P5	0,150	0,170	71,100	< 0,5	< 5	1,100	116,000	ND	120,000	2,000	2,590
P6	P6	0,220	0,150	21,100	< 0,5	< 5	0,900	20,000	ND	0,000	0,000	1,290
P6	P6	0,260	0,170	11,000	< 0,5	< 5	0,800	-	ND	0,000	0,000	1,160
P7	P7	0,490	0,140	16,000	< 0,5	< 5	0,800	-	ND	10,000	0,000	0,510
P7	P7	0,470	0,130	2,660	< 0,5	< 5	0,600	-	ND	700,000	70,000	0,380
P8	P8	0,450	0,190	31,000	< 0,5	< 5	1,000	-	ND	700,000	150,000	0,960
P8	P8	0,180	0,150	22,000	< 0,5	< 5	0,600	-	ND	20,000	10,000	0,890
01	01	0,280	0,130	28,100	< 0,5	< 5	1,800	-	ND	1900,000	20,000	1,600
01	01	0,550	0,190	0,047	< 0,5	< 5	0,900	-	ND	550,000	10,000	0,930
R2	R2	-	-	-	-	-	1,700	31,000	ND	> 24200	2200,000	1,730
R3	R3	-	-	-	-	-	1,300	31,000	ND	>2400	1100,000	5,450

19-20-2	1/07/1999	Hora	T ar	T. água	Salinidade	Condutiv	idade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	N	/IES	TKN	Matéria Org	gânica	Sol. V	/d.	Sol. Susp.
Julho			°C	°C	(sonda)	(mmho/	cm)		mg/l	%	(NTU)	(m)	r	mg/l	(mg/l)	(mg/l O	(2)	(mg	/I)	(mg/l)
R1	S	16:30	13,840	13,960	0,010	0,00	0	6,410	12,490	121,330	63,000	-	11	7,500	0,740	6,000		25,0	00	42,000
R1	F		13,800	13,960	0,010	0,00	0	6,470	11,610	112,780	75,000	-	71	1,750	0,810	6,000		26,0	00	27,000
P1	S	15:00	15,410	14,220	0,130	0,23	0	6,670	12,010	116,670	105,000	-	12	8,750	0,860	5,000		54,0	00	104,000
P1	F		15,400	12,180	0,140	0,23	0	6,770	12,090	112,300	94,000	-	15	9,000	0,810	5,000		53,0	00	123,000
P2	S	13:30	14,500	14,130	0,440	0,70	0	6,870	12,010	116,670	65,000	-	92	2,750	0,520	6,000		94,0	00	84,000
P2	F		14,500	14,110	0,450	0,71	0	6,700	12,490	121,330	60,000	-	98	3,500	0,540	4,000		101,0	000	56,000
P3	S	12:15	13,800	14,130	0,350	0,56	0	6,760	12,010	116,670	68,000	-	- 96	5,250	0,550	3,000		87,0	00	68,000
P3	F		13,800	14,140	0,370	0,60	0	6,820	12,090	117,440	55,000	-	11:	5,500	0,400	4,000		88,0	00	55,000
P4	S	09:30	13,070	13,910	1,700	2,55	0	7,080	12,410	121,910	84,000	-	17	8,000	0,630	6,000		322,0	000	180,000
P4	F		13,100	13,920	1,730	2,59	0	6,980	12,010	117,980	78,000	-	17	6,250	0,670	6,000		327,0	000	176,000
P5	S	18:00	14,400	14,050	2,350	3,45	0	6,930	11,530	113,260	4,800	-	16	5,400	0,230	4,000		933,0	000	8,400
P5	F		14,400	14,080	2,340	3,48	0	7,210	14,410	141,570	4,700	-	24	1,440	0,250	4,000		2043,0	000	362,000
P6	S	16:15	15,630	13,940	2,590	3,77	0	6,960	13,370	131,350	6,200	-	20	0,000	0,370	5,000		1165,0	000	164,000
P6	F		15,600	13,940	2,580	3,77	0	6,920	13,450	132,510	6,900	-	2,	,600	0,240	4,000		1137,0	000	7,400
P7	S	15:00	16,000	14,010	2,800	4,08	0	6,500	12,490	122,700	11,000	-	3.	,500	0,250	3,000		3639,0	000	30,000
P7	F		16,000	13,980	2,960	5,15	0	6,680	12,810	127,450	16,000	-	3.	,500	0,280	3,000		2336,0	000	34,000
P8	S	13:00	14,000	13,230	2,070	3,01	0	7,110	12,170	119,550	62,000	-	23	3,800	0,270	8,000		336,0	000	127,000
P8	F		14,000	13,230	2,070	3,01	0	7,010	11,770	113,230	76,000	-	16	8,860	0,300	6,000		1421,0	000	214,000
01	S	10:45	13,500	13,470	5,470	7,53	0	7,030	12,650	127,490	42,000	-	14	8,750	0,300	5,000		2102,0	000	58,000
01	F		13,500	13,520	8,320	17,84	10	7,210	13,050	134,830	68,000	-	12	5,430	0,520	6,000		4/41,0	000	144,000
R2	S	-	-	-	-	-		-	-	-	45,000	-	12	6,286	0,420	6,000		20,0	00	22,400
R3	5	-	-	-	-	-		-	-	-	87,000	-	10	0,286	0,650	7,000		34,0	00	116,000
19-20-2	1/07/1999	Sol.	Totais	COT	Fosfato	Amônio	Nitrit	0	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb	
Ju	alho	(n	ng/l)	(mg/l C)	μΜ	μΜ	μM		μM	μM	(mg/l Cl)		μM	mg/l	μg/L	µg/L	μg/L	µg/L	µg/L	
R1	R1	13	0,000	8,000	0,432	16,266	0,369)	32,459	153,713	4,000	113,688	1,990	1,500	0,250	0,750	0,540	10,000	0,360	
R1	R1	14	4,000	7,000	1,360	19,457	0,338	3	29,643	116,089	3,000	36,356	1,840	1,050	0,280	6,100	0,300	3,400	0,160	
P1	P1	39	6,000	10,000	0,708	1,479	0,114	1	25,589	29,950	116,000	38,379	1,797	1,050	0,200	5,400	1,490	5,700	0,110	
P1	P1	37.	2,000	7,000	0,432	3,606	0,088	3	27,422	34,406	104,000	72,056	3,739	1,340	0,096	3,300	5,300	8,400	0,810	
P2	P2	66	0,000	5,000	0,284	3,500	0,241	l	11,017	21,040	261,000	52,012	0,683	0,900	0,330	1,710	2,150	8,500	0,080	
P2	P2	68	6,000	6,000	0,373	4,670	0,224	1	10,571	111,634	270,000	41,505	0,833	1,270	0,210	0,790	1,400	4,800	0,070	
P3	P3	59.	5,000	6,000	0,215	7,862	0,084	1	5,642	20,050	260,000	63,303	1,508	1,050	0,071	3,100	1,100	10,600	0,720	
P3	P3	59	2,000	6,000	0,205	4,989	0,079)	7,543	53,713	240,000	61,591	1,465	0,470	0,390	0,400	1,880	8,100	0,100	
P4	P4	216	0,000	-	0,215	3,606	0,290)	7,842	31,436	1050,000	54,691	1,165	1,500	1,200	0,100	1,530	5,200	0,370	
P4	P4	219	7,000	-	0,254	2,862	0,219	,	10,277	39,851	1100,000	52,564	1,401	0,450	0,600	0,220	2,390	7,000	0,110	
P5	P5	323	3,000	-	0,007	2,649	0,10	l	19,504	34,901	1450,000	3046,124	0,447	0,320	0,520	0,500	1,330	3,150	0,280	
P5	P5	436	6,000	-	0,086	1,479	0,176	7	10,473	69,554	1450,000	140,549	0,747	0,900	0,530	1,400	1,560	6,600	0,150	
P6	P6	364	1,000	-	0,027	1,691	0,09	/	5,297	117,574	1550,000	261,927	0,501	0,300	0,160	0,740	1,640	5,400	0,130	
P6	P6	361	2,000	-	0,106	2,543	0,10		7,039	34,901	1500,000	91,319	0,136	0,370	0,220	0,090	2,100	4,500	0,120	
P /	P/	627	0,000	-	0,027	5,181	0,119	*	4,415	55,/15	2200,000	285,176	0,672	0,600	0,250	0,090	1,820	4,900	0,100	
P/	P/	507	3,000	-	0,155	2,521	0,088	5	4,85/	44,507	2300,000	07,552	0,350	0,670	0,430	2,100	1,430	6,800	0,580	
ro De	ro	240	1,000	-	0,797	2,550	0,10		0,011	62 1 20	2500,000	10,009	1,080	1,550	0,420	2,000	2,200	5,00	0,120	
P 8	P 8	304	1,000	-	0,807	6 272	0,198	,	0,132	60.554	2000,000	19,910	1,331	1,300	0,050	2,900	2,030	5,000	0,180	
01	01	/03	4,000	-	0,225	0,372	0,10	L	13,357	68 069	4500,000	88,331 26,008	1,069	0,450	0,230	3,400	2,700	8 200	0,820	
P2	R2	1010	55,000	8,000	0,710	7,011	0,21	7	18 8/3	27 070	2 000	53 076	0,555	0,500	0,420	5,400	2,700	0,200	0,150	
K2	K2	90	,000	0,000	0,501	/,11/	0,02	r	10,040	21,970	2,000	55,070		1	1	1		1	1	
P2	P2	21	000 0	10.000	0.452	13 500	0.070		11 582	21.040	11,000	55 701								

19-20-2	1/07/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Cianeto	Colif. Totais	Colif. Fecais	Clorofil a-a
Ju	lho	μg/L	μg/L	μg/L	μg/L	µg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	0,680	0,083	26,000	< 0,5	< 5	0,700	13,000	ND	1000,000	380,000	2,350
R1	R1	0,210	0,150	18,000	< 0,5	< 5	1,300	19,000	ND	>2420	580,000	3,100
P1	P1	0,130	0,150	27,000	< 0,5	< 5	0,800	23,000	ND	50,000	0,000	10,500
P1	P1	0,950	0,300	10,000	< 0,5	< 5	1,100	27,000	ND	35,000	0,000	9,900
P2	P2	0,180	0,140	35,000	< 0,5	< 5	0,900	23,000	ND	35,000	0,000	9,450
P2	P2	0,150	0,120	13,000	< 0,5	< 5	0,600	22,000	ND	30,000	0,000	9,950
P3	P3	0,700	0,130	33,000	< 0,5	< 5	0,800	24,000	ND	60,000	0,000	3,200
P3	P3	0,710	0,110	32,000	< 0,5	< 5	0,400	25,000	ND	10,000	0,000	3,780
P4	P4	0,210	0,160	33,000	< 0,5	< 5	0,900	37,000	ND	170,000	0,000	4,130
P4	P4	0,180	0,120	24,000	< 0,5	< 5	1,100	34,000	ND	170,000	0,000	7,500
P5	P5	0,600	0,100	17,100	< 0,5	< 5	0,900	33,000	ND	120,000	0,000	7,500
P5	P5	0,160	0,100	38,000	< 0,5	< 5	0,900	38,000	ND	440,000	2,000	5,760
P6	P6	0,140	0,110	60,000	< 0,5	< 5	0,800	33,000	ND	460,000	0,000	3,630
P6	P6	0,630	0,120	16,000	< 0,5	< 5	0,600	39,000	ND	690,000	1,000	3,450
P7	P7	0,640	0,110	22,000	< 0,5	< 5	0,600	-	ND	240,000	0,000	1,610
P7	P7	0,610	0,110	21,000	< 0,5	< 5	0,600	-	ND	270,000	0,000	2,140
P8	P8	0,040	0,230	19,000	< 0,5	< 5	0,800	17,000	ND	2420,000	590,000	8,050
P8	P8	0,090	0,170	36,000	< 0,5	< 5	1,000	-	ND	9800,000	500,000	11,770
01	01	0,900	0,120	10,000	< 0,5	< 5	0,800	-	ND	6500,000	200,000	2,190
01	01	0,780	0,220	41,000	< 0,5	< 5	0,500	-	ND	>24200	290,000	2,890
R2	R2						0,800	16,000	ND	>2420	1200,000	0,800
R3	R3						1,200	28,000	ND	3400,000	30,000	10,450

24-25/08	3/1999	Hora	T ar	T. água	Salinidade	Condutividade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	MES	TKN	Matéria Orgânica	Sol. Vol.	Sol. Susp.
Agos	sto		°C	°C	(sonda)	(mmho/cm)		mg/l	%	(NTU)	(m)	mg/l	(mg/l)	(mg/l O2)	(mg/l)	(mg/l)
R1	S	13:17	17,000	14,000	0,010	0,000	6,410	9,930	100,640	33,000	0,400	117,500	0,830	5,000	20,000	18,700
R1	F		17,000	14,000	0,010	0,000	6,470	10,970	111,190	33,000		71,750	0,780	5,000	27,000	19,500
P1	S	11:29	14,000	14,000	0,010	0,000	6,670	11,210	111,210	93,000	0,100	128,750	0,600	6,000	32,000	115,000
P1	F		14,000	14,000	0,010	0,000	6,770	10,970	111,190	84,000		159,000	0,300	6,000	36,000	106,000
P2	S	09:48	14,000	14,000	0,220	0,400	6,870	9,930	98,500	96,000	0,150	92,750	1,140	5,000	82,000	142,000
P2	F		14,000	14,000	0,200	0,320	6,700	10,410	101,110	89,000		98,500	0,950	4,000	78,000	140,000
P3	S	08:17	14,000	14,000	0,320	0,500	6,760	9,930	98,500	53,000	0,300	96,250	0,300	4,000	88,000	66,000
P3	F		14,000	14,000	0,280	0,480	6,820	9,770	94,890	61,000		115,500	0,120	4,000	84,000	48,000
P4	S	22:30	10,000	13,000	0,430	0,700	7,080	10,250	99,560	48,000	noite	178,000	0,230	3,000	110,000	24,500
P4	F		10,000	13,000	0,430	0,700	6,980	9,930	96,440	52,000		176,250	0,230	4,000	104,000	57,000
P5	S	19:54	11,000	13,000	0,920	-	6,930	9,930	96,440	25,000	noite	16,400	0,270	3,000	180,000	12,200
P5	F		11,000	13,000	0,930	-	7,210	9,930	96,440	24,000		24,440	0,100	3,000	161,000	37,300
P6	S	18:13	11,000	13,000	1,800	2,700	6,960	9,930	97,530	12,000	noite	20,000	0,370	4,000	316,000	28,500
P6	F		11,000	13,000	1,800	2,700	6,920	9,610	94,380	12,000		2,600	0,330	4,000	312,000	29,300
P7	S	16:36	11,000	14,000	2,140	3,200	6,500	9,930	97,530	11,000	0,700	3,500	0,730	5,000	689,000	29,000
P7	F		11,000	14,000	2,250	3,280	6,680	9,930	97,530	12,000		3,500	0,540	5,000	376,000	43,300
P8	S	14:25	11,000	14,000	2,330	3,500	7,110	9,930	97,530	11,000	0,800	23,800	0,920	5,000	402,000	23,500
P8	F		11,000	14,000	27,710	33,270	7,010	8,970	103,500	5,000		168,860	0,120	2,000	949,000	19,800
01	S	12:42	15,000	14,000	10,880	14,500	7,030	9,930	102,570	4,700	1,300	148,750	0,540	3,000	1808,000	11,400
01	F		15,000	14,000	29,480	35,000	7,210	8,330	97,230	11,000		125,430	0,550	3,000	4723,000	41,700
R2	S	-	-	-	-	-	-	-	-	21,000	-	126,286	0,820	4,000	20,000	15,500
R3	S	-	-	-	-	-	-	-	-	60,000	-	100,286	0,800	7,000	40,000	96,000

