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ABSTRACT 25 

 26 

Satellite altimetry suggests that large anticyclonic eddies (rings) originating from the Agulhas 27 

Current retroflection occasionally make their way across the entire South Atlantic Ocean. 28 

What happens when these rings encounter a western boundary current? In this work, 29 

interactions between a "train" of nonlinear lens-like eddies and a Southern Hemisphere 30 

continental boundary are investigated analytically and numerically on a β plane. The train of 31 

eddies is modeled as a steady double-frontal zonal current with the same vorticity and 32 

transport as the eddies themselves. The continental boundary is represented by a vertical wall, 33 

which is purely meridional in one case and is tilted with respect to the north in another case. 34 

It is demonstrated analytically that the eddy–wall encounter produces an equatorward flow 35 

parallel to the continental wall, thus suggesting a weakening of the transport of the associated 36 

(poleward-flowing) western boundary current upstream of the encounter zone and unchanged 37 

transport downstream. A large stationary eddy is established in the contact zone because its 38 

β-induced force is necessary to balance the other forces along the wall. The size of this eddy 39 

is directly proportional to the transport of the eddy train and the meridional tilt of the wall. 40 

These scenarios are in good agreement with results obtained numerically using an isopycnal 41 

Bleck and Boudra model. 42 

  43 
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1. Introduction 44 

 45 

 Migration of eddies in the ocean can be induced by several mechanisms. The primary 46 

mechanism results from latitudinal variation of the Coriolis parameter, which imposes a 47 

westward drift on oceanic eddies (e.g., Flierl 1979; Nof 1981; Killworth 1983; Cushman-48 

Roisin et al. 1990). Advection by surrounding currents and propulsion related to neighboring 49 

eddies or sea bottom topography (i.e., topographic β) can also induce eddy movement. 50 

Chelton et al. (2007, 2011) clearly documented westward eddy drift across the world's 51 

oceans, showing large eddies moving westward via nearly zonal propagation routes. Chelton 52 

et al. (2011) found that 75% of 36,000 eddies analyzed worldwide propagated toward the 53 

west, implying inevitable encounters of some of these eddies with continental boundaries (see 54 

their Figs. 4d–4f).  55 

 56 

a. Observational background 57 

 The eddy-tracking dataset of Chelton et al. (2011; available at 58 

http://cioss.coas.oregonstate.edu/eddies/) allows us to follow eddy trajectories through 16 59 

years of sea level anomaly fields (14 October 1992 to 31 December 2008). Fig. 1A shows the 60 

trajectories of ten eddies that originated in the Agulhas retroflection zone and crossed the 61 

South Atlantic Ocean during this time. Eddy collisions with the South American continental 62 

boundary seem inevitable, which raises a number of questions: If such collisions do occur, 63 

what processes are involved? What are the governing forces, and how do these encounters 64 

influence the western ocean boundary? Do eddy interactions, for example, potentially 65 

influence the variability of the Brazil Current (BC)? 66 

 The Agulhas Current sheds four to six eddies per year to the South Atlantic Ocean (e.g., 67 

Beal et al. 2011), where some have been observed to have a residence time of three to four 68 
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years (Byrne et al. 1995). Such eddies have typical radii of 70–170 km and depths of 500–69 

1000 m [determined using data from Duncombe Rae (1991), Goni et al. (1997), McDonagh et 70 

al. (1999), Garzoli et al. (1999), Pichevin et al. (1999), Lutjeharms (2006), and Chelton et al. 71 

(2011)]. As is typical for eddies formed by a retroflection, Agulhas eddies are larger than 72 

most other eddies in the world ocean (e.g., Nof and Pichevin 1996). Like Gulf Stream eddies, 73 

they are commonly referred to as “rings.” The water carried by these eddies into the South 74 

Atlantic Ocean defines the Agulhas leakage, which plays a crucial role in global ocean 75 

circulation and climate (e.g., Biastoch et al. 2009; Beal et al. 2011). Despite the importance 76 

of this leakage, estimates of its magnitude are highly uncertain, ranging between 2 and 15 Sv 77 

(e.g., Beal et al. 2011).  78 

 The ring-shedding process begins with the injection of low-density surface water from the 79 

Agulhas retroflection into the Cape Basin. As the retroflection meander further develops, the 80 

resulting flow breaks up, thus producing isolated rings. The waters within the ring, 81 

anomalous in nature relative to the surrounding ocean waters, are confined from below by a 82 

concave-up density interface that intersects the ocean surface along a closed contour. This 83 

confinement forms an isolated, low-density feature referred to here as a “lens.” This lens is 84 

characterized by an interior anticyclonic circulation and zero thickness at the rim and 85 

everywhere beyond. Due to the rings' large initial volumes, it is expected that they would 86 

possess a mass sufficient to affect BC transport upon their arrival at the South American 87 

continental boundary (Fig. 1B) despite ring decay during the ocean crossing. This scenario, 88 

with a “train” of lens-like eddies making contact with the continental boundary, is the focus 89 

of this work. 90 

 91 

b. Southwestern Atlantic 92 
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 Encounters between Agulhas rings and the South American continental boundary, 93 

including the Brazil Current (Fig. 2), are an important part of the intriguing South Atlantic 94 

circulation puzzle. These complex interactions may influence the observed latitudinal drift of 95 

the Brazil–Malvinas Confluence Zone (BMCZ) and the formation of intrusion eddies. 96 

Various studies suggest that drift of the BMCZ is due to variations in the relative transports 97 

of the converging Brazil and Malvinas currents (Agra and Nof 1993; Matano 1993; Lebedev 98 

and Nof 1996; Lebedev and Nof 1997; Witter and Gordon 1999; Wainer et al. 2000; Lentini 99 

et al. 2002). Arruda et al. (2002) suggest that temporal variations in BC transport upstream of 100 

the zone can affect the detachment of intrusion eddies at the BMCZ. The shedding of 101 

Agulhas rings and their eventual coalescence with the BC may, through a transoceanic 102 

"domino effect,", contribute to the observed variability. This linked sequence of events, 103 

analogous to a falling row of dominoes, could serve to connect the Agulhas and southwestern 104 

Atlantic regions: (1) shedding of rings at the Agulhas Retroflection zone, (2) transatlantic 105 

crossing and coalescence of some of those rings with the BC, (3) modulation of BC transport, 106 

(4) modification of the balance (relative transports) of the BC and MC at the confluence 107 

zone, (5) latitudinal drift of the BMCZ, and (6) variation in the frequency of intrusion-ring 108 

shedding. 109 

 Despite recent progress in the observation and modeling of western boundary current 110 

processes, the fate of Agulhas rings that cross the South Atlantic and collide with the South 111 

American continental boundary remains poorly described and understood. In this work, we 112 

employ analytical and numerical modeling to explore some aspects of these collisions. The 113 

eddies are modeled as lenses forming an "eddy train"—a sequence of identical, uniformly 114 

spaced lenses that propagate zonally toward the western boundary. Rather than model 115 

individual eddies, we introduce a novel approach involving a "double-frontal current” (DFC) 116 
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with a westward flow in its northern limb and an opposite flow in its southern limb, resulting 117 

in a current with the same vorticity and net transport as the eddy train.  118 

 This paper is organized as follows: In section 2, a review of eddy–wall interactions is 119 

presented. Section 3 briefly develops the governing equations used in this study. Sections 4 120 

and 5 investigate analytically and then numerically the eddy–wall encounter. Finally, in 121 

section 6, the study results are discussed and conclusions are presented. 122 

 123 

2. Modeling Background 124 

 125 

 The eddy–wall problem has been studied by several authors (e.g., Lamb 1932; Saffman 126 

1979; Minato 1982, 1983; Umatani and Yamagata 1987; Masuda 1988), who worked 127 

primarily with linear quasigeostrophic eddies (i.e., small-amplitude non-lenses) and 128 

encounters on an f plane. Shi and Nof (1994) summarized previous studies of an isolated 129 

eddy´s migration along a free-slip meridional wall. Also among the pioneering works, 130 

Yasuda et al. (1986) considered interactions on a β plane, mentioning the action of the β 131 

force. 132 

 Nof (1988a) proposed an analytical modeling approach for studying eddy–wall 133 

interactions, considering a barotropic eddy with a small Rossby number (Ro << 1) and 134 

interactions on an f plane. He concluded that after the contact, a Northern Hemisphere 135 

anticyclonic (cyclonic) eddy leaks interior fluid from its right (left) side, looking offshore. 136 

Nof (1988b) extended the investigation to interactions involving baroclinic eddies. Two types 137 

of eddies were examined: quasigeostrophic linear eddies and moderately nonlinear eddies. 138 

The former showed the same behavior as the barotropic eddies of Nof (1988a). The nonlinear 139 

eddies, however, exhibited no leak along the wall. This unexpected behavior was attributed to 140 

the high inertia of the fluid particles inside the eddy.  141 
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 Shi and Nof (1993, 1994) investigated "soft" and "hard" eddy–continent interactions. 142 

Interactions due to β are relatively "soft" because the translational velocity induced in an 143 

eddy due to variation of the Coriolis parameter is notably small [~ O (βRde
2) where Rde is the 144 

eddy Rossby radius]. The contact of a single eddy with a continental wall is expected to last 145 

for a few weeks [~ O(βRde)-1], the time it takes the eddy to traverse a distance equal to its own 146 

diameter. Processes not resulting from β (e.g., influences from an advective current or 147 

another vortex) can result in higher eddy velocities and stronger eddy–continent interactions. 148 

In these hard-interaction cases, eddy structure can be dramatically altered within just a few 149 

days (Shi and Nof, 1993).  150 

 Shi and Nof (1993) also examined the f-plane case. This eddy–wall interaction results in a 151 

massive leak from the eddy interior and, as expected, division of the eddy into two. The 152 

collision of an anticyclonic (cyclonic) eddy with a wall produces an offspring cyclonic 153 

(anticyclonic) eddy, with the anticyclonic (cyclonic) feature being on the left (right) side of 154 

the contact zone, looking offshore. The eddies move away from each other due to the "image 155 

effect”—i.e., each eddy is advected along the free-slip wall due to its own image (e.g., Shi 156 

and Nof 1994).  157 

 A second study (Shi and Nof 1994) investigated soft eddy–wall interactions on a β plane. 158 

Three factors were found to influence migration of the eddy along the wall (Fig. 3): the image 159 

effect, the β-induced force, and the "rocket" force. Kundu and Cohen (2008) provide a 160 

detailed discussion of the image effect. The β-induced force is due to differences in the 161 