24-25/0	8/1999	Sol. Totais	СОТ	Fosfato	Amônio	Nitrito	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb
Age	osto	(mg/l)	(mg/l C)	μM	μM	μM	μM	μM	(mg/l Cl)		μM	mg/l	μg/L	µg/L	μg/L	μg/L	μg/L
R1	R1	103,000	-	0,770	14,070	0,130	29,030	297,280	2,000	60,800	1,620	0,045	0,910	1,200	1,460	6,900	0,310
R1	R1	104,000	-	0,830	12,410	0,640	24,430	300,740	3,000	51,640	1,720	0,090	0,280	6,100	0,300	3,400	0,270
P1	P1	201,000	-	0,880	10,560	0,450	20,690	313,120	14,000	41,770	2,850	0,030	0,530	1,100	1,710	5,400	0,130
P1	P1	204,000	-	0,720	10,930	0,220	22,330	243,320	14,000	53,700	2,340	0,090	0,170	1,600	2,400	5,900	0,220
P2	P2	485,000	-	0,700	6,570	0,160	9,470	49,750	150,000	25,420	1,290	0,075	0,450	1,120	1,680	5,500	0,080
P2	P2	482,000	-	0,810	7,960	0,260	8,930	347,280	150,000	23,290	2,090	0,060	0,470	0,690	1,720	4,300	0,090
P3	P3	514,000	-	0,980	3,240	0,200	3,940	29,950	204,000	9,230	1,470	0,045	0,210	1,400	1,180	4,700	0,180
P3	P3	513,000	-	0,510	7,690	0,250	5,910	210,150	201,000	30,300	1,550	0,067	0,270	0,190	1,380	5,200	0,120
P4	P4	676,000	-	0,470	5,000	0,130	6,380	14,600	280,000	27,520	1,100	0,060	0,870	0,910	1,640	5,100	0,210
P4	P4	169,000	-	0,430	6,300	0,150	8,740	45,300	280,000	38,730	0,930	0,030	0,520	0,340	1,470	5,300	0,130
P5	P5	1136,000	-	0,520	5,650	0,130	15,070	28,960	530,000	48,550	0,760	0,015	0,950	1,100	2,300	4,100	0,200
P5	P5	1115,000	-	0,530	6,200	0,110	8,890	135,400	520,000	31,640	0,970	0,075	0,780	1,200	1,990	4,600	0,180
P6	P6	2084,000	-	0,190	10,830	0,070	3,680	76,980	990,000	87,540	0,700	0,060	0,760	0,780	1,610	3,500	0,190
P6	P6	2088,000	-	0,120	9,070	0,030	5,530	143,810	980,000	139,290	0,570	0,083	0,620	0,390	2,100	3,700	0,180
P7	P7	2785,000	-	0,110	11,300	0,050	2,890	36,880	1180,000	148,670	0,970	0,060	0,620	0,800	1,910	2,800	0,160
P7	P7	2527,000	-	0,130	8,800	0,080	3,390	146,290	1220,000	109,180	1,600	0,075	0,530	1,000	1,540	3,100	0,180
P8	P8	2700,000	-	0,370	7,590	0,200	8,340	77,480	1260,000	47,780	0,940	0,045	0,500	0,900	1,500	2,300	0,130
P8	P8	17089,000	-	0,390	6,020	0,110	7,250	90,350	10800,000	37,920	0,760	0,135	0,650	0,080	0,290	1,400	0,080
01	01	12560,000	-	0,430	9,170	0,140	11,400	135,890	6600,000	52,470	0,770	0,037	0,310	0,150	1,100	2,100	0,140
01	01	31562,000	-	0,690	7,040	0,220	9,790	43,810	15600,000	27,180	0,810	0,045	0,280	0,160	1,000	1,400	0,110
R2	R2	93,000	-	0,500	7,120	0,630	14,400	27,970	14,000	53,080	1,230	0,090	-	-	-	-	-
R3	R3	216,000	-	0,450	13,500	0,070	9,470	21,040	2,000	55,700	1,270	0,075	-	-	-	-	-

24-25/0	08/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Cianeto	Colif. Totais	Colif. Fecais	Clorofila -a
Ag	osto	μg/L	μg/L	μg/L	µg/L	μg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	0,770	0,140	-	< 0,5	< 5	1,000	14,000	ND	440,000	20,000	-
R1	R1	0,580	0,160	-	< 0,5	< 5	1,200	16,000	ND	650,000	30,000	-
P1	P1	0,440	0,100	-	< 0,5	< 5	0,600	20,000	ND	30,000	0,000	-
P1	P1	0,890	0,210	-	< 0,5	< 5	1,000	23,000	ND	3600,000	0,000	-
P2	P2	0,370	0,120	-	< 0,5	< 5	1,400	28,000	ND	>2420	1,000	-
P2	P2	0,380	0,130	-	< 0,5	< 5	0,600	28,000	ND	60,000	0,000	-
P3	P3	0,410	0,140	-	< 0,5	< 5	1,200	21,000	ND	20,000	0,000	-
P3	P3	0,640	0,090	-	< 0,5	< 5	0,500	19,000	ND	20,000	0,000	-
P4	P4	0,780	0,110	-	< 0,5	< 5	1,000	20,000	ND	230,000	0,000	-
P4	P4	0,260	0,090	-	< 0,5	< 5	1,000	21,000	ND	420,000	0,000	-
P5	P5	1,100	0,150	-	< 0,5	< 5	0,800	10,000	ND	20,000	3,000	-
P5	P5	0,950	0,140	-	< 0,5	< 5	0,800	11,000	ND	30,000	0,000	-
P6	P6	1,000	0,150	-	< 0,5	< 5	1,100	12,000	ND	>2420	80,000	-
P6	P6	0,930	0,160	-	< 0,5	< 5	1,000	12,000	ND	190,000	6,000	-
P7	P7	0,760	0,140	-	< 0,5	< 5	1,600	14,000	ND	8200,000	100,000	-
P7	P7	0,680	0,130	-	< 0,5	< 5	0,900	15,000	ND	2500,000	30,000	-
P8	P8	0,900	0,120	-	< 0,5	< 5	1,000	14,000	ND	1300,000	10,000	-
P8	P8	0,100	0,070	-	< 0,5	< 5	0,500	-	ND	11200,000	400,000	-
01	01	0,400	0,080	-	< 0,5	< 5	2,500	-	ND	7300,000	180,000	-
01	01	0,300	0,060	-	< 0,5	< 5	1,500	-	ND	1600,000	180,000	-
R2	R2	-	-	-	-	-	0,800	9,000	ND	2500,000	190,000	-
R3	R3	-	-	-	-	-	1,100	31,000	ND	4100,000	85,000	-

22-23/0)9/1999	Hora	T ar	T.água	Salinidade	Condutiv	idade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	i N	MES	TKN	Matéria Org	gânica	Sol. V	/ol.	Sol. Susp.
Seter	mbro		°C	°C	(sonda)	(mmho/	cm)		mg/l	%	(NTU)	(m)	1	mg/l	(mg/l)	(mg/l O	(2)	(mg	/I)	(mg/l)
R1	S	07:30	17,000	14,000	0,000	60,00	0	7,630	7,630	93,330	45,000	-	5	8,250	0,830	6,000		26,0	00	31,400
R1	F		17,000	14,000	0,000	60,00	0	7,650	7,650	96,440	46,000	-	5:	5,750	0,820	6,000		26,0	00	12,500
P1	S	00:30	14,000	16,000	0,000	80,00	00	7,290	7,290	100,640	90,000	-	8	8,000	0,670	4,000		34,0	00	28,000
P1	F		14,000	16,000	0,000	80,00	00	7,320	7,320	102,260	86,000	-	6.	3,000	0,410	5,000		35,0	00	17,000
P2	S	23:00	14,000	16,000	0,000	100,0	00	7,300	7,300	99,010	85,000	-	70	0,250	0,580	5,000		30,0	00	84,000
P2	F		14,000	16,000	0,000	100,0	00	7,200	7,200	103,880	90,000	-	5:	5,500	0,450	5,000		29,0	00	88,000
P3	S	21:30	14,000	16,000	0,000	170,0	00	7,400	7,400	97,390	54,000	-	49	9,250	0,460	4,000		28,0	00	19,000
P3	F		14,000	16,000	0,000	170,0	00	7,290	7,290	97,390	53,000	-	40	6,500	0,420	4,000		30,0	00	12,000
P4	S	18:30	16,000	16,000	1,000	900,0	00	6,910	6,910	105,510	21,000	-	3	1,500	0,210	2,000		89,0	00	7,600
P4	F		16,000	16,000	1,000	900,0	00	7,040	7,040	97,390	21,000	-	24	4,250	0,140	2,000		82,0	00	10,000
P5	S	16:30	15,000	17,000	2,000	2400,0	00	7,640	7,640	107,470	22,000	-	29	9,200	0,190	3,000		183,0	000	22,000
P5	F		15,000	17,000	2,000	2400,0	00	7,500	7,500	107,470	22,000	-	1:	5,200	0,310	4,000		177,0	000	20,500
P6	S	14:15	19,000	17,000	2,000	2400,0	00	6,860	6,860	115,860	7,000	-	34	4,600	0,330	4,000		398,0	000	5,200
P6	F		19,000	17,000	2,000	2400,0	00	7,420	7,420	100,750	7,000	-	12	2,400	0,100	4,000		271,0	000	5,200
P7	S	13:45	18,000	17,500	2,000	2400,0	00	7,360	7,360	97,390	12,000	-	23	3,000	0,310	4,000		274,0	000	14,000
P7	F		18,000	17,000	2,000	2400,0	00	7,490	7,490	110,820	11,000	-	10	6,800	0,290	4,000		276,0	000	16,400
P8	S	11:30	18,000	19,000	2,000	2400,0	00	7,770	7,770	115,500	29,000	-	2.	3,800	0,290	5,000		209,0	000	18,000
P8	F		18,000	19,000	2,000	2500,0	00	7,630	7,630	122,500	21,000	-	3.	3,800	0,300	5,000		250,0	000	33,000
01	S	09:45	16,000	17,000	3,500	3900,0	00	7,450	7,450	110,110	28,000	-	5.	3,800	0,420	5,000		524,0	000	38,500
01	F		16,000	17,000	8,000	10000,0	000	7,580	/,580	116,990	25,000	-	4:	5,600	0,460	3,000		1062,0	000	39,000
R2	S	-	-	NT	NT	-		NT	NT	NT	22,000	-	7:	5,200	0,310	4,000		21,0	00	15,000
R3	3	-	-	N I	IN I	-		IN I	IN I	NI	64,000	-	0	0,600	0,610	7,000		55,0	00	82,000
22-23/0)9/1999	Sol.	Totais	COT	Fosfato	Amônio	Nitrit	to	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb	
Seter	mbro	(n	ng/l)	(mg/l C)	μΜ	μΜ	μM		μM	μM	(mg/l Cl)		μM	mg/l	µg/L	µg/L	μg/L	µg/L	μg/L	
R1	R1	10	9,000	13,000	0,941	9,170	0,167	7	14,782	289,851	3,000	25,640	1,760	1,400	0,500	1,100	1,500	25,000	1,700	
R1	R1	11	6,000	12,000	1,109	10,090	0,149)	25,404	293,317	3,000	32,150	1,990	1,650	0,800	0,700	3,500	24,800	3,600	
P1	P1	24	3,000	11,000	0,802	7,500	0,088	3	35,094	305,693	46,000	53,220	2,210	0,600	0,500	1,000	1,300	15,000	2,000	
P1	P1	23	8,000	11,000	1,099	9,170	0,119)	47,133	239,356	48,000	51,340	2,140	0,970	4,200	3,900	2,600	31,100	2,300	
P2	P2	19	9,000	12,000	0,743	8,980	0,088	3	29,331	42,327	22,000	51,710	2,420	1,040	0,450	1,120	1,400	6,500	1,700	
P2	P2	19	7,000	12,000	1,030	8,240	0,145	5	32,810	339,851	23,000	40,010	2,140	0,600	4,200	3,500	2,100	26,100	2,800	
P3	P3	18	2,000	9,000	0,851	5,830	0,05	/	6,202	22,525	40,000	14,200	1,500	0,600	0,300	0,400	1,200	4,400	1,000	
P3	P3	18	5,000	15,000	0,792	5,560	0,09	/	31,832	202,723	40,000	47,320	1,610	0,450	1,400	0,700	1,600	30,700	1,600	
P4	P4	62	0,000	7,000	0,644	19,540	0,132	2	14,008	7,075	270,000	55,200	1,290	1,040	0,200	0,700	1,500	29,600	1,000	
P4	P4	120	0,000	9,000	0,832	22,130	0,000	,	17,390	37,871	270,000	47,000	1,220	0,000	0,000	0,400	1,900	8,500 5,800	0,930	
P.5	P.5	129	9,000	13,000	0,237	13,280	0,092	2	22,725	21,355	590,000	228 740	1,020	0,000	1,000	1,100	1,100	3,800	1,100	
P 5	P6	210	0,000	12,000	0,198	14,540	0,013	2	11 302	69 554	945,000	238,740	1,080	1,700	1,000	1,400	0.760	21,800	1,300	
P 6	P6	100	5,000	14,000	0,327	14,030	0,03	,	11,392	126 286	943,000	73,000	0,050	1,700	1,200	0,000	1,400	15 800	0.810	
P7	P7	199	1,000	16,000	0,557	12,000	0,05	,	× 440	20.455	930,000	50.240	0,000	1,000	1,000	2,200	2 200	11,000	1,150	
r /	r / D7	90	5,000	16,000	0,410	12,410	0,044	+ 7	0,440	129,433	920,000	20,240	1,000	1,700	1,980	2,500	3,200	10,900	1,150	
P /	r / P8	199	9,000	21,000	0,355	9 350	0,05	,	4,402	68 564	720,000	30,450	1,090	1,000	2,400	2,900	0,700	10,800	0,900	
P8	P8	155	8,000	18 000	0,703	17.960	0,072	5	9.660	77 475	720,000	40 550	0.820	0,600	1.620	2 100	1,000	12 300	0,750	
01	01	100	0,000	10,000	0,003	15,930	0,075	,)	/1 228	128 465	1360,000	82 620	1.020	0,000	2 100	1,000	1,000	8 200	0,700	
01	01	200 614	8,000	-	0,093	7 870	0,089	2	12404	36 386	11200,000	22,850	0.820	0,730	1 100	0.700	0.950	4 900	0,700	
R2	R2	10	0,000	5.000	0.495	7,070	0,066	- 5	20,650	126 980	1 000	57,930	1 260	0,000	0.100	0,700	3 300	12 100	0,000	
R2 R3	R3	18	8,000	12,000	0.317	4 540	0,000	·)	6452	136 386	10.000	35,030	2 140	0,290	0.400	0,500	2 400	3 400	0,100	
		10	-,	12,000	0,011	.,	,	-	-,	100,000	10,000	55,055	-,. 10	0,000	0,.00	0,000	2,.00	5,.00	0,200	

22-23/	/09/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Cianeto	Colif. Totais	Colif. Fecais	Clorofila -a
Sete	embro	μg/L	μg/L	μg/L	μg/L	µg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	0,350	0,090	56,600	< 0,5	< 5	0,700	17,000	-	730,000	40,000	-
R1	R1	0,460	0,150	63,500	< 0,5	< 5	1,200	15,000	-	1200,000	60,000	-
P1	P1	0,680	0,340	24,100	< 0,5	< 5	0,400	20,000	-	580,000	0,000	-
P1	P1	0,970	0,660	80,800	< 0,5	< 5	0,500	20,000	-	180,000	1,000	-
P2	P2	0,280	0,150	25,400	< 0,5	< 5	0,600	18,000	-	100,000	0,000	-
P2	P2	0,470	0,250	80,700	< 0,5	< 5	0,700	17,000	-	60,000	0,000	-
P3	P3	0,870	0,100	14,600	< 0,5	< 5	0,400	19,000	-	190,000	0,000	-
P3	P3	0,990	0,660	50,100	< 0,5	< 5	0,500	22,000	-	190,000	0,000	-
P4	P4	0,980	0,580	13,400	< 0,5	< 5	0,400	22,000	-	20,000	0,000	-
P4	P4	1,150	0,480	60,600	< 0,5	< 5	0,700	18,000	-	0,000	0,000	-
P5	P5	0,870	0,790	14,800	<0,5	<5	0,800	9,000	-	40,000	0,000	-
P5	P5	1,200	0,920	7,700	< 0,5	< 5	1,000	17,000	-	30,000	0,000	-
P6	P6	0,840	1,100	16,800	< 0,5	< 5	0,700	15,000	-	570,000	0,000	-
P6	P6	1,100	1,100	14,500	< 0,5	< 5	0,900	17,000	-	130,000	0,000	-
P7	P7	0,540	1,400	59,200	< 0,5	< 5	0,700	16,000	-	380,000	0,000	-
P7	P7	0,730	1,200	80,600	< 0,5	< 5	0,600	17,000	-	510,000	0,000	-
P8	P8	0,400	1,500	17,400	< 0,5	< 5	0,700	27,000	-	720,000	120,000	-
P8	P8	1,000	1,170	56,500	< 0,5	< 5	0,700	19,000	-	610,000	40,000	-
01	01	0,500	0,900	43,700	< 0,5	< 5	0,500	15,000	-	4400,000	230,000	-
01	01	0,300	0,400	15,400	< 0,5	< 5	0,800	-	-	12000,000	360,000	-
R2	R2	0,270	0,070	56,700	< 0,5	< 5	1,500	14,000	-	3100,000	100,000	-
R3	R3	0,510	0,040	100,600	< 0,5	< 5	2,400	27,000	-	1000,000	100,000	-

03-04/1	1/1999	Hora	T ar	T.água	Salinidade	Condutividade	pH	D.O.	Sat. D.O.	Turbide z	Secchi	MES	TKN	Matéria Orgânica	Sol. Vol.	Sol. Susp.
Nover	nbro		°C	°C	(sonda)	(mmho/cm)		mg/l	%	(NTU)	(m)	mg/l	(mg/l)	(mg/l O2)	(mg/l)	(mg/l)
R1	S	08:10	20,000	21,700	0,000	0,510	7,960	12,700	145,350	73,000	0,150	608,400	1,200	6,000	30,000	47,000
R1	F		20,000	21,200	0,000	0,480	7,590	13,560	152,210	252,000	0,150	44,000	1,300	6,000	22,000	48,000
P1	S	00:11	16,000	20,900	0,000	0,101	7,540	14,800	166,130	96,000	0,150	67,200	0,650	5,000	21,000	88,000
P1	F		16,000	20,300	0,000	0,071	7,310	14,040	157,600	87,000		48,000	0,600	5,000	22,000	57,000
P2	S	22:45	20,000	20,800	0,000	0,141	8,070	12,850	141,510	139,000	0,150	134,800	0,890	6,000	29,000	99,000
P2	F		20,000	20,500	0,000	0,133	8,010	13,330	149,630	139,000		43,600	0,740	6,000	30,000	102,000
P3	S	21:20	21,000	21,100	0,000	5,280	7,980	12,620	144,440	78,000	0,150	139,600	0,590	4,000	56,000	70,000
P3	F		21,000	20,800	0,020	0,522	8,010	12,170	136,600	78,000		52,800	0,750	4,000	51,000	57,000
P4	S	18:30	23,000	21,300	0,000	1,690	8,150	13,540	151,980	71,000	0,150	122,000	1,120	4,000	152,000	58,000
P4	F		23,000	20,900	0,000	1,780	8,120	13,310	149,400	92,000		86,400	0,750	5,000	138,000	75,000
P5	S	16:30	24,000	22,500	0,000	2,130	8,150	14,060	160,920	49,000	0,200	140,400	0,970	4,000	137,000	64,000
P5	F		24,000	21,200	0,000	2,050	8,290	11,760	134,600	57,000		94,000	0,600	4,000	147,000	47,000
P6	S	15:00	24,000	22,600	0,000	0,373	8,080	13,620	155,880	232,000	0,100	266,000	1,490	8,000	74,000	162,000
P6	F		24,000	21,500	0,100	0,376	8,080	10,980	125,670	222,000		38,800	0,970	8,000	77,000	272,000
P7	S	14:00	24,000	23,000	0,000	0,630	7,500	11,210	130,870	141,000	0,150	256,400	0,890	6,000	63,000	150,000
P7	F		24,000	21,200	0,000	0,677	7,640	12,580	143,980	150,000		23,800	0,470	6,000	87,000	109,000
P8	S	12:00	20,000	20,000	0,900	7,280	7,790	11,150	130,170	93,000	0,200	15,430	1,490	5,000	111,000	75,000
P8	F		20,000	20,000	1,100	-	7,650	12,100	133,250	50,000		34,000	1,120	4,000	175,000	146,000
01	S	10:10	19,000	19,400	1,500	-	7,980	12,800	142,530	83,000	0,300	19,140	0,140	5,000	124,000	57,000
01	F		19,000	19,400	8,000	-	8,070	11,800	136,170	76,000		32,860	0,150	6,000	4473,000	422,000
R2	S	-	-	-	-	-	-	-	-	26,000	-	226,400	0,350	5,000	19,000	18,000
R3	S	-	-	-	-	-	-	-	-	83,000	-	193,200	0,420	10,000	34,000	116,000

03-04/1	1/1999	Sol. Totais	СОТ	Fosfato	Amônio	Nitrito	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb
Nove	mbro	(mg/l)	(mg/l C)	μM	μM	μM	μM	μM	(mg/l Cl)		μM	mg/l	μg/L	μg/L	μg/L	µg/L	μg/L
R1	R1	146,000	12,000	1,248	18,050	0,427	20,880	307,180	3,000	31,550	2,060	1,200	0,400	0,800	0,900	17,400	2,600
R1	R1	148,000	-	1,376	9,150	0,400	24,980	272,520	3,000	25,090	2,370	1,300	0,600	1,200	1,400	19,300	3,700
P1	P1	152,000	9,000	1,059	13,640	0,392	22,130	75,000	8,000	34,130	2,390	0,650	0,900	0,800	0,800	23,700	4,000
P1	P1	151,000	6,000	1,149	12,120	0,423	9,000	84,900	10,000	18,760	2,110	0,600	1,200	1,600	0,800	26,200	2,400
P2	P2	236,000	10,000	0,792	7,030	0,258	14,010	88,370	26,000	26,890	2,460	0,890	1,000	1,500	1,600	22,300	2,900
P2	P2	240,000	9,000	1,238	10,760	0,305	11,110	31,930	25,000	17,920	2,140	0,740	1,300	1,700	1,100	17,400	3,200
P3	P3	399,000	9,000	0,624	7,460	0,423	21,720	74,010	132,000	47,460	1,390	0,590	0,900	0,700	0,700	17,500	1,600
P3	P3	404,000	10,000	0,901	8,050	0,329	27,820	66,580	130,000	40,180	1,640	0,750	1,400	1,200	1,100	23,700	1,300
P4	P4	1028,000	12,000	0,683	3,730	0,234	19,630	47,770	450,000	34,540	1,420	1,120	1,200	0,900	1,400	26,500	1,400
P4	P4	963,000	11,000	1,168	7,800	0,156	20,610	64,600	420,000	24,450	1,370	0,750	3,200	2,800	2,900	30,100	1,700
P5	P5	1121,000	9,000	0,980	5,340	0,293	12,460	87,380	500,000	18,460	1,600	0,970	0,200	0,300	0,800	24,600	1,300
P5	P5	1142,000	13,000	0,881	6,530	0,376	10,880	84,900	510,000	20,180	1,730	0,600	0,040	0,060	1,400	13,400	1,200
P6	P6	495,000	12,000	1,832	7,200	0,439	22,170	143,810	89,000	16,280	2,430	1,490	0,500	0,700	0,600	30,400	0,420
P6	P6	522,000	10,000	1,366	6,440	0,270	11,260	79,950	89,000	13,150	1,140	0,970	0,400	0,500	1,300	19,200	1,900
P7	P7	547,000	8,000	2,416	10,680	0,486	4,840	86,390	159,000	6,620	-	1,050	0,200	0,500	2,000	27,100	2,300
P7	P7	591,000	7,000	1,762	9,070	0,498	1,880	74,500	174,000	6,500	-	0,470	2,300	1,100	1,500	20,300	3,000
P8	P8	901,000	27,000	2,752	11,100	0,411	3,330	84,410	360,000	5,390	3,090	1,490	1,700	1,100	1,500	26,400	1,800
P8	P8	1290,000	12,000	1,921	8,810	0,396	2,260	49,750	530,000	5,970	2,060	1,120	1,200	0,800	1,300	30,100	2,200
01	01	1282,000	10,000	0,980	7,710	0,584	6,000	74,500	620,000	14,580	1,140	0,140	1,100	0,800	1,200	16,400	1,200
01	01	35939,000	14,000	2,941	6,270	0,490	7,350	61,140	17800,000	4,800	2,800	0,150	0,900	0,600	0,800	10,700	0,700
R2	R2	99,000	6,000	0,535	7,630	0,392	27,930	133,910	3,000	41,890	-	-	1,200	1,500	1,300	28,400	2,400
R3	R3	216,000	17,000	0,564	4,240	0,372	30,120	163,610	12,000	24,870	-	-	1,400	1,400	1,100	31,300	2,700

03-04/	/11/1999	Ni	Cd	Fe	Hg	As	DBO5	DQO	Cianeto	Colif. Totais	Colif. Fecais	Clorofila -a
Nov	embro	μg/L	μg/L	µg/L	µg/L	μg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	1,300	0,490	43,200	< 0,5	< 5	0,900	20,000	-	> 2420	1700,000	-
R1	R1	1,200	0,200	53,400	< 0,5	< 5	0,700	21,000	-	> 2420	> 2420	-
P1	P1	0,600	0,150	10,700	< 0,5	< 5	0,300	17,000	-	220,000	1,000	-
P1	P1	0,700	0,230	36,800	< 0,5	< 5	0,200	17,000	-	170,000	3,000	-
P2	P2	0,400	0,390	13,100	< 0,5	< 5	0,300	23,000	-	200,000	0,000	-
P2	P2	0,200	0,080	50,400	< 0,5	< 5	0,300	22,000	-	200,000	0,000	-
P3	P3	1,200	0,200	25,600	< 0,5	< 5	0,400	26,000	-	150,000	0,000	-
P3	P3	1,100	0,750	24,300	< 0,5	< 5	0,200	25,000	-	220,000	0,000	-
P4	P4	1,100	0,900	31,200	< 0,5	< 5	0,200	34,000	-	260,000	0,000	-
P4	P4	0,900	0,800	70,100	< 0,5	< 5	0,000	30,000	-	1100,000	0,000	-
P5	P5	1,000	0,640	13,600	<0,5	< 5	0,200	15,000	-	200,000	0,000	-
P5	P5	0,600	0,730	28,200	< 0,5	< 5	0,100	17,000	-	20,000	0,000	-
P6	P6	0,700	0,420	12,600	< 0,5	< 5	0,200	39,000	-	370,000	0,000	-
P6	P6	1,400	0,100	13,200	< 0,5	< 5	1,400	30,000	-	580,000	0,000	-
P7	P7	0,950	0,490	16,000	< 0,5	< 5	0,100	27,000	-	730,000	0,000	-
P7	P7	1,100	0,400	65,400	< 0,5	< 5	0,300	27,000	-	1100,000	0,000	-
P8	P8	1,400	0,800	34,500	< 0,5	< 5	0,400	27,000	-	4600,000	20,000	-
P8	P8	1,200	1,200	46,200	< 0,5	< 5	0,500	21,000	-	>24200	30,000	-
01	01	0,100	0,700	14,200	< 0,5	< 5	2,000	19,000	-	1700,000	30,000	-
01	01	0,900	0,500	6,100	< 0,5	< 5	0,500	-	-	2000,000	30,000	-
R2	R2	1,100	0,700	42,500	< 0,5	< 5	1,000	10,000	-	3300,000	100,000	-
R3	R3	1,000	0,900	48,900	< 0,5	< 5	0,800	25,000	-	1000,000	40,000	-