Coriolis force acting on water particles in different eddy hemispheres. This force is always 162 

greater on the eddy's higher-latitude side, thereby resulting in a net equatorward (poleward) 163 

force in anticyclonic (cyclonic) eddies. The rocket force results when an eddy leaks its 164 

interior fluid along the wall through a thin jet. This effect is similar to that impinged on a 165 
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rocket as its fuel is burnt, thereby imposing advection to the eddy in the direction opposite the 166 

leak. 167 

 Shi and Nof (1994) also considered interactions between non-lens-like quasigeostrophic 168 

eddies and a wall on an f plane. After contact, the eddy assumes the shape of a semicircle, 169 

which these researchers named a “wodon.” This feature's structure is completely different 170 

from that of the eddy in the open ocean. The wodons do not leak, which led the authors to 171 

conclude that for eddies with low Rossby number (Ro), the leak does not play an important 172 

role in the interaction with the wall. The importance of the leak increases proportionally with 173 

the nonlinearity of the eddy itself. 174 

 Nof's (1999) analytical study investigated an encounter between an anticyclonic lens and a 175 

wall on a β plane. This work reported the first analytical solution that involved the image 176 

effect, the β-induced force, and the rocket force simultaneously. Surprisingly, despite 177 

previous indications that the eddy would move poleward after collision with the wall, it 178 

instead remained at a fixed latitude and slowly lost mass, leaking fluid toward the equator as 179 

it moved continually but ever more slowly toward the wall. Here, we take Nof’s work a step 180 

further and tackle the eddy–wall interaction problem by using an “eddy train,” a sequence of 181 

identical eddies that are evenly spaced in time.  182 

 183 

3.  Governing Equations 184 

 185 

 The momentum and mass flux balance equations for our domain (Fig. 4) are written in a 186 

convenient x–y system with the y-axis aligned with the wall. The meridional axis of the XY 187 

coordinate system is aligned with geographic north. All variables are defined here and in the 188 

appendix. 189 

 190 
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a. The momentum equation   191 

The steady shallow-water nonlinear momentum and continuity equations of an inviscid fluid 192 

of density ρ and thickness h(x,y) overlying a motionless, semi-infinite fluid of density ρ+Δρ, 193 

where Δρ/ρ<<1, are 194 

Zonal Momentum            
 

u
!u

!x
+ v
!u

!y
" fv=" #g

!h

!x
              (1) 195 

Meridional Momentum     
 

u
!v

!x
+ v
!v

!y
+ fu=" #g

!h

!y
                (2) 196 

Continuity         
 

!(hu)

!x
+
!(hv)

!y
= 0  ,                 (3) 197 

where g´, the reduced gravity, is defined by g' = (gΔρ)/ρ; u and v are the zonal and 198 

meridional velocities; and f is the Coriolis parameter.  199 

 When Eqs. (1) and (2) are multiplied by height and integrated over the whole domain Do 200 

(with area S), they become 201 

    

   

!(hu2 )

!x
S

"" dxdy+
!(huv)

!y
S

"" dxdy# f0
S

""
!!

!x
dxdy

#
!("Y!)

!x
S

"" dxdy+ !"

S

""
!Y

!x
dxdy=#

$g

2

!(h2 )

!x
dxdy

S

""
      202 

 (4)   203 

    

   

!(huv)

!x
S

"" dxdy+
!(hv2 )

!y
S

"" dxdy# f0
S

""
!!

!y
dxdy

#
!("Y!)

!y
S

"" dxdy+ !"

S

""
!Y

!y
dxdy=#

$g

2

!(h2 )

!y
S

"" dxdy

         (5) 204 

where ψ is a streamfunction defined by ∂ψ/∂x = vh and ∂ψ/∂y = –uh. In Eqs. (4) and (5), the 205 

Coriolis parameter is given by f = f0+β(Y–Y0) where f0 is the value at the central latitude Y0 of 206 

the domain and β is a latitudinal correction. With the aid of Stokes Theorem and considering 207 

Y(x,y) = –xsinθ + ycosθ, these zonal and meridional equations become, respectively, 208 
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huvdx
!
!! " [hu

2
+ #g h2 / 2"( f0 +"Y )#)]dy

!
!! +" sin$ #dxdy= 0

S

!!     209 

 (6)  210 

     

huvdy
!
!! " [hv

2
+ #g h2 / 2"( f0 +"Y )#)]dx

!
!! +" cos$ #dxdy= 0

S

!! .    211 

 (7) 212 

Here, the symbol ϕ indicates the boundary of the domain (Fig. 4), and the arrowed circles 213 

represent counterclockwise integration. Specifying the boundaries, these equations can be 214 

written as 215 

  

 

  

[hu
2

B

C

! + "g h2 / 2#( f0 +!Y )"]dy+ [hu
2

D

A

! + "g h2 / 2#( f0 +!Y )"]dy

#! sin# "dxdy= 0

S

!!
   (8) 216 

  

 

  

huvdy! hv
2

+ "g h2
/ 2!( f0 +!Y )"#

$%
&
'(A

B

)
B

C

) dx

! hv
2

+ "g h2
/ 2!( f0 +!Y )"#

$%
&
'(C

D

) dx+! cos# "dxdy= 0  .

S

))
    (9) 217 

Eq. (8), which results from integration of the zonal momentum equation (Eq. 1), does not 218 

yield useful information because it involves an unknown force exerted on the wall (the 219 

second term). We therefore focus our attention on Eq. (9). The first term in the equation can 220 

be expressed in the XY system, which is indicated by the asterisks:  221 

    

   

sin! h
!

YB

YC

" (u
!
)

2
dY # hv

2
+ $g h2

/ 2#( f0 +"Y )#%
&'

(
)*A

B

" dx#

# hv
2

+ $g h2
/ 2#( f0 +"Y )#%

&'
(
)*C

D

" dx+"cos! #dxdy

S

"" = 0  .