08-09/1	12/1999	Hora	T ar	T. água	Salinidade	Condutiv	idade	pH	D.O.	Sat. D.O.	Turbidez	Secch	i	MES	TKN	Matéria Org	gânica	Sol. V	'ol.	Sol. Susp.
Deze	mbro		°C	°C	(sonda)	(mmho/	cm)		mg/l	%	(NTU)	(m)		mg/l	(mg/l)	(mg/l O	(2)	(mg	1)	(mg/l)
R1	S	07:31	19,000	22,000	0,000	0,06	7	7,500	5,400	88,410	54,000	0,200	6	56,000	0,630	5,000		26,0	00	61,000
R1	F		19,000	22,000	0,410	0,93	7	7,450	5,770	80,130	72,000		5	54,000	0,210	6,000		36,0	00	63,000
P1	S	00:15	19,000	20,000	0,010	0,18	0	7,300	6,190	97,460	124,000	noite	1	10,400	0,670	6,000		36,0	00	128,000
P1	F		19,000	20,000	0,000	0,14	5	7,400	6,400	100,770	126,000		11	26,400	0,790	6,000		38,0	00	103,000
P2	S	22:45	19,000	23,000	0,020	0,20	7	7,500	6,350	105,950	111,000	noite	1	07,200	1,150	7,000		37,0	00	89,000
P2	F		19,000	23,000	0,000	0,12	9	7,480	6,080	101,570	121,000		1	12,400	0,750	6,000		41,0	00	114,000
P3	S	21:05	19,000	24,500	0,010	0,19	2	7,460	6,290	107,040	105,000	noite	- 13	20,290	0,670	6,000		37,0	00	75,000
P3	F		19,000	23,400	1,260	2,50	0	7,470	6,240	104,190	106,000		- 1	09,710	0,660	5,000		38,0	00	75,000
P4	S	18:30	20,000	23,000	0,800	1,67	0	7,780	6,400	106,820	17,000	0,700	1 3	36,800	0,110	4,000		194,0	000	7,700
P4	F		20,000	23,000	1,070	2,15	0	7,660	6,350	105,950	17,000		3	30,460	0,170	4,000		228,0	000	13,000
P5	S	15:20	22,000	24,200	1,520	2,97	0	7,350	8,550	142,720	9,000	0,800	1	10,400	0,170	6,000		344,0	000	8,800
P5	F		22,000	24,000	1,820	3,52	0	8,000	8,500	146,240	11,000		1	19,000	0,180	5,000		369,0	000	23,300
P6	S	14:45	22,000	24,000	1,840	3,55	0	8,060	5,870	101,100	10,000	1,000	1	12,400	0,180	5,000		684,0	000	5,000
P6	F		22,000	23,800	1,850	3,57	0	8,100	5,270	90,630	5,700		2	22,600	0,160	6,000		4456,0	000	30,000
P7	S	13:52	22,000	24,000	13,780	22,90	0	8,080	4,420	80,440	3,000	1,900	1	17,600	0,150	5,000		3411,0	000	1,500
P7	F		22,000	24,000	12,460	20,90	0	8,040	4,010	72,990	11,000		5	55,200	0,130	5,000		6496,0	000	99,000
P8	S	11:54	21,000	23,000	13,840	23,00	00	8,000	6,520	116,720	7,400	0,800	2	23,800	0,200	8,000		8381,0	000	17,000
P8	F		21,000	23,000	13,840	23,00	00	8,050	5,660	102,610	11,000		4	14,800	0,060	6,000		5739,0	000	36,500
01	S	10:00	20,000	21,700	18,070	29,30	00	8,500	7,420	132,430	4,200	0,700	1 3	31,800	0,120	6,000		5516,0	000	18,000
01	F		20,000	22,200	19,030	30,70	00	7,960	6,480	113,530	10,000		3	35,200	0,070	7,000		5284,0	00	24,000
R2	S	-	-	-	-	-		-	-	-	13,000	-	3	36,460	0,210	3,000		20,0	00	6,000
K3	3	-	-	-	-	-		-	-	-	60,000	-	1	42,670	0,630	7,000		35,0	00	99,000
08-09/1	12/1999	Sol.	Totais	COT	Fosfato	Amônio	Nitrit	to	Nitrato	Silicato	Cloretos	N/P	P to	t N tot	Cr(III)	Cr(VI)	Cu	Zn	Pb	
Deze	mbro	(n	ng/l)	(mg/l C)	μΜ	μM	μM		μM	μM	(mg/l Cl)		μM	mg/l	μg/L	μg/L	μg/L	µg/L	µg/L	
R1	R1	12	4,000	9,000	1,010	10,300	0,450)	40,840	25,000	3,000	51,090	1,740	- (1,700	1,900	2,300	14,500	1,500	
R1	R1	14.	5,000	8,000	1,070	4,360	0,310)	12,880	26,490	3,000	16,410	1,570	- (1,500	1,600	2,100	16,500	1,400	
P1	P1	22	3,000	9,000	1,140	5,110	0,380)	14,940	23,020	29,000	17,940	1,150) -	0,700	1,600	2,200	12,100	1,200	
P1	P1	22	8,000	7,000	0,780	6,610	0,390)	23,560	30,940	29,000	39,070	1,440) -	2,400	1,200	1,900	9,800	1,000	
P2	P2	20	8,000	8,000	1,300	6,230	0,090)	25,210	38,370	21,000	24,310	1,130) -	1,700	1,300	2,200	11,200	1,500	
P2	P2	21-	4,000	6,000	0,930	10,050	0,520)	35,220	34,900	23,000	49,200	1,570) -	1,400	1,800	2,300	13,200	1,300	
P3	P3	24	0,000	8,000	1,180	6,990	0,450)	24,510	25,500	41,000	27,110	0,190) -	2,500	1,400	2,100	8,900	1,700	
P3	P3	124	0,000	7,000	1,390	6,170	0,300	,	21,330	54,210	39,000	20,060	1,340		2,000	2,100	1,700	7,800	1,200	
P4 P4	P4 P4	134	7,000	8,000	1,070	5,170	0,430)	15,860	41,540	640,000	18,200	1,300		2,100	1,800	2,000	12,700	1,000	
P5	P 5	220	0.000	12,000	1,210	4,480 5,200	0,100	,	16,000	40.750	1020.000	20,030	1,100		1,000	1,200	2,000	4 500	1,400	
P 5	P5	220	2,000	12,000	0.070	3,300	0,400	,	10,900	49,730	880.000	18,710	1,400		1,900	2,100	1,000	4,500	1,400	
P6	P6	210	1,000	13,000	1,090	4,920	0,440	,	12,820	26.980	1050,000	15,740	1,400		1,400	2,100	1,800	3,400	0,700	
P6	P6	187	5 000	15,000	0.880	3,920	0,410	,	12,610	24,010	7900,000	18 950	1,320		1,300	0.800	1,000	3,400	0,700	
P7	P7	232	19,000	-	1,210	7,050	0,100	ý –	24,510	32,020	12450.000	26 500	1,300		1,400	1,700	1,200	2 800	0,900	
P7	P7	373	37,000	-	1,210	5,670	0,450	,	24,510	25,000	12450,000	18 800	1,410		1,000	0,900	1,200	2,000	1,100	
P8	P8	399	35.000	-	1,110	12.620	1.960	ý)	18.510	22,520	18000.000	29.850	1,000) -	2,700	2,300	1,000	3,100	1,000	
P8	P8	366	50.000	-	0.930	4.540	0.190		15.010	16.580	16800.000	21.210	1,180		1.800	1.400	1.100	3.200	0.900	
01	01	372	37.000	-	1,190	2.730	1.810)	13.860	10.150	17600.000	15,490	1.250) -	0.800	1.000	0.900	1,100	0.700	
01	01	365	54,000	-	0,880	1,790	0,180)	7,670	13,120	17800,000	10,940	0,890) -	0,900	0,600	0,800	1,300	0,600	
R2	R2	91	,000	8,000	0,990	10,560	0,180)	47,770	133,910	3,000	59,090	1,840) -	-	-	-	-	-	
R3	R3	18	5,000	15,000	1,760	10,300	0,170)	42,310	138,860	13,000	29,950	1,340) -	-	-	-	-	-	

08-09/12/1999		Ni	Cd	Fe	Hg	As	DBO5 DQO		Cianeto	Colif. Totais	Colif. Fecais	Clorofila -a
Deze	embro	μg/L	μg/L	μg/L	μg/L	µg/L	(mg/l O2)	(mg/l O2)	(mg/l CN)	(NMP/100ml)	(NMP/100ml)	
R1	R1	0,280	0,480	58,600	< 0,5	< 5	1,100	15,000	-	730,000	1,000	-
R1	R1	0,270	0,620	67,100	< 0, 5	< 5	1,000	15,000	-	700,000	0,000	-
P1	P1	0,180	0,390	74,300	< 0,5	< 5	0,600	36,000	-	210,000	1,000	-
P1	P1	0,170	0,250	56,700	< 0,5	< 5	1,000	22,000	-	190,000	0,000	-
P2	P2	0,300	0,580	108,000	< 0,5	< 5	1,500	30,000	-	210,000	4,000	-
P2	P2	0,140	0,470	99,800	< 0,5	< 5	1,300	35,000	-	160,000	0,000	-
P3	P3	0,400	0,580	84,600	< 0,5	< 5	0,700	42,000	-	>2420	2,000	-
P3	P3	0,800	0,260	92,500	< 0,5	< 5	0,400	38,000	-	60,000	0,000	-
P4	P4	0,190	0,340	47,300	< 0,5	< 5	0,400	13,000	-	340,000	0,000	-
P4	P4	0,250	0,290	41,900	< 0,5	< 5	0,200	16,000	-	330,000	0,000	-
P5	P5	0,270	0,430	28,400	< 0,5	< 5	0,800	16,000	-	-	-	-
P5	P5	0,280	0,380	37,200	< 0,5	< 5	0,600	12,000	-	-	-	-
P6	P6	0,160	0,310	26,700	< 0,5	< 5	1,500	12,000	-	340,000	0,000	-
P6	P6	0,200	0,270	33,700	< 0,5	< 5	1,200	-	-	>2420	2420,000	-
P7	P7	0,400	0,190	11,400	< 0,5	< 5	0,800	-	-	19900,000	10,000	-
P7	P7	0,300	0,280	14,300	< 0,5	< 5	0,800	-	-	>24200	10,000	-
P8	P8	0,220	0,300	12,100	< 0,5	< 5	0,900	-	-	17300,000	680,000	-
P8	P8	0,210	0,220	10,800	< 0,5	< 5	1,000	-	-	11200,000	590,000	-
01	01	0,110	0,180	6,300	< 0,5	< 5	1,100	-	-	720,000	10,000	-
01	01	0,120	0,210	7,900	< 0,5	< 5	0,200	-	-	7700,000	70,000	-
R2	R2	-	-	-	-	-	1,100	6,000	-	6300,000	50,000	-
R3	R3	-	-	-	-	-	1,100	21,000	-	13000,000	50,000	-

17-18/01	1/2000	Hora	T ar	T. água	Salinidade	Condutividade	pH	D.O.	Sat. D.O.	Turbidez	Secchi	MES	TKN	Matéria Orgânica	Sol. Vol.	Sol. Susp.
Jane	iro		°C	°C	(sonda)	(mmho/cm)		mg/l	%	(NTU)	(m)	mg/l	(mg/l)	(mg/l O2)	(mg/l)	(mg/l)
R1	S	06:45	21,000	26,000	0,000	80,000	7,200	6,420	79,270	26,000	0,600	24,250	1,050	5,000	15,000	25,000
R1	F		21,000	26,000	0,000	80,000	7,000	6,180	76,310	25,000		24,500	0,900	5,000	9,000	27,000
P1	S	00:30	23,000	25,000	0,000	120,000	7,400	6,850	82,990	77,000	-	74,750	0,720	5,000	28,000	58,000
P1	F		23,000	25,000	0,000	120,000	7,300	6,780	83,820	79,000		82,000	1,420	5,000	27,000	60,000
P2	S	23:30	23,000	25,000	0,000	120,000	7,700	7,140	86,490	61,000	-	62,750	1,620	5,000	36,000	29,000
P2	F		23,000	25,000	0,000	130,000	7,500	7,170	88,560	64,000		46,500	0,950	6,000	19,000	34,000
P3	S	21:36	23,000	26,000	1,000	1400,000	7,600	7,100	87,770	16,000	-	17,600	0,870	5,000	131,000	3,000
P3	F		23,000	26,000	1,000	1600,000	7,400	7,060	87,180	16,000		16,400	0,500	3,000	128,000	4,400
P4	S	18:50	24,500	26,000	3,500	6000,000	7,600	6,940	87,650	2,700	1,600	1,600	0,760	8,000	502,000	2,800
P4	F		24,500	26,000	3,500	6000,000	7,400	7,060	89,070	2,600		0,600	0,770	5,000	573,000	2,600
P5	S	16:53	27,200	26,000	3,500	6000,000	7,800	6,770	85,430	7,300	1,000	5,000	0,480	6,000	473,000	10,300
P5	F		27,200	26,000	3,500	6000,000	7,800	7,340	92,700	6,000		4,000	0,450	6,000	479,000	7,600
P6	S	15:25	26,000	26,000	4,500	7500,000	8,200	9,010	113,710	2,100	2,800	1,200	0,630	6,000	2157,000	2,000
P6	F		26,000	26,000	7,000	12000,000	8,000	9,260	118,220	16,000		3,600	0,420	4,000	1198,000	57,000
P7	S	14:25	26,000	27,000	12,500	21500,000	7,400	9,170	121,190	3,700	1,200	1,200	0,530	5,000	1879,000	15,800
P7	F		26,000	26,000	14,000	24000,000	7,800	8,770	117,240	3,500		1,200	0,460	4,000	4284,000	9,700
P8	S	12:15	26,000	26,000	29,500	48000,000	7,900	9,570	139,980	4,500	1,600	23,800	-	5,000	5588,000	14,700
P8	F		26,000	26,000	31,500	49000,000	8,000	9,200	134,590	4,300		4,000	0,330	6,000	5646,000	16,800
01	S	10:30	26,000	25,000	35,000	49000,000	7,900	8,350	125,070	8,500	1,100	11,600	0,340	7,000	7105,000	23,700
01	F		26,000	25,000	35,000	49000,000	7,900	8,370	125,310	18,000		19,600	0,470	5,000	5529,000	37,000
R2	S	-	-	-	-	-	-	-	-	12,000	-	-	-	4,000	13,000	16,700
R3	S	-	-	-	-	-	-	-	-	58,000	-	-	-	7,000	25,000	78,000

1/-10/0	01/2000		Sol. Totais	6	cor	Fosfa	ato	Amônio	Nitrito	Nitrato	Silicato	Cloretos	N/P	P tot	N tot	Cr(III)	Cr(VI)	Cu	Zn
Jan	eiro		(mg/l)		(mg/I C) µ!		[μM	μM	μM	μM	(mg/l Cl)		μM	mg/l	µg/L	µg/L	µg/L	ug/L
R1	R1		93,000		7,000	0,98	0	5,820	0,474	11,048	79,720	4,000	17,690	1,000	-	1,200	0,600	1,600	9,200
R1	R1		253.000		8.000	1.42	6	5.130	0.360	12,701	58,300	4.000	12.760	1.250	-	1.100	0.400	1.700	9.400
P1	P1		182,000		6,000	1.158		5 190	5 190 0.038		61 140	18 000	11 110	1 560	-	0.140	0.400	1,600	10 400
P1	P1		187,000		8,000	0.782		3,930	0,030	10.858	74 500	18,000	19,250	1,060	-	0,140	0,400	1,000	11,400
P2	P2		144.000		9,000	1 198		5,130	0.172	12 315	84,900	15,000	14 700	1,000	_	0,000	0.300	1,000	9 200
P2	P2		144,000		10,000	0.03	0.931 2.4		0.569 11.81		56 190	84,900 15,000 56,100 18,000		2,130		0,400	0,300	1,000	9,200
12	12		140,000		10,000	1 178		2,550	0,220 5.050		10,750	10,000	10,050	2,150	-	0,200	0,500	1,700	2,000
P3	P3		829,000		6,000	1,1/8		2,420	0,329	5,058	48,760	370,000	6,630	1,380	-	0,500	1,200	1,400	3,800
P3	P3		848,000		-	1,386		2,920	0,352	8,179	62,130	380,000	8,260	1,540	-	0,800	1,200	1,500	3,600
P4	P4	3813,000			-	1,168		1,670	0,392	8,589	55,200	1540,000	9,110	1,200	-	1,100	1,200	2,500	18,400
P4	P4	3289,000			-	- 0,960		2,480	0,309	12,701	39,850	1540,000	16,130	1,100	-	1,000	0,900	2,400	22,100
P5	P5	3255,000			-	1,307		3,300	0,439	8,559	22,520	1660,000	9,410	2,380	-	1,400	1,000	2,500	4,100
P5	P5	3252,000			-	- 0,970		2,640	0,490	10,309	26,490	1520,000	13,850	1,230	-	2,100	0,900	2,600	4,700
P6	P6		5616,000		-	1,03	0	6,380	0,447	2,438	16,580	2000,000	9,000	1,280	-	2,300	1,500	2,300	3,500
P6	P6		7550,000		-	0,88	1	3,240	0,274	3,492	22,520	4250,000	7,950	0,980	-	1,700	1,200	2,600	3,900
P7	P7	13732,000)	-	1,12	9	6,510	0,431	2,670	57,180	7200,000	8,510	2,780		2,400	0,900	1,600	2,500
P7	P7	17067,000)	-	1,426 2,6		2,670	0,459	2,601	54,700	9800,000	4,020	2,450	-	2,600	1,300	1,800	2,600
P8	P8	35374,000)	-	1,03	0	3,810	0,451	12,486	18,560	20750,000	16,260	1,320	-	4,100	1,100	1,400	3,900
P8	P8	36851,000)	-	0,93	1	1,790	0,388	6,267	15,100	21250,000	9,080	1,070	-	3,500	1,600	1,500	3,800
01	01	39987,000)	-	1,08	9	1,350	0,313	7,394	18,560	22750,000	8,320	0,770	-	0,500	0,300	1,100	1,400
01	01		38341,000)	-	0,88	1	1,480	0,195	8,801	13,610	23000,000	11,890	0,750	-	0,600	0,100	1,000	1,600
R2	R2		85,000		6.000	-		-	-	-	-	2.000	-	-	-	-	-	-	-
R3	R3		209.000		10,000			-	-	-	-	20,000	-	-	-	-	-	-	-
17-18/0	01/2000	Pb	Ni	Cd	Fe	Hg	As	DBO5	D	Q0	Cianeto	Colif. Tota	nis	Colif. Fee	ais	Clorofila	-a		
17-18/0 Jan	01/2000 eiro	Pb μg/L	Ni μg/L	Cd µg/L	Fe µg/L	Hg µg/L	As µg/L	DBO5 (mg/1 O	2) (mg	Q O (1/O2)	Cianeto (mg/l CN)	Colif. Tota (NMP/100)	nis ml)	Colif. Fee (NMP/100	cais Iml)	Clorofila	-a		
17-18/0 Jan R1	01/2000 eiro R1	Pb μg/L 0,100	Ni μg/L 0,600	Cd µg/L 0,400	Fe µg/L 69,000	Hg μg/L < 0,5	As μg/L < 5	DBO5 (mg/l O 1,900	2) (mg	Q O (1) O2) (000	Cianeto (mg/l CN)	Colif. Tota (NMP/100) 4900,000	nis ml)	Colif. Fee (NMP/100 0,000	cais Dml)	Clorofila -	-a		
17-18/0 Jan R1 R1	01/2000 eiro R1 R1	Pb μg/L 0,100 0,400	Ni μg/L 0,600 0,500	Cd μg/L 0,400 0,500	Fe μg/L 𝔅,000 78,000	Hg μg/L < 0,5 < 0,5	As μg/L < 5 < 5	DBO5 (mg/1 O 1,900 1,100	2) (mg 14 17	Q O (2/1 O2) ,000 ,000	Cianeto (mg/I CN) -	Colif. Tota (NMP/100) 4900,000 2200,000	nis ml)	Colif. Fee (NMP/100 0,000 0,000	cais Dml)	Clorofila - -	-a		
17-18/0 Jan R1 R1 P1	01/2000 eiro R1 R1 P1	Pb μg/L 0,100 0,400 0,400	Ni μg/L 0,600 0,500 0,140	Cd μg/L 0,400 0,500 0,500	Fe μg/L 69,000 78,000 60,100	Hg μg/L < 0,5 < 0,5 < 0,5	As µg/L < 5 < 5 < 5 < 5	DBO5 (mg/1 O 1,900 1,100 1,600	2) (mg 14 17 17	Q O (71 O2) (000 (000 (000 (000 (000)	Cianeto (mg/l CN) - -	Colif. Tota (NMP/100 4900,000 2200,000 > 2400	nis ml)	Colif. Fee (NMP/100 0,000 0,000 0,000	ais ml)	Clorofila - - -	-a		
17-18/0 Jan R1 R1 P1 P1	01/2000 eiro R1 R1 P1 P1 P1	Pb μg/L 0,100 0,400 0,500	Ni μg/L 0,600 0,500 0,140 0,170	Cd μg/L 0,400 0,500 0,500 0,600	Fe μg/L Ø,000 78,000 60,100 63,000	Hg μg/L < 0,5 < 0,5 < 0,5 < 0,5	As μg/L < 5 < 5 < 5 < 5 < 5	DBO5 (mg/1 O 1,900 1,100 1,600 1,300	2) (mg 14 17 17 20	Q O y1 O2) ,000 ,000 ,000 ,000 ,000	Cianeto (mg/l CN) - - -	Colif. Tota (NMP/100) 4900,000 2200,000 > 2400 > 2400	nis ml)	Colif. Fec (NMP/100 0,000 0,000 0,000 0,000	ais ml)	Clorofila - - - -	-a		
17-18/0 Jan R1 R1 P1 P1 P2 P2	01/2000 eiro R1 R1 P1 P1 P2 P2	Pb μg/L 0,100 0,400 0,500 0,800	Ni µg/L 0,600 0,500 0,140 0,170 0,150 2,400	Cd µg/L 0,400 0,500 0,500 0,600 0,600	Fe μg/L Ø,000 78,000 60,100 63,000 134,000	Hg µg/L < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	As μg/L < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/LO 1,900 1,100 1,600 1,300 0,700	D (mg 2) (mg 14 17 20 200 200	Q O (000) (000) (000) (000) (000) (000)	Cianeto (mg/l CN) - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 > 2400 > 2400 > 2400 > 2400	nis	Colif. Fee (NMP/100 0,000 0,000 0,000 0,000	ais ml)	Clorofila - - - - - -	-a		
17-18/0 Jan R1 P1 P1 P2 P2 P2	01/2000 eiro R1 R1 P1 P1 P2 P2 P2	Pb μg/L 0,100 0,400 0,500 0,800 0,6600	Ni μg/L 0,600 0,500 0,140 0,170 0,150 0,190	Cd μg/L 0,400 0,500 0,500 0,600 0,600 0,600	Fe μg/L 69,000 78,000 60,100 63,000 134,000 128,000	Hg µg/L < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DBO5 (mg/1 O 1,900 1,100 1,600 1,300 0,700 0,500	D (mg 2) (mg 14 17 17 20 20 20	Q O (000) (0	Cianeto (mg/l CN) - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 > 2400 > 2400 > 2400 > 2400 > 2400	nis mil)	Colif. Fee (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000	ais ml)	Clorofila - - - - - - - -	-a		
17-18/0 Jan R1 P1 P1 P2 P2 P3 P3	D1/2000 eiro R1 R1 P1 P1 P2 P2 P3 P3	Pb μg/L 0,100 0,400 0,500 0,800 0,600 0,500	Ni μg/L 0,600 0,500 0,140 0,170 0,150 0,190 0,160	Cd μg/L 0,400 0,500 0,500 0,600 0,600 0,200 0,500	Fe μg/L Ø,000 78,000 60,100 63,000 134,000 128,000 101,000	Hg µg/L < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DBO5 (mg/ O 1,900 1,100 1,600 1,300 0,700 0,500 0,700	D 2) (mg 14 17 17 20 20 20 19 7,	Q O (100) (00)	Cianeto (mg/l CN) - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 > 2400 > 2400 > 2400 > 2400 > 24200	nis ml) 	Colif. Fee (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000	ais ml)	Clorofila - - - - - - - - -	-a		
17-18/ Jan R1 P1 P1 P2 P2 P3 P3	D1/2000 eiro R1 R1 P1 P1 P2 P2 P3 P3 P3	Pb µg/L 0,100 0,400 0,500 0,800 0,600 0,500	Ni μg/L 0,600 0,500 0,140 0,170 0,150 0,190 0,160 0,180	Cd µg/L 0,400 0,500 0,500 0,600 0,600 0,200 0,500 0,400	Fe μg/L θ,000 78,000 60,100 63,000 134,000 128,000 101,000 112,000	Hg μg/L < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	As μg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DBO5 (mg/ O 1,900 1,100 1,600 1,300 0,700 0,500 0,700 1,500	D 2) (mg 14 17 17 20 20 19 7, 4,	Q O (000) (000	Cianeto (mg/l CN) - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400	nis ml)	Colif. Fee (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000	ais ml)	Clorofila	-a		
17-18/0 Jan R1 P1 P2 P3 P4	D1/2000 eiro R1 P1 P1 P2 P2 P3 P3 P3 P4	Pb µg/L 0,100 0,400 0,500 0,800 0,600 0,500 0,400 0,600 0,500 0,400	Ni μg/L 0,600 0,500 0,140 0,170 0,150 0,190 0,160 0,180 0,150	Cd μg/L 0,400 0,500 0,500 0,600 0,600 0,500 0,600 0,500 0,500 0,600 0,200 0,500 0,400 0,300	Fe μg/L 69,000 78,000 60,100 63,000 134,000 128,000 101,000 112,000 45,000	$\begin{array}{c} Hg \\ \mu g/L \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < $	As μg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/1 O 1,900 1,100 1,600 0,700 0,500 0,700 1,500 1,700	D 2) (mg 14 17 17 20 20 20 19 7, 4, 26	Q O	Cianeto (mg/l CN) - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 > 2400 > 2400 > 2400 > 2400 > 2400 > 24200 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400	nis ml)	Colif. Fee (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 7,000	ais	Clorofila - - - - - - - - - - - - -	-a		
17-18/0 Jan R1 P1 P2 P2 P3 P4	D1/2000 eiro R1 P1 P1 P2 P2 P3 P3 P3 P4 P4 P4	Pb µg/L 0,100 0,400 0,500 0,800 0,600 0,500 0,400 2,000 2,100	Ni μg/L 0,600 0,500 0,140 0,170 0,150 0,190 0,160 0,180 0,150 0,170	Cd μg/L 0,400 0,500 0,600 0,600 0,600 0,500 0,600 0,500 0,600 0,500 0,600 0,200 0,500 0,400 0,300 0,200 0,200	Fe μg/L 69,000 78,000 60,100 63,000 134,000 128,000 101,000 112,000 45,000 58,000	$\begin{array}{c} \mathbf{Hg} \\ \mathbf{\mu g/L} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.$	As μg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg1 0 1,900 1,100 1,600 0,700 0,500 0,700 1,500 1,700 2,700	2) (mg 14 17 20 20 20 20 20 7, 4, 4, 26 6 6 6	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 > 2400 > 2400 > 2400 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200 > 24200	nis ml) 	Colif. Fee (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 7,000 2,000	ais (ml)	Clorofila	-8		
17-18 /0 Jan R1 P1 P2 P2 P3 P3 P3 P4 P4 P5	b1/2000 eiro R1 P1 P1 P2 P2 P3 P3 P4 P4 P5	Pb µg/L 0,100 0,400 0,500 0,600 0,600 0,600 0,600 0,400 2,000 2,100 1,600	Ni μg/L 0,600 0,500 0,140 0,170 0,150 0,190 0,160 0,180 0,150 0,170	Cd μg/L 0,400 0,500 0,600 0,600 0,600 0,500 0,600 0,500 0,600 0,200 0,500 0,400 0,300 0,200 0,200 0,200 0,200 0,200 0,150	Fe μg/L Ø,000 78,000 60,100 63,000 134,000 128,000 101,000 120,000 45,000 58,000 54,000	$\begin{array}{c} \mathbf{Hg} \\ \mathbf{\mu g/L} \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,$	As μg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/1 O 1,900 1,100 1,600 0,700 0,700 0,700 1,500 1,500 1,700 2,700 1,400	2) (mg 14 17 17 20 20 20 20 20 20 20 19 7, 4, 26 16 18	Q O (000 (Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400 > 2400	nis	Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 7,000 2,000 0,000	ais ml)	Clorofila - - - - - - - - - - - - - - -	-8		
17-18 /0 Jan R1 P1 P2 P2 P3 P3 P3 P4 P4 P5 P5	D1/2000 eiro R1 R1 P1 P2 P2 P3 P3 P3 P3 P4 P4 P5 P5	Pb µg/L 0,100 0,400 0,500 0,800 0,600 0,600 0,400 2,000 2,100 1,600 1,700	Ni µg/L 0,600 0,500 0,140 0,170 0,150 0,150 0,180 0,180 0,150 0,170 0,300 0,120	Cd µg/L 0,400 0,500 0,500 0,600 0,600 0,600 0,200 0,400 0,300 0,200 0,150 0,160	Fe μg/L Ø9,000 78,000 60,100 63,000 134,000 1328,000 101,000 112,000 45,000 54,000 76,000	$\begin{array}{c} Hg \\ \mu g/L \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < $	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,600 0,700 0,500 0,700 1,500 1,700 2,700 1,400	D) (mg) 14 17 20 20 20 20 20 17 20 20 19 7., 4., 26 16 18 17	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >2400	nis	Colif, Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 2,000 0,000 0,000	ais	Clorofila	-a 		