      (10) 222 

Eq. (10) allows us to analyze the problem without solving the complex nonlinear equations 223 

inside the domain. Fig. 5 (left panel) shows the forces acting on the domain during 224 

impingement of the westward current on the wall. Each wall-parallel force component (black 225 
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arrows) is associated with a corresponding term in Eq. (10). The first term gives the wall-226 

parallel component of the original zonal force exerted on Do by the westward current (WC). 227 

When θ = 0º, the value of this term is zero. The second and third terms describe the SC and 228 

NC forces exerted on Do by currents entering or exiting through the southern and northern 229 

boundaries, respectively. These two forces operate along the axis of current flow. The fourth 230 

term, the wall-parallel component of the β force, is due to an as yet unknown permanent eddy 231 

inside the domain and will be discussed further below. 232 

 233 

b. The mass equation 234 

 Integration of the steady continuity equation for shallow water over the whole domain Do 235 

is 236 

        
  

h
!
u
!
dY

YB

YC

" # hvdx#
A

B

" hvdx
C

D

" = 0 .         (11) 237 

The first term represents transport into the domain through its eastern boundary. The next two 238 

terms represent transports across the southern (AB) and northern (CD) boundaries. Fig. 5 239 

(right panel) shows the transports TBC, TAB, and TCD associated with these terms. 240 

 241 

4. The Eddy–Wall Encounter 242 

  243 

 We now consider two scenarios, one with a meridional wall (θ = 0º) and one with a wall 244 

tilted with respect to the north (θ > 0º). The latter case is more generally representative of the 245 

South American continental boundary (Fig. 2). The trajectories of the eddies within the train 246 

are assumed to be identical. Estimation of transport along the wall due to the eddy–wall 247 

encounter will now be discussed.  248 

 249 
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a. The double-frontal current 250 

 We use a zonal geostrophic double-frontal current (Fig. 6) to represent a train of eddies. 251 

The two sides of this current are asymmetrical (|Y4| > |Y6|) due to β. This important aspect 252 

results in a net westward transport, reproducing the same transport as that of the eddy train. 253 

For analytical tractability, we consider the eddies and the DFC to have zero potential vorticity 254 

(ξ = 0). Taking into account the above considerations, the equations for the zonal velocity (255 

  
u

zc

! ) and depth (
  
h

zc

! ) of the zonal geostrophic DFC are obtained from the system: 256 

    
   

!=
f0 +!(Y !Y0 )!"uzc

#
/"Y

h
zc

#
= 0     

  

fu
zc

!
=" #g

$h
zc

!

$Y
 .            257 

Assuming Y0 = 0 and the boundary conditions 
  
u

zc

!
= 0  and 

  
h

zc

!
= H

zc
 at Y = 0, this system's 258 

solution is:  259 

         
   
u

zc

!
= f

0
Y +!Y 2

/ 2                     (12a) 260 

  
   
h

zc

!
= H

zc
" f

0

2
Y
2
/ 2 #g " f

0
!Y 3

/ 2 #g "!2Y 4 /8 #g  .               (12b) 261 

 262 

b. The encounter 263 

 A zonal double-frontal current has a westward flow in its northern section and a weaker, 264 

eastward flow in its southern section. This current collides with the wall and subsequently 265 

“splits.” In this subsection, the equations that describe this interaction will be derived. It will 266 

be demonstrated here that a stationary eddy (SE) is required in the interaction area because its 267 

β-induced force is necessary to balance the other forces acting parallel to the wall.  268 

 269 

1) MERIDIONAL WALL (θ = 0°) 270 
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 Fig. 7 shows a plan view of the DFC–wall encounter. The meridional limits of the domain 271 

are yN and yS. A northward wall-parallel flow (NC), which crosses section CD with the same 272 

net transport as the DFC, results from the interaction. A southward wall-parallel flow, 273 

crossing section AB, is topologically impossible because a current (leak) of finite cross-274 

sectional area perpendicular to the wall cannot be achieved under conditions of poleward 275 

flow.  276 

 Applying Eq. (10) to this scenario and considering y = Y (i.e., θ = 0°) gives   277 

    
   

! hv
2

+ "g h2
/ 2!( f0 +!y)"#

$%
&
'(dxC

D

) + !"dxdy

S

)) = 0  .         (13) 278 

The relationship between the terms g´h2/2 and (f0+βy)ψ will now be examined. Assuming the 279 

DFC is geostrophic when x→ ! , its flow along the eastern section obeys the following 280 

relation: 281 

            
   

( f0 +!y)"
yS

yN !! "
yS

yN

" dy= #g h2 / 2
yS

yN .         (14) 282 

Following Arruda et al. (2004), it is assumed that ψ = ψ∞(y) and h = h∞(y) when x→ ! . 283 

Because the current thickness at the DFC fronts is zero and ψ∞ = 0 on the southern side of the 284 

current, Eq. (14) becomes                        285 

           
  

( f0 +!y)"! yN
= ! "!

yS

yN

" dy .        (15)  286 

Assuming now that the northward current is also geostrophic, it obeys the relation    287 

                
   
( f0 +!y)"+K = !g h

2
/ 2  ,        (16) 288 

where K is a constant of integration to be determined. This equation is also valid at point 289 

C(∞, yN) of the domain where h = 0. Taking this finding into consideration and returning to 290 

Eq. (15), K is given as     291 

                 
  

K =!! ""
yS

yN

# dy .          (17) 292 
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With Eqs. (13), (16), and (17), the final integrated meridional momentum equation for the 293 

domain ABCDA (Fig. 7) is given by  294 

             
   

hv
2
dx

0

Lnc

! +! ("""#)dxdy
S

!! = 0  ,        295 

 (18) 296 

where Lnc is the width of the northward current (NC). This expression is similar to 297 

expressions presented in Arruda et al. (2004). The equation's first term represents a rocket 298 

force exerted in the domain by the northward current, which corresponds to the thick black 299 

NC arrow in Fig. 5 (left panel). The interpretation of the second term in Eq. (18) is not 300 

straightforward. It will be shown through scale analysis that this term corresponds to a β 301 

force exerted by a stationary eddy established inside the domain. This force corresponds to 302 

the central black arrow in Fig. 5 (left panel).  303 

 304 

(i)  Scales 305 

 It is assumed that the current width (Fig. 6) is 
  
L

zc

!  ~ O(Rd), where Rd is the Rossby radius 306 

of the current: Rd = (g´Hzc)1/2/|f0|. The thickness, Hzc, defines the thickness scale for all the 307 

currents of the domain. The net transport between points 5 and 6 is zero. The transport 308 

between points 4 and 5 corresponds to the DFC net transport. The scales of h5 and d45, which 309 

are directly related to DFC net transport, will be determined next.  310 

 For the meridional balance equation (i.e., for the region between points 5 and 6), we can 311 

write 312 

            
   