17-18// Jan R1 P1 P2 P3 P4 P4 P5 P6	D12000 eiro R1 R1 P1 P2 P2 P3 P3 P3 P3 P4 P4 P4 P5 P5 P6	Pb µg/L 0,100 0,400 0,400 0,500 0,600 0,500 0,600 0,500 0,400 2,000 2,100 1,600 1,700 1,300	Ni μg/L 0,600 0,500 0,140 0,150 0,150 0,160 0,180 0,150 0,170 0,150 0,170 0,150 0,170 0,150 0,170 0,170 0,300 0,120	Cd µg/L 0,400 0,500 0,500 0,600 0,600 0,200 0,400 0,300 0,150 0,160 0,400	Fe µg/L (9,000 78,000 60,100 63,000 134,000 134,000 112,000 112,000 112,000 112,000 54,000 54,000 10,100	$\begin{array}{c} Hg \\ \mu g/L \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \end{array}$	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,100 0,700 0,700 0,700 1,500 1,700 2,700 1,400 1,400 1,700	D 2) (mg) 14 17 17 20 200 20 9 7. 4. 26 16 18 177 19	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400	is	Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 7,000 2,000 0,000 0,000 0,000	ais	Clorofila - - - - - - - - - - - - - - - - - - -	-a		
17-180/ Jan R1 P1 P2 P3 P4 P4 P5 P6 P6	NI2000 eiro R1 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6	Pb µg/L 0,100 0,400 0,400 0,500 0,600 0,500 0,400 2,000 2,000 1,600 1,700 1,300 1,400	Ni μg/L 0,600 0,500 0,140 0,150 0,150 0,160 0,150 0,150 0,150 0,150 0,150 0,150 0,150 0,150 0,170 0,300 0,120 0,200 0,100	Cd µg/L 0,400 0,500 0,500 0,600 0,200 0,500 0,400 0,300 0,150 0,150 0,400 0,500	Fe µg/L (0,000 78,000 60,100 63,000 134,000 134,000 101,000 112,000 45,000 54,000 76,000 10,100 12,700	$\begin{array}{c} Hg \\ \mu g/L \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < $	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,900 1,300 0,700 0,500 0,700 1,500 1,700 1,700 1,400 1,400 1,300	D 2) (mg 14 17 17 20 20 (mg 17 20 20 (mg 17 20 20 (mg 17 (mg 18 17 19 (mg	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >2400	iis	Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 7,000 2,000 0,000 0,000 0,000 0,000	ais [m])	Clorofila - - - - - - - - - - - - - - - - - - -	-a		
17-18/0 Jan R1 P1 P2 P3 P4 P5 P6 P6 P7	D12000 eiro R1 R1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P6 P7	Pb µg/L 0,100 0,400 0,500 0,500 0,600 0,600 0,600 0,600 0,400 2,000 2,100 1,600 1,700 1,300 1,400 1,100	Ni µg/L 0,600 0,500 0,140 0,170 0,150 0,190 0,160 0,190 0,160 0,170 0,130 0,120 0,200 0,100 0,130	Cd µg/L 0,400 0,500 0,500 0,600 0,200 0,200 0,200 0,200 0,200 0,150 0,160 0,400 0,160 0,400 0,500	Fe µg/L 69,000 78,000 60,100 134,000 134,000 101,000 112,000 45,000 54,000 54,000 76,000 10,100 12,700 25,100	$\begin{array}{c} Hg \\ \mu g/L \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ \end{array}$	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/ 0 1,900 1,600 0,700 0,500 0,700 1,500 1,500 1,700 1,400 1,700 1,400 1,300	D 2) (mg 14 17 17 20 20 20 19 7, 4, 26 16 18 177 19	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >24200	nis	Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 2,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	ais (ml)	Clorofila - - - - - - - - - - - - - - - - - - -	-a		
17-18/0 Jan R1 P1 P2 P3 P4 P5 P6 P7	D1/2000 eiro R1 R1 P1 P2 P2 P3 P3 P3 P4 P4 P4 P5 P5 P5 P6 P6 P6 P6 P7 P7	Pb µg/L 0,100 0,400 0,400 0,500 0,600 0,500 0,400 2,000 2,100 1,600 1,700 1,300 1,400 1,100	Ni μg/L 0,600 0,500 0,140 0,170 0,150 0,190 0,160 0,180 0,170 0,130 0,120 0,200 0,130 0,130	Cd μg/L 0,400 0,500 0,500 0,600 0,500 0,600 0,200 0,400 0,200 0,400 0,300 0,150 0,160 0,400 0,500 0,500	Fe µg/L (\$\theta\$,000) 78,000 60,100 63,000 134,000 128,000 101,000 112,000 45,000 58,000 76,000 10,100 12,700 25,100 27,300	$\begin{array}{c} Hg \\ \mu g/L \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < $	As μg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,600 0,700 0,700 1,500 1,700 1,700 1,400 1,400 1,300 1,300 1,300	D) (mg) 14 17 20 20 20 20 17 20 20 19 7., 4., 26 16 18 17 19	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >24200 >24200 >24200		Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	ais (ml)	Clorofila	-a		
17-18/0 Jan R1 P1 P2 P3 P4 P5 P6 P7 P8	D12000 eiro R1 R1 P1 P2 P3 P3 P3 P3 P4 P4 P4 P4 P5 P5 P5 P6 P6 P6 P7 P7 P8	Pb µg/L 0,100 0,400 0,500 0,600 0,600 0,600 2,000 2,000 1,600 1,700 1,300 1,400 1,400 1,100 1,000 0,800	Ni μg/L 0,600 0,500 0,140 0,150 0,150 0,160 0,150 0,150 0,150 0,150 0,150 0,150 0,120 0,200 0,100 0,130 0,140 0,150	Cd µg/L 0,500 0,500 0,600 0,600 0,500 0,500 0,400 0,300 0,150 0,160 0,160 0,500 0,500 0,500 0,500 0,500	Fe µg/L (9),000 78,000 60,100 63,000 134,000 134,000 128,000 101,000 112,000 45,000 54,000 54,000 10,100 12,700 25,100 27,300 16,600	$\begin{array}{c} \mathbf{Hg} \\ \mathbf{\mu g/L} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.$	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,100 0,700 0,700 0,700 1,500 1,700 1,400 1,400 1,300 1,300 1,300 1,400	D 2) (mg 14 17 17 20 20 20 9 7.3 4.4 266 166 18 177 19	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >24200 >24200 >24200 >24200 >24200 >24200		Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	ais (ml)	Clorofila	-a		
17-18/0 Jan R1 P1 P2 P3 P4 P5 P6 P7 P7 P8	DI2000 eiro R1 R1 P1 P2 P2 P3 P3 P3 P4 P4 P5 P6 P6 P7 P7 P7 P8 P8 P8	Pb µg/L 0,100 0,400 0,500 0,600 0,500 0,600 0,500 0,400 2,000 2,100 1,600 1,700 1,300 1,400 1,100 0,800 0,800	Ni µg/L 0,600 0,500 0,140 0,170 0,150 0,150 0,180 0,150 0,170 0,100 0,120 0,200 0,100 0,130 0,100 0,130 0,140 0,100 0,100 0,140 0,100 0,1100 0,100 0,1100 0,100 0,1100 0,100 0,1100	Cd µg/L 0,400 0,500 0,600 0,600 0,600 0,200 0,400 0,300 0,200 0,160 0,400 0,500 0,400 0,500 0,500 0,500 0,600 0,500 0,600 0,500 0,400	Fe µg/L (9,000 78,000 60,100 63,000 134,000 134,000 112,000 112,000 12,700 25,100 27,300 16,600 14,200	$\begin{array}{c} \mathbf{Hg} \\ \mathbf{\mu g/L} \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,5 \\ < 0,$	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,100 1,300 0,700 0,700 0,700 1,500 1,700 1,400 1,400 1,400 1,300 1,300 1,300 1,300 1,400 1,400	D 2) (mg) 14 17 17 20 200 20 19 7, 44, 26 16 18 17 19	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >24200 >24200 >24200 >24200 >24200 >24200 >24200 >24200 >24200	iis	Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 7,000 2,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	rais	Clorofila - - - - - - - - - - - - - - - - - - -	-a		
17-18/0 Jan R1 P1 P2 P3 P4 P5 P6 P7 P7 P8 O1	D12000 eiro R1 R1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P6 P6 P7 P7 P7 P8 P8 P8 P8	Pb µg/L 0,100 0,400 0,500 0,800 0,600 0,500 0,400 2,000 2,100 1,600 1,700 1,400 1,000 0,800 0,900 0,500	Ni μg/Ω 0,500 0,140 0,170 0,150 0,160 0,180 0,150 0,170 0,300 0,120 0,300 0,120 0,000 0,130 0,100 0,130 0,140 0,150 0,110	Cd µg/L 0,400 0,500 0,500 0,600 0,600 0,200 0,400 0,160 0,400 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,200 0,400	Fe µg/L 69,000 78,000 60,100 63,000 134,000 134,000 101,000 45,000 54,000 54,000 54,000 12,700 25,100 27,300 16,600 14,200 4,200	$\begin{array}{c} \mathbf{Hg} \\ \mathbf{\mu g/L} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.$	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,600 0,700 0,500 0,700 1,500 1,700 1,700 1,400 1,700 1,300 1,300 1,300 1,300 1,300 0,900	D 2) (mg 14 17 17 20 200 19 7 4.4 266 166 18 17 19	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >2400 >2	nis	Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	ais	Clorofila	-a		
17-18/0 Jan R1 P1 P2 P3 P4 P5 P6 P7 P8 O1	D1/2000 eiro R1 R1 P1 P2 P2 P3 P3 P3 P4 P4 P4 P5 P5 P5 P5 P6 P6 P6 P6 P7 P7 P7 P7 P8 P8 OI	Pb µg/L 0,100 0,400 0,500 0,800 0,500 0,500 0,400 2,000 2,100 1,600 1,700 1,300 1,400 1,000 0,800 0,800 0,900 0,500	Ni μg/L 0,6500 0,140 0,170 0,150 0,160 0,180 0,150 0,160 0,180 0,170 0,0100 0,120 0,200 0,100 0,130 0,140 0,150 0,100 0,130 0,140 0,150 0,110 0,080	Cd µg/L 0,400 0,500 0,500 0,600 0,200 0,200 0,400 0,200 0,150 0,160 0,400 0,500 0,500 0,500 0,500 0,500 0,500 0,200 0,400 0,500 0,200 0,400 0,500 0,200 0,000	Fe µg/L 69,000 78,000 60,100 63,000 134,000 128,000 112,000 45,000 54,000 76,000 10,100 12,7,000 25,100 25,100 16,600 14,200 4,000	$\begin{array}{c} \textbf{Hg} \\ \textbf{\mu g/L} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.$	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,600 0,700 0,700 1,500 1,700 1,700 1,700 1,400 1,300 1,400 1,300 1,000 1,000 1,500	D) (mg 14 17 20 20 20 20 17 20 20 9 7, 4, 26 16 18 17 19	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >24200 >24200 >24200 >24200 >24200 >24200 >24200 >24200 >24200 >24200 >24200 >24200 >24200 3000,000 680,000		Colif. Fec (NMP/100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	ais (ml) (ml) (ml) (ml) (ml) (ml) (ml) (ml)	Clorofila	•a		
17-18/0 Jan R1 P1 P1 P2 P3 P4 P5 P6 P6 P7 P8 O1 O1	DI2000 eiro R1 R1 P1 P2 P2 P3 P3 P3 P3 P4 P4 P4 P5 P5 P5 P6 P6 P6 P6 P7 P7 P8 P8 P8 O1 O1 R2	Pb µg/L 0,100 0,400 0,500 0,600 0,600 0,600 2,000 2,000 1,600 1,700 1,300 1,400 1,400 1,000 0,800 0,900 0,500	Ni μg/L 0,600 0,500 0,140 0,170 0,150 0,160 0,180 0,150 0,170 0,150 0,160 0,170 0,300 0,120 0,200 0,100 0,130 0,140 0,150 0,110 0,090 0,080	Cd µg/L 0,500 0,500 0,600 0,200 0,200 0,400 0,300 0,200 0,150 0,160 0,400 0,500 0,500 0,500 0,500 0,500 0,500 0,200 0,400 0,500 - - - - - - - - - - - - -	Fe µg/L (#),000 78,000 60,100 63,000 128,000 128,000 128,000 128,000 54,000 54,000 10,100 12,700 25,100 27,300 16,600 14,200 4,200	$\begin{array}{c} \textbf{Hg} \\ \textbf{\mu g/L} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.$	As µg/L < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DB05 (mg/l O 1,900 1,100 0,700 0,700 0,700 1,500 1,700 1,400 1,400 1,400 1,300 1,400 1,400 1,400 0,900 1,400 0,900 0,500 0,000000	D 2) (mg) 14 17 17 20 20 20 9 7.3 4.4 266 166 18 177 19 9 9 9 7.3 4.4 266 166 18 177 19 9 9 9 9 9 9 10 10 117 19 118 10 119 10 110 10 111 11 112 11 113 11 114 11 115 11 116 11 117 11 118 11 119 11 110 11 111 11 111 11 112 <td< th=""><th>Q O </th><th>Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -</th><th>Colif. Tota (NMP/100) 4900,000 2200,000 >2400 >24200 13000,000 680,000 1200,000 </th><th>iis</th><th>Colif. Fec (NMP/100 0,000000</th><th>rais (ml) (ml) (ml) (ml) (ml) (ml) (ml) (ml)</th><th>Clorofila - - - - - - - - - - - - - - - - - - -</th><th>-a</th><th></th><th></th></td<>	Q O	Cianeto (mg/L CN) - - - - - - - - - - - - - - - - - - -	Colif. Tota (NMP/100) 4900,000 2200,000 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >2400 >24200 13000,000 680,000 1200,000	iis	Colif. Fec (NMP/100 0,000000	rais (ml) (ml) (ml) (ml) (ml) (ml) (ml) (ml)	Clorofila - - - - - - - - - - - - - - - - - - -	-a		

ANEXO C

(Dados obtidos pelo Projeto Espinha de Peixe)
Estações	Profundidade	Latitude	Longitude	Temperatura	Salinidade	D.O.	Sat. D.O.	pH	MES	% M O	Nitrito	Nitrato	Fosfato	Silicato
	m			°C	Psu	mg/l	%		mg/l		mol/l	mol/l	mol/l	mol/l
Estuário														
1	0	31°43′00′′	51°59′20′′	25,00	4,00	8,11	100,71	7,60			0,11	6,73	3,69	61,45
1	5	31°43′00′′	51°59′20′′	25,00	4,00	8,26	102,48	7,60	26,43	12,62	0,20		1,42	44,80
2	0	31°45′00′′	51°54′30′′	26,00	5,10	8,20	104,17	7,50			0,00	2,50	0,60	50,88
2	3	31°45′00′′	51°54′30′′		5,10	8,41	106,90	7,50		11,49	0,00	0,00	0,42	29,38
3	0	31°47′00′′	51°49′60′′	26,00	4,10	8,60	108,66	7,70					0,26	26,71
3	3	31°47′00′′	51°49′60′′	26,00	4,10	8,20	103,61	7,70			0,19	2,62	1,10	31,08
4	0	31°48′00′′	51°52´80´´	25,00	4,20	9,00	111,70	7,70	62,20	15,87	0,01	1,83	0,31	37,76
4	5	31°48′00′′	51°52′80′′	25,00	4,20			7,90	45,53	10,25	0,04	23,30	0,66	23,19
5	0	31°50′80′′	52°11′50′′		4,10	8,18	101,59	7,80	99,67	12,28	0,33	19,83	0,74	48,21
6	0	31°50′80′′	52°10′00″	24,00	7,10	8,04	99,82	7,80			0,23	1,05	1,24	76,52
6	5	31°50′80′′	52°10′00′′	24,00	30,00	6,23	88,08	7,90			0,25	2,74	1,73	123,16
7	0	31°50′80′′	52°09′00′′		9,00	7,80	97,84	7,90	48,43	11,22	0,06	1,36	0,73	101,66
8	0	31°50′80′′	52°08′00′′	25,00	6,80	8,10	102,35	7,50	58,43	5,88	0,07	2,30	0,73	36,18
8	6	31°50′80′′	52°08′00′′	25,00	31,50	7,80	98,56	7,90	85,00	11,93	0,12	4,71	0,77	91,94
8	10	31°50′80′′	52°08′00′′	25,00	31,00	7,28	105,59	7,90	95,77	8,71	0,25	3,11	0,79	19,91
9	0	31°53′20′′	52°03′50′′	25,00	7,00				46,33	6,48	0,00	0,00	0,22	70,20
9	6	31°53′20′′	52°03′50′′	25,00	17,50				96,20	3,57	0,05	3,87	1,49	25,74
9	10	31°53′20′′	52°03′50′′		32,00				99,20	6,83	0,12	5,93	1,37	31,32
10	0	31°55′00′′	52°03′60′′	25,50	7,50				38,87	23,34	0,06	1,97	0,68	79,67
10	3	31°55′00′′	52°03′60′′	24,90	15,00				43,10	35,35	0,12	0,00	0,55	143,94
10	6	31°55′00′′	52°03′60′′	24,90	23,20				162,87	12,82	0,09	8,60	0,72	44,44
11	0	31°55′90′′	52°06′40′′	26,00	8,50				50,33	23,45	0,09	5,54	0,71	65,82
11	4	31°55′90′′	52°06′40′′	25,10	9,00				45,33	30,89	0,09	8,87	0,76	130,45
11	7	31°55′90′′	52°06′40′′	25,10	10,90				122,77	13,77				150,01
12	0	31°58′80′′	52°04′60′′	26,00	11,50	8,04	106,02	8,10	67,20	11,07	0,13	0,49	0,52	63,76
12	3	31°58′80′′	52°04′60′′						63,53		0,07		0,72	
13	0	31°58′80′′	52°04′10′′	26,00	20,00	8,20	107,29	7,90			0,07	2,26	1,05	56,23
13	6	31°58′80′′	52°04′10′′	25,00	15,10	8,27	108,22	8,20	63,53	28,34	0,10	7,12	0,70	72,02
13	10	31°58′80′′	52°04′10′′	25,00	21,00	7,50	102,54	8,20	49,20	2,92	0,12	3,79	0,51	30,72
14	0	31°58′80′′	52°03′90′′	27,00	13,00	8,19	110,83	8,00	48,10	3,96	0,00	3,68	0,62	68,86
14	4	31°58′80′′	52°03′90′′	26,50	16,00	8,11	110,94	8,10	48,87	7,51	0,08	0,52	0,76	29,26
15	0	32°02´80´´	52°02′70′′	26,00	12,20	8,20	108,30	7,90			0,13	14,82	0,76	59,39
15	8	32°02′80′′	52°02′70′′	25,00	18,50	6,60	86,68	7,90			0,11	33,65	0,69	139,20
15	14	32°02′80′′	52°02′70′′		20,00	6,23	83,36	7,90			0,20	1,32	0,87	82,35
16	0	32°07′60′′	52°06′10′′	25,00	15,90	7,89	104,94	8,10	6,87	35,44	0,08	0,83	1,37	117,70
16	4	32°07′60′′	52°06′10′′	25,00	16,00	7,89	104,74	8,10	38,20	17,11	0,05	4,59	1,03	92,19
16	8	32°07′60′′	52°06′10′′	24,90	19,50			8,10	27,00	9,51	0,34	13,90	1,83	66,31

Estações	Profundidade	Latitude	Longitude	Temperatura	Salinidade	D.O.	Sat. D.O.	pH	MES	% M O	Nitrito	Nitrato	Fosfato	Silicato
	m			°C	psu	mg/l	%		mg/l		mmol/1	mmol/l	mmol/l	mmol/1
Fundeio no estuário														
17	0	32°07′60′′	52°05′80′′	25,00	15,00	8,49	112,07	8,10	10,10	9,81	0,15	5,56	0,76	56,59
17	6	32°07′60′′	52°05′80′′			6,91	91,11	8,20	9,20	25,37	0,23	44,74	1,19	50,40
17	14	32°07′60′′	52°05′80′′			5,70	75,28	8,10			0,38	7,76	0,85	59,26
18	0	32°07′60′′	52°05′80′′	25,10	14,80			8,10	5,77	13,30	0,10	11,88		91,70
18	6	32°07′60′′	52°05′80′′	25,10	19,00			8,10	13,53	19,24	0,12	10,45	0,99	79,79
18	10	32°07′60′′	52°05′80′′					8,10	64,33	17,10	0,00	16,90	1,24	73,60
19	0	32°07′60′′	52°05′80′′		12,00	7,89		8,10	4,20	20,64	0,11		1,24	49,91
19	5	32°07′60′′	52°05′80′′		15,00	7,74		8,10	9,53	18,54	0,16	3,63	1,52	97,53
19	11	32°07′60′′	52°05′80′′		20,00	6,30		8,10	28,33	21,65	0,09	21,16	0,89	72,63
20	0	32°07′60′′	52°05′80′′		12,00			8,10	5,87	14,78	0,07	12,12	0,45	129,72
20	6	32°07′60′′	52°05′80′′					8,30	8,43	24,91	0,23	10,63	0,51	81,01
20	11	32°07′60′′	52°05′80′′		22,00			8,30	25,67	18,71	0,10	10,34	0,93	52,10
21	0	32°07′60′′	52°05′80′′		12,00	7,89		8,10	8,77	36,89	0,05	47,06	0,43	75,42
21	6	32°07′60′′	52°05′80′′		17,00	6,40		8,20	7,10	15,50	0,01	53,47	0,90	83,20
21	12	32°07′60′′	52°05′80′′			6,76		8,10	24,00	20,42	0,17	9,38	0,83	52,58
22	0	32°07′60′′	52°05′80′′		12,00			8,20	6,77	14,78	0,05	47,54	0,82	64,85
22	6	32°07′60′′	52°05′80′′		19,00			8,30	4,20	26,20	0,10	51,63	0,59	76,15
22	12	32°07′60′′	52°05′80′′					8,20	32,77	32,25	0,23	12,78	1,15	34,73
23	0	32°07′60′′	52°05′80″		10,00			8,10	7,33	18,19	0,00	6,12	0,16	74,57
23	6	32°07′60′′	52°05′80′′		18,00			8,10	8,87	31,21	0,20	9,23	2,07	33,75
23	12	32°07′60′′	52°05′80′′					8,20	48,20	18,40	0,26	9,05	1,84	87,08
24	0	32°07′60′′	52°05′80′′		10,00			8,10	7,33	16,82	0,09	6,24	1,44	46,87
24	6	32°07′60′′	52°05′80′′		17,00			8,10	10,00	18,00	0,08	8,29	1,08	42,50
24	12	32°07′60′′	52°05′80′′					8,10	32,77	11,91	0,00	11,76	1,26	30,60
25	0	32°07′60′′	52°05′80′′		10,00			8,10	4,10	34,96	0,04	7,87	0,97	40,44
25	6	32°07′60′′	52°05′80′′		18,00			8,10	13,20	19,20	0,21	2,12	1,14	92,91
25	12	32°07′60′′	52°05′80′′					8,10	63,67	21,47	0,36	8,23	1,46	28,65
26	0	32°07′60′′	52°05′80′′		10,00			8,10	17,43	32,51	0,12	29,19	0,79	106,76
26	6	32°07′60′′	52°05′80′′		18,00			8,10	8,43	42,30	0,11	4,02	0,63	62,91
26	12	32°07′60′′	52°05′80′′		31,00			8,10	174,43	15,29	0,18	24,11	1,22	29,99
27	0	32°07′60′′	52°05′80′′	26,00	12,00			8,10	8,20	10,57	0,07	1,82	0,61	152,93
27	6	32°07′60′′	52°05′80′′		17,00			8,10	32,20	13,61	0,16	12,05	1,21	48,82
27	12	32°07′60′′	52°05′80′′		31,00			8,10	183,43	37,75	0,37	7,72	0,88	25,86
28	0	32°07′60′′	52°05′80′′		10,00			8,10			0,22	1,60	0,72	68,25
28	6	32°07′60′′	52°05′80′′		20,00			8,10			0,13	6,77	1,50	23,19
28	12	32°07′60′′	52°05′80′′		32,00			8,10			0,25	3,09	1,11	26,83
29	0	32°07′60′′	52°05′80′′		11,00			8,10	7,67	39,14	0,05	0,32	1,39	76,39
29	6	32°07′60′′	52°05′80′′		23,00			8,10	11,67	25,72	0,24	1,00	1,30	70,20
29	12	32°07′60′′	52°05′80′′		30,00			8,10	82,33	9,11	0,03	2,43	1,15	22,94
30	0	32°07′60′′	52°05′80′′		10,00			8,20	6,20	35,49	0,03	45,76	0,81	43,11
30	6	32°07′60′′	52°05′80′′		16,00			8,10	6,67	17,00	0,14	1,67	1,23	69,10