!g h
5

2
/ 2+! "dy

6

5

" = 0 .          (19)   313 

In this equation, we have considered that ψ5 = ψ6 = 0 and h6 = 0. The assumed DFC scales 314 

are given by h ~ O(Hzc), y ~ O(Rd), u ~ O(g´Hzc)1/2, and ψ ~ O(g´Hzc
2/|f0|). The parameter ε = 315 

βRd/|f0|, where ε <<1, defines the ratio between the variation of the Coriolis parameter along 316 
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the DFC meridional width and the parameter f0 itself (by definition, ε is zero on an f plane). 317 

With these considerations, it is possible to investigate the scales of the variables in Eq. (19):  318 

             
   
[h5 ]!O(!

1/2
H

zc
) .          (20) 319 

Assuming that the zonal velocity is constant along section 4–5, it is noted that ∂h/∂y ≈ h5/d45. 320 

The distance d45 is small, and h4 = 0. Using the geostrophic relation and Eq. (20), we find that 321 

             
  
[d45 ]!O(!

1/2
R
d
) .          (21)  322 

 The scales of the terms in Eq. (18) will now be investigated. We assume, a priori, the 323 

existence of a stationary eddy inside the domain [with a maximum depth of Hse and a 324 

transport function ψse, where ψse ~ O(g´Hse
2/|f0|)]; we will subsequently show that the 325 

existence of this feature is necessary. The eddy's Rossby radius is given by Rde = (g´Hse)1/2/|f0| 326 

and Hse/Hzc = (Rde/Rd)2. The zonal scales, x, of the northward current, the double-frontal 327 

current, and the stationary eddy are O(ε1/2Rd), O(ℓ), and O(Rde), respectively, where ℓ is the 328 

zonal width of the domain. The respective meridional scales are O(ℓ), O(Rd), and O(Rde). 329 

With these scales, the first term of Eq. (18) is O(εg´Hzc
2Rd). The second term is zero in the 330 

stagnant ocean and in the DFC (due to the geometry of its streamlines). In the northward 331 

current and stationary-eddy regions, this term is O(ε5/2g´Hzc
2ℓ) and O(εg´Hzc

2Rde
6/Rd

5), 332 

respectively. The ratios of the order of the first term of Eq. (18) and these last two orders are, 333 

respectively, ε3/2ℓ/Rd and (Rde/Rd)6. We see that only the second term (corresponding to the 334 

stationary eddy) is capable of balancing the first term. Eq. (18) can then be rewritten in the 335 

form 336 

           

   

h
nc
v

nc

2
dx

0

Lnc

! +! "
se
dxdy

Sse

!! = 0 .       337 

 (22) 338 

In Eq. (22), Sse is the surface area of the stationary eddy. This equation shows that the 339 

presence of the stationary eddy is necessary for the meridional balance of forces along the 340 
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wall. In this equation, the rocket force exerted by the northward current is balanced by the β-341 

induced force of the stationary eddy (Fig. 5, left panel). From the scaling analysis, we also 342 

conclude that Rde ~ O(Rd). Eq. (22) confirms that the eddy is anticyclonic because its second 343 

term is always negative. A streamfunction with a negative mean value is typical of 344 

anticyclonic eddies in the Southern Hemisphere. In the following section, the various terms 345 

of Eq. (22) will be examined. The goal is to develop an analytical expression for the 346 

northward-current transport and the radius of the stationary eddy (Fig. 8).  347 

 348 

ii) Momentum and mass transport of the northward current 349 

 The first term in Eq. (22) will now be examined. The northward current (NC) has zero 350 

potential vorticity, and its velocity vnc is approximated by 351 
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where v1 is the NC velocity at the wall (point 1 in Fig. 8). By geostrophy, the current 356 

thickness hnc is given by 357 
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 Applying the geostrophic relation again to the NC,  362 
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which enables us to calculate h1. This equation confirms that [h1] ~ O(ε1/2) because Tnc, which 364 

depends on h5 and d45, also has O(ε), as shown in Eqs. (20) and (21). 365 

 Applying the Bernoulli relationship between points 1 and 5 yields the velocity v1:   366 

             
   
v1 = 2 !g (H
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1/2 .         (26)   367 

The width Lnc is calculated assuming that the meridional velocity v is constant along this 368 

width, which is plausible because the current is notably narrow. Taking ∂h/∂x = Δh/Δx and v 369 

= v1 = constant, the geostrophic relation enables us to derive an expression for Lnc: 370 
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These expressions for h1, v1, and Lnc depend only on the known parameters of the DFC. 372 

Using Eqs. (23) and (24), the first term of Eq. (22), the momentum Mnc, can now be 373 

determined:  374 
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 (28) 376 

Integration of hncvnc between points 1 and 2 (Fig. 8) yields  377 
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With the introduction of Eqs. (25–27) into Eqs. (28) and (29), the momentum and transport of 379 

the meridional current can now be calculated.  380 

 381 

(iii) Momentum and radius of the stationary eddy 382 

 The second term of Eq. (22) will now be analyzed. An expression for the transport 383 

function ψse of the stationary eddy can be developed from 384 
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where r is a cylindrical coordinate, hse(r) is eddy thickness (Fig. 9), and vθ(r) is the eddy's 386 

tangential velocity. The current around the eddy also contributes to its momentum but has an 387 

order higher than ε and can therefore be neglected. The velocity and thickness profiles of a 388 

symmetrical, lens-like eddy of zero potential vorticity are given by 389 
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 (31b) 392 

In Eq. (31b), r0 is the radius measured from the center of the eddy to its edge (i.e., where hse 393 

= 0). Using Eq. (31), the solution of Eq. (30) is given by 394 
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where k is a constant of integration to be determined.  396 

 Eq. (31b) gives 397 

                
  

R=
8 !g (Hse"hi )

f
0

2

#

$

%
%

&

'

(
(

1/2

.           (33) 398 

Considering that ψse = 0 when r = R and combining that with Eq. (33), we obtain k = –g´hi/f0. 399 

From the latter expression, Eq. (32) becomes 400 
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The relation Hse /Hzc = (Rde /Rd)2, in combination with the fact that Rde ~ O(Rd), allows us to 402 

conclude that Hse ~ O(Hzc) and consequently Hse >> hi and 
 
R! r

0
. Thus, the second term of 403 

Eq. (22), the stationary eddy momentum Mse, can be written as     404 
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where the term with an order higher than ε was neglected. From Eq. (22) with Eqs. (28) and 407 

(35), the radius of the SE is found to be 408 
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The principal variables associated with the stationary eddy are shown in Fig. 9. 410 

 411 

2) TILTED WALL (θ > 0º) 412 

 Fig. 10 shows the case of a double-frontal current that splits at a tilted wall. Again, a 413 

stationary eddy is required for the momentum balance to hold. Applying to Eq. (10) the same 414 

procedure used in the prior subsection results in 415 
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 (37) 417 

Compared to Eq. (22), Eq. (37) has an extra term (the first term), which corresponds to the 418 

wall-parallel component of the zonal force exerted in the domain by the DFC (see the WC-419 

force black arrow shown in Fig. 5, left panel). The last term of Eq. (37) also represents a 420 

component parallel to the wall—the β-induced force of the SE. When θ = 0°, Eq. (37) 421 

reduces to Eq. (22) as expected.    422 

 423 

(i) Scales 424 

 The orders of the three terms of Eq. (37) are, left to right, ~O[g´Hzc
2Rdsinθ], 425 

~O(εg´Hzc
2Rd), and ~O[εg´Hzc

2Rde(Rde/Rd)5cosθ]. Two scenarios are possible. The first 426 

scenario occurs when sinθ ~ O(ε), which produces three terms in Eq. (37) with the same 427 

~O(εg´Hzc
2Rd), and again Rde ~ O(Rd). The first two terms correspond to forces exerted in the 428 

domain (toward the southwest) by the double-frontal current and the northward current. The 429 
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stationary eddy is again necessary because only its northward β-induced force is able to 430 

balance these forces. The second situation occurs when sinθ >> ε. Only the third term of Eq. 431 

(37), which is the term related to the SE, is now able to balance the first term of the 432 

expression. A new relation for Rd/Rde is now established:          433 
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) .          (38) 434 

Eq. (38) shows that the SE radius will be greater in this second scenario, which is to be 435 

expected because its β-induced force must now balance an extra force.  436 

 437 

(ii) Balance of forces 438 

 The wall-parallel component of the force exerted by the DFC is given by 439 

   

   

M
zc

= sin! h
zc

!

Y6

Y4

" (u
zc

!
)

2
dY = sin!

f0
2
H

zc
(Y4

3#Y6
3
)

3
+
f0"Hzc

(Y4
4#Y6

4
)

4

$

%
&
&

          #
f0

4
(Y4

5#Y6
5
)

10 'g
#
f0

3"(Y4
6#Y6

6
)

6 'g

(

)
*
*  .

     (39) 440 

The coordinates Y4 and Y6 indicate the position of the DFC fronts. They are calculated by 441 

applying Eq. (12) in the points (
  
h

zc

! ,Y) given by (0,Y4) and (0,Y6). The third equation is 442 

  

T
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= h
zc

!
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zc

!
dY . The resulting system of three equations has three unknowns (Y4, Y6, and 443 

Hzc), as expected. Eqs. (28) and (35) are still valid for the second and third terms of Eq. (37). 444 

Taking these considerations into account, the final expression for the balance of forces along 445 

the wall is 446 
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 448 

 (iii) Radius of the stationary eddy 449 
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 From Eqs. (39) and (40), the radius of the stationary eddy (Fig. 9) is given by 450 
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With θ = 0°, Eq. (41) reduces to Eq. (36).  452 

 As mentioned, we considered two different scenarios for eddy train–wall interactions: a 453 

meridional wall and a tilted wall. The meridional balance is different in each case. In the first 454 

scenario, the rocket force exerted by the northward current (i.e., through leakage) is balanced 455 

by the β-induced force of the stationary eddy. In the second scenario, there is an additional 456 

force. Now the wall-parallel component of the β-induced force balances the sum of two 457 

southwestward forces—the rocket force of the northward current plus the force exerted in the 458 

domain by the wall-parallel component of the double-frontal current  (Fig. 5, left panel). 459 

Hence the radius of the stationary eddy must be greater in this latter scenario. The scale 460 

analysis revealed that the presence of a stationary eddy is necessary in the interaction region 461 

because only its β-induced force can balance the other meridional forces acting along the 462 

wall.  463 

 464 

5. Numerical Simulations  465 

To further examine the validity of the analytical model developed here, we performed 466 

quantitative experiments using a modified version of the Bleck and Boudra reduced gravity 467 

isopycnal model (a general description of this numerical model is presented in Shi and Nof 468 