Estações	Profundidade	Latitude	Longitude	Temperatura	Salinidade	D.O.	Sat. D.O.	pH	MES	% M O	Nitrito	Nitrato	Fosfato	Silicato
	m			°C	Psu	mg/l	%		mg/l		mol/l	mol/l	mol/l	mol/l
São Lourenço														
43	0			28,00	1,00	7,74	99,81							
43	4			27,00	1,50	8,19	103,80							
44	0	31°32′80′′	51°30′50′′	28,00	1,00	7,50		7,40			0,27	22,45	4,19	53,07
44	4	31°32′80′′	51°30'50''	27,00	1,50	8,11		7,10	91,10	8,05	0,18	8,97	1,77	41,16
45	0	31°30′70′′	51°35′40′′	29,00	0,20	7,60	105,77	7,40			0,19	20,15	3,85	114,30
45	6	31°30′70′′	51°35′40′′	28,50	0,20	7,50	104,99	7,40	208,00	11,90	0,30	10,93	2,95	48,21
46	0	31°27′00′′	51°40′10′′	29,50	0,10	7,60	106,56	7,10	150,33	13,53	0,27	5,19	0,39	86,84
46	5	31°27′00′′	51°40′10′′	29,50	0,10	7,60	119,32	7,10	147,33	11,93	0,61	24,87	2,41	103,85
47	0	31°26′50′′	51°46′50′′	30,00	0,00	6,60	110,60	7,40			0,26	11,53	2,05	68,98
47	3	31°26′50′′	51°46′50′′	29,50	0,30	6,60	95,68	7,30	307,43	15,37	0,15	38,04	2,60	37,16
48	0	31°24′40′′	51°52′20′′	29,50	0,20	8,90	107,50	7,40			0,14	5,74	0,38	37,76
48	4	31°24′40′′	51°52′20′′	29,50	0,20	8,60	103,56	7,30	68,87	9,69	0,45	0,42	0,42	41,16
		-												
Estações	Profundidade	Latitude	Longitude	Temperatura	Salinidade	D.O.	Sat. D.O.	pH	MES	% M O	Nitrito	Nitrato	Fosfato	Silicato
	m			°C	psu	mg/l	%		mg/l		mol/l	mol/l	mol/l	mol/l
Tapes														
53	0	30°47′40′′	51°21′00′′	27,00	0,00	7,64	96,22	6,80	143,33	7,11	0,31	8,77		27,44
53	3	30°47′40′′	51°21′00′′	27,00	0,00	7,29	91,72	7,00	139,10	18,86	0,67	5,22	0,97	53,56
54	0	30°50′80′′	51°18′20′′	27,30	0,00	8,06	101,98	6,20			0,32	20,75	3,15	105,31
54	5	30°50′80′′	51°18′20′′	27,30	0,00	6,88	87,16	6,30	251,20	8,70	0,25	17,64	0,68	146,12
55	0	30°51′40′′	51°12′60′′	28,00	0,00	8,06	103,29	7,50	216,48	6,88	1,22	23,53	1,01	129,12
55	6	30°51′40′′	51°12′60′′	27,50	0,00	7,64	97,09	7,40	241,28	8,76	0,11	17,77	2,19	68,98
56	0	30°52′40′′	51°07′50′′	28,00	0,00	7,29	93,40	7,50			0,16	21,94	2,83	
56	3	30°52′40′′	51°07′50′′	27,50	0,00	7,43	95,23	7,80			0,16	21,11	1,43	
57	0	30°53′00′′	51°01′40′′	28,50	0,00	8,33	107,76	7,60	190,40	22,95	0,21	15,06	2,72	106,76
57	5	30°53′00′′	51°01′40′′	27,00	0,00	8,33	104,85	7,60	196,96	4,55	0,31	21,35	1,73	153,41
58	0	30°52′40′′	51°07′50′′	28,00	0,00	8,68	111,35	7,90	217,44	9,50	0,21	38,99	2,55	121,83
58	5	30°52′40′′	51°07′50′′	26,90	0,00	6,95	87,41	7,70	217,92	5,29	0,19	18,46	1,09	43,35
58	0	30°52′40′′	51°07′50′′	27,50	0,00	8,33	105,80	7,80	180,61	3,96	0,24	18,81	2,19	114,54
58	5	30°52′40′′	51°07′50′′	27,00	0,00	7,99	100,53	7,80	212,59	7,74	0,21	14,96	2,00	95,34
58	0	30°52′40′′	51°07′50′′	27,00	0,00	7,64	96,22	7,70	225,28	6,77	0,15	6,04	0,73	32,66
58	5	30°52′40′′	51°07′50′′	27,00	0,00			7,60	224,80	9,45	0,24	21,69	2,14	33,51
58	0	30°52′40′′	51°07′50′′	25,00	0,10	9,03	109,53	7,40	203,84	8,93	0,22	13,10	2,82	101,66
58	5	30°52′40′′	51°07′50′′	25,00	0,00	8,33	101,03	7,20	117,76	7,61	0,30	8,93	3,33	168,35
58	0	30°52′40′′	51°07′50′′	25,00	0,10	8,33	101,03	7,30	221,28	16,56	0,13	10,61	3,31	111,87
58	5	30°52′40′′	51°07′50′′	25,00	0,10	7,29	88,38	7,50	310,24	34,15	0,14	20,11	2,41	40,31
58	0	30°52′40′′	51°07′50′′	25,00	0,10	7,64	92,72	7,00	232,80	9,28	0,11	19,96		
58	5	30°52′40′′	51°07′50′′	25,00	0,10	7,39	89,60	7,10	201,33	7,95	0,12	12,52	2,25	72,26
58	0	30°52′40′′	51°07′50′′	25,00	0,00	8,33	101,03	8,00	187,14	83,86	0,29	28,33	0,53	134,46
58	5	30°52′40′′	51°07′50′′	25,00	0,00	8,54	103,63	8,40	193,03	19,97	0,54	25,99	0,58	83,56
58	0	30°52′40′′	51°07′50′′	25,00	0,00	7,64	92,72	8,10	266,24	7,79	0,14	16,82	1,93	104,33

58	5	30°52′40′′	51°07′50′′	25,00	0,00	7,99	96,88	7,90	266,08	12,03	0,12	21,36	3,31	130,82
58	0	30°52′40′′	51°07′50′′	25,00	0,00	8,33	101,03	7,80	251,80	11,24	0,24	18,95	3,44	
58	5	30°52′40′′	51°07′50′′	25,00	0,00	7,85	95,14	7,90	209,83	10,66	0,25	15,08	2,60	36,79
59	0	30°52′40′′	51°02′00′′	25,00		8,68	105,37	8,30	162,40	7,89	0,31	24,62	0,78	101,42
59	5	30°52′40′′	51°02′00′′	25,00		7,60	92,20	7,60	173,33	15,08	0,35	17,78	0,82	
60	0	30°51′40′′	51°12′60′′	25,00	0,00			7,30		7,71	0,21	22,53	0,64	112,59
60	5	30°51′40′′	51°12′60′′	25,00	0,00			7,10	272,00	5,89	0,26	14,59	3,61	55,74
61	0	30°50′80′′	51°18′20′′	26,00	0,00			8,10		7,64	0,24	23,16	0,69	77,37
61	5	30°50′80′′	51°18′20′′	26,00	0,00			8,00	345,60	17,60	0,32	17,55	2,44	121,34
62	0	30°47′40′′	51°21′00′′	26,00	0,00	13,87		7,90		19,25	0,46	6,13	2,53	66,68
62	3	30°47′40′′	51°21′00′′	26,00	0,00			8,00		6,23	0,55	4,84	0,41	69,10
Estações	Profundidade	Latitude	Longitude	Temperatura	Salinidade	D.O.	Sat. D.O.	pН	MES	%MO	Nitrito	Nitrato	Fosfato	Silicato
	m			°C	psu	mg/l	%		mg/l		mmol/l	mmol/l	mol/l	mmol/l
Fundeio, Guaíba,	Transversal Norte-Sul					0			0					
78	0			28,50	0,00	7,50	97,04							
78	5			28,50	0,00	7,15	92,42							
78	9			28,50	0,00	7,64	98,89							
78	0			28,50	0,00	8,54	110,33							
78	5			28,50	0,00	6,94	89,83							
78	9			28,50	0,00	6,67	86,32							
78	0			28,50	0,00	8,32	107,57							
78	5			28,50	0,00	7,29	94,26							
78	9			28,50	0,00	6,25	80,77							
78	0			28,50	0,00	6,67	86,32							
78	5			28,50	0,00	7,85	101,47							
78	9			28,50	0,00	6,67	86,32							
78	0			28,50	0,00	8,13	105,17							
78	5			28,50	0,00	7,22	93,34							
78	9			28,50	0,00	8,82	114,04							
78	0			28,50	0,00	7,22	93,34							
78	5			28,50	0,00	7,64	98,89							
78	9			28,50	0,00									
78	0			29,00	0,00	7,50	97,76							
78	5			29,00	0,00	7,64	99,62							
78	9			29,00	0,00	6,53	85,10							
79	0	30°26′40′′	51°06′80′′	29,50	0,00	8,61	113,34	8,70			0,13	7,82	0,17	15,17
79	5	30°26′40′′	51°06′80′′	29,00	0,00	9,03	117,69	7,90	159,04	17,91	0,10	2,53	0,17	28,53
80	0	30°29′00′′	51°00′50′′	30,00	0,00	7,78	103,21	8,70	154,56	14,08	0,12	5,66	1,92	100,69
80	5	30°29′00′′	51°00′50′′	28,00	0,00	7,64	97,98	8,60		17,72	0,38	2,18	0,36	126,44
81	0	30°31′50′′	50°54′00′′	30,00	0,00	8,89	117,80	8,80	145,60	21,32	0,17	1,99	0,13	110,65
81	6	30°31′50′′	50°54′00′′	28,00	0,00	7,99	102,38	8,80	152,00	5,48	0,40	3,52	3,31	103,85
82	0	30°34′00′′	50°46′40′′	30,00	0,00		111,11	8,50	168,96	19,51	0,29	9,44		40,80
82	7	30°34′00′′	50°46′40′′	28,00	0,00		100,00	7,50	190,88	11,57	0,46	11,97	1,42	99,96

83	0	30°36′40′′	50°41′20′′	29,00	0,00		96,83	7,60	116,64	15,92	0,35	11,17	0,29	77,00
83	6	30°36′40′′	50°41′20′′	28,50	0,00		92,42	7,40	122,08	18,88	0,44	19,40	0,19	32,17
84	0	30°26′40′′	51°06′80′′	29,00	0,00	7,58	98,88	7,20	99,68	17,50	0,10	8,95	0,46	37,76
84	4	30°26′40′′	51°06′80′′	29,00	0,00	7,02	91,43	7,30	115,36	15,20	0,11	3,11	0,79	22,94
85	0	30°29′00″	51°00′50′′	28,00	0,00	5,69	72,89	7,10			0,50	11,63	2,54	60,84
85	6	30°29′00′′	51°00′50′′	28,00	0,00	6,25	80,03	7,20	181,76	12,68	0,54	19,05	1,84	101,66
86	0	30°31′50′′	50°54′00′′	28,00	0,00	7,86	100,73	7,80			0,21	4,47	0,24	121,34
86	5	30°31′50′′	50°54′00′′	28,00	0,00	8,42	107,87	7,50	176,00	8,19	0,24	5,49	0,49	77,85
87	0	30°34′00′′	50°46′40′′	28,50	0,00	8,77	113,49	7,90	174,62	11,18	0,44	7,10	0,87	109,68
87	6	30°34′00′′	50°46′40′′	28,00	0,00	8,14	104,39	7,40	189,12	6,52	0,36	10,26	1,38	16,02
88	0	30°36′40′′	50°41′20′′	30,00	0,00		104,79	8,10			0,42	9,79	0,26	98,75
88	5	30°36′40′′	50°41′20′′	28,00	0,00		89,13	7,60	127,84	17,40	0,53	5,22	0,40	71,66
89	0	30°40′50′′	50°52′00′′	29,00	0,00	8,77	113,91	8,20			0,32	14,54	2,20	51,00
89	6	30°40′50′′	50°5200″	28,00	0,00	7,72	99,81	7,70	236,64	18,33	0,23	12,96	1,08	20,76
90	0	30°43′80′′	51°02′50′′	29,00	0,00		101,67	8,60			0,24	10,78	0,40	90,00
90	5	30°43′80′′	51°02′50′′	28,00	0,00		89,01	7,70			0,28	8,31	0,34	79,55
91	0	30°48′60′′	51°12′70′′	30,00	0,00	9,33	123,67	8,80	235,52	12,37	0,22	20,45	0,40	89,51
91	5	30°48′60′′	51°12′70′′	27,50	0,00	7,79	98,91	7,80	240,80	20,09	0,23	19,41	1,96	92,19
92	0	30°51′00′′	51°18′60′′	29,00	0,00	7,79	101,48	7,80	204,48	13,92	0,29	11,83	0,48	83,07
92	5	30°51′00′′	51°18′60″	27,00	0,00	7,30	91,90	7,40	210,24	8,68	0,35	15,37	0,36	112,11
93	0	31°02′50′′	51°12′60′′	27,00	1,00	8,00	101,26	7,40	74,40	21,51	0,19	5,98	0,36	68,98
93	6	31°02′50′′	51°12′60′′	27,00	1,00	8,63	109,22	7,60	78,20	18,21	0,13	4,73	0,15	21,73
94	0	31°12′50′′	51°12′70′′	26,50	2,00	8,14	102,70	7,50	63,36	24,25	0,17		0,32	34,00
94	6	31°12′50′′	51°12′70′′	26,50	2,00	7,30	92,07	7,50	284,32	16,44	0,14	2,70	0,35	96,56
95	0	31°21′00′′	51°20′40′′	26,00	3,50	8,07	101,61	7,10		14,21	0,23	7,38	1,33	59,39
95	5	31°21′00′′	51°20′40′′	26,00	3,50	7,79	98,02	7,10	48,80	8,20	0,11	3,28	0,32	47,00
96	0	31°28′00′′	51°29′00′′	26,00	3,10		105,88	7,00	27,52	32,23	0,06	3,26	0,43	85,87
96	6	31°28′00′′	51°29′00′′	26,00	3,50	8,14	102,51	7,00	29,76	24,42	0,15	0,78	0,31	102,63
97	0	31°33′40′′	51°38′90′′	25,50	3,80	8,20	102,50	7,30	58,24	15,66	0,15	4,55	0,46	66,92
97	6	31°33′40′′	51°38′90′′	25,50	3,80	7,79	97,32	7,30	78,08	16,87	0,06	3,80		70,44
98	0	31°38′80″	51°48′40′′	25,20	3,50		89,28	7,40	66,40	12,45	0,11	9,85		34,48
98	5	31°38′80′′	51°48′40′′	25,00	3,50		83,33	7,50	69,44	29,57	0,20	9,19	0,82	61,45
99	0	31°42′50′′	51°52′40′′	24,00	6,10		89,08	7,70			0,21	1,88	0,66	104,82
99	5	31°42′50′′	51°52′40′′	24,00	32,00		87,11	8,00			0,21	5,55	2,90	63,27
100	0	31°45′40′′	52°09′80′′	24,00	23,00	5,96	80,97	8,00	28,40		0,20	2,27	4,09	73,96
100	5	31°45′40′′	52°09′80′′	25,00	33,00	4,20	77,86	8,00			0,48	14,57	3,46	26,71
101	0	31°54′00′′	52°08′40′′	26,00	17,00	6,10	82,91	8,20	105,28	8,82	0,28	8,13	1,19	81,62
101	5	31°54′00′′	52°08′40′′	25,00	33,00	4,70	68,11	8,10	146,40	10,82	0,31	12,25	4,43	62,54
102	0	32°00′70′′	52°03′00′′	25,00	21,20	6,03	82,42	8,10	28,80	23,89	0,29	20,39	1,66	86,11
102	6	32°00′70′′	52°03′00′′	23,50	31,00			8,00	152,80	8,91	0,34	2,40	1,03	56,29
	1			1	1									