1994). The Orlansky (1976) second-order radiation condition was applied to the open 469 

northern, southern, and eastern domain boundaries.  470 

 471 

a. Eddy-train generation 472 
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 We performed two types of experiments with respect to eddy-train generation (Table 1). In 473 

the first set of experiments (Group A), eddies were created with the “eddy cannon” 474 

introduced in Pichevin and Nof (1996). In the second set of experiments (Group B), features 475 

were specified analytically within the domain with Eq. (31). To accelerate the experiments 476 

and reduce the effect of friction, we introduced an artificially magnified value for β. To verify 477 

that the magnified β did not produce significant unwanted variation in our results, several 478 

experiments (not shown in Table 1) were also performed with the typical β. From these 479 

comparisons, we concluded that the model results were not altered by the magnified β. 480 

 Fig. 11 illustrates the model ocean and eddy cannon used for the Group A experiments. 481 

First, we suppose an imaginary domain around the "cape" (represented by the solid black 482 

horizontal line on the ocean's east side). A westward current is imposed on the northern side 483 

of the cape. Due to the small radius of curvature at the cape's tip, the current turns back on 484 

itself and returns eastward along the cape's southern boundary. At the tip of the cape, eddies 485 

are created because the flow-force (directed to the west) associated with the current entering 486 

and exiting the domain needs to be balanced. The drifting eddies exert a force (to the east) as 487 

they move westward. These eddies are similar to bullets fired from a cannon, which is why 488 

this model scenario (cape + current + eddies) has been called an "eddy cannon" (Pichevin and 489 

Nof 1999). 490 

 491 

b. Experiments 492 

 Approximately a dozen different numerical experiments were performed, and we present 493 

here three specific examples that are generally representative of the results (Table 1). The 494 

first (Case AI) and third (Case BIII) scenarios, with a meridional wall in the domain, 495 

correspond directly to our theoretical calculations. In the first case, large eddies were 496 

generated with the eddy cannon; in the third case, smaller eddies were created analytically. 497 
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The second scenario (Case AII) had a tilted wall, which corresponds more directly to a 498 

typical oceanic situation. In all of the experiments, the streamlines were not disturbed when 499 

the fluid left the domain, suggesting that the radiation boundary conditions used in the open 500 

boundaries were appropriate. To allow for sufficient resolution within the leaks, we worked 501 

with relatively large eddies (h ~ 3000 m). The viscosity (400 m2 s-1) may seem large; 502 

however, this value is acceptable in this context because of the coarse spatial resolution and 503 

large meridional grid size (Table 1), which imply acceptably small diffusion speeds (0.5 cm 504 

s-1). 505 

 506 

c. Numerical results 507 

 In the first scenario (Case AI), the domain had a meridional wall on its western side, and a 508 

train of large eddies was generated with the eddy cannon. In the representative example (Exp. 509 

AI02, Table 1), a zero-potential-vorticity run was conducted with domain dimensions of 1600 510 

x 950 km and a β of 8.10–11 m–1s–1 (approximately four times greater than the typical β). The 511 

runtime was four years, and an eddy of radius ~240 km was generated every 112 days. Fig. 512 

11 shows the first eddy (E1) colliding with the meridional wall and a second eddy (E2) nearly 513 

pinched off from the eddy cannon. Transports were calculated for sections A, B, and C. The 514 

transport of the eddy train was 27 Sv. Fig. 12 shows the stationary eddy created in the 515 

domain. Time-averaged depth (upper-layer thickness) and velocity at each grid point were 516 

used to identify the eddy boundary and calculate eddy size. The stationary eddy shown in Fig. 517 

12 has a radius of approximately 115 km.  518 

 For model verification, we compared the dimensions of features common to the analytical 519 

and numerical models. In the analytical model, the double-frontal current had a maximum 520 

depth Hzc of 2877 m, a width 
  
L

zc

!

 of 152 km, and an Rd of 54 km. From Eq. (25), h1 (vertical 521 

thickness of the northward current at point 1; Fig. 8) is 737 m. In the corresponding 522 
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numerical model, this depth (measured at section A, Fig. 11) was 670 m; giving a value of 523 

1.1 for the ratio of the analytical and numerical values. The SE radius, according to Eq. (36), 524 

was 105 km, yielding a ratio of 0.91 for the analytically and numerically determined radii. 525 

Thus, the analytical and numerical results are in excellent agreement.  526 

 In the second scenario (Case AII), eddies were again generated with an eddy cannon but 527 

the wall in this case was tilted 23º. The model parameters mentioned above were retained, but 528 

the zonal dimension of the domain was increased slightly to maintain an approximately 529 

constant time for eddy transit from the cannon to the wall. Comparison of the first and second 530 

scenarios is useful for evaluating the effects of a DFC with a linear momentum different from 531 

that of the eddy train. The experiment representative of the tilted-wall scenario (Exp. AII04, 532 

Table 1) resulted in a stationary-eddy radius of 130 km, while the analytical result, calculated 533 

from Eq. (41), was 154 km—a greater difference  (ratio ~ 1.2) than was observed for the first 534 

scenario (ratio ~ 0.91). The greater difference between the analytical and numerical Case II 535 

SE radii can be attributed to the greater difference in linear momentum of the DFC versus the 536 

eddy train. In this second scenario, sinθ >> ε, and Eq. (37), where the term ε-1/6 is 1.7, must 537 

be applied. The ratio of the analytical radii of the second and first scenarios was 154/105 ~ 538 

1.5, which is consistent with the magnitude of the ε-1/6 term in the tilted-wall case.  539 

 Other experiments were performed for a range of wall-tilt angles between 0º and 40º 540 

(Table 1; Fig. 13). The difference between the analytical and numerical results increased as 541 

wall tilt increased. At θ = 40º, the ratio of the analytically obtained stationary-eddy radius to 542 

the numerically calculated radius was 1.2; for lower values of θ, the ratios were closer to 1. 543 

The greater differences between the analytical and numerical model results at higher angles 544 

of wall tilt are due to the increasing influence of the DFC linear momentum as θ increases. 545 

 In the third scenario (Case BIII), a train of small to medium eddies was generated 546 

analytically within a domain with a meridional wall on its western side. Comparison of the 547 
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first and third scenarios allows for an evaluation of the sensitivity of the analytical model to 548 

eddy size. The grid was given a higher resolution to accommodate the smaller width of the 549 

leak. For the representative case (Exp. BIII04), the impinging eddies had radii ~ 117 km, and 550 

the transport of the train of eddies was 0.54 Sv. The northward-current vertical thickness h1, 551 

obtained from Eq. (25), was 104 m, whereas in the numerical model it was 90 m (ratio ~ 1.2). 552 

The analytical SE radius obtained from Eq. (36) was 56 km, and the numerically calculated 553 

radius was 70 km (ratio ~ 0.8). The eddy had an analytical radius of deformation of ~20 km, 554 

which was equivalent to the DFC ~ O(Rd). Additional experiments with different impinging-555 

eddy dimensions were performed, and the resulting differences between the analytical and 556 

numerical SE radii were always <30% (this maximum value was obtained for impinging 557 

eddies of radii ~65 km). The smaller the impinging eddies, the greater the difference between 558 

the analytical and numerical results. As will be discussed below, this pattern can be attributed 559 

to the influence of the centrifugal force of the eddies. 560 

 We conclude from these comparisons that the numerical experiments clearly support the 561 

theoretical calculations. The model results and their implications are discussed in more detail 562 

in the next section.  563 

  564 

6. Discussion and Conclusions 565 

  566 

 We analytically investigated an encounter between a train of highly nonlinear lens-like 567 

eddies (represented by a geostrophic double-frontal current) and a continental boundary 568 

(represented by a vertical wall). The accompanying numerical experiments (Table 1) were 569 

performed with the objective of validating the analytical model. The thickness, width, and 570 

transport of the northward current along the wall (i.e., the leak from the interiors of the 571 

eddies, generated after eddy–wall contact) and the radius of the stationary eddy were 572 
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calculated with the formulas proposed here. These quantities are provided by Eqs. (24), (27), 573 

(29), and (36), respectively, with the aid of Eqs. (25) and (26). The SE radius for any scenario 574 

with a tilted wall is given by Eq. (41). 575 

 The geostrophic double-frontal current (DFC) has the same transport and potential 576 

vorticity (assumed to be zero) as the train of eddies upstream of the collision zone (see Figs. 577 

6, 8). However, there are some limitations involved in the use of this current as an analytical 578 

analogue of a train of eddies. The mass and vorticity can be matched, but the DFC cannot 579 

possibly have the same energy and momentum as the train, as this circumstance would 580 

overconstrain the system. Experiments within the second numerical scenario (Case AII) 581 

showed that differences between the analytical and numerical model results increase with 582 

increasing wall tilt—i.e., when a component of the DFC momentum is included in the 583 

momentum balance along the wall. The maximum difference was 22% (observed with a wall 584 

tilt of 40o; Fig. 13), which, though greater than the difference for a meridional wall (Case AI), 585 

is still acceptable. Using the Brazilian continental margin as an example of an area where 586 

collisions between anticyclonic rings and a continental boundary seem inevitable, a typical 587 

wall tilt would be approximately 30°, which produces a difference of approximately 20% 588 

between the analytical and numerical results (Fig. 13). Agulhas eddies typically approach the 589 

South American continental boundary near 28ºS (Fig. 1B), where the boundary has a nearly 590 

north–south orientation (θ ~ 0°), a condition for which the analytical and numerical model 591 

results are in best agreement.  592 

 We also assumed that the DFC is in geostrophic balance, but the centrifugal force in the 593 

eddy interior does not allow movement of the DFC to be purely geostrophic. As a result, the 594 

DFC thicknesses and velocities will differ from those of the eddies in the train, with 595 

deviations directly proportional to the Rossby number of the eddies (Flierl 1979). 596 

Experiments within the third (Case BIII) scenario demonstrated that differences between the 597 
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analytical and numerical model results depend inversely on eddy radius. With large eddies, 598 

which have small centrifugal force, the analogous DFC more convincingly reproduces the 599 

train of eddies, and similarities between the models are more evident. Accordingly, in the 600 

first scenario (Case AI, a train of large eddies), the difference between the analytical and 601 

numerical models was small.  602 

 We conclude:  603 

 (i) The presence of a stationary eddy is necessary in the double-frontal current–wall 604 

contact zone (Figs. 9, 12) because only its β-induced force is able to balance the other forces 605 

acting along the wall, as shown by Eqs. (22) and (37). The SE radius is directly proportional 606 

to (a) the transport of the train of eddies, (b) the tilt of the wall, and (c) the density difference 607 

between the eddy interior fluid and the surrounding fluid [as shown by Eqs. (36) and (41)]. 608 

The eddy radius is inversely proportional to the latitude of the contact zone. 609 

 (ii) After contact with the wall, the impinging eddies leak their interior fluid toward the 610 

equator (Fig. 11), thus creating a northward current along the wall with the same transport as 611 

that of the impinging eddy train (or with the same net transport of the double-frontal current 612 

). 613 

(iii) Eq. (37) shows that the encounter of an eddy train with a wall corresponds to a 614 

balance among three forces along the wall: the poleward component of the zonal force that is 615 

exerted in the domain by the double-frontal current, the poleward rocket force that results 616 

from the leak, and the equatorward component of the β-induced force of the stationary eddy. 617 

 (iv) The numerical model results are in good agreement with the analytical solution.  618 

 Our results are applicable to encounters between Agulhas rings and the Brazilian 619 

continental boundary and its western boundary current, the Brazil Current (Figs. 1, 2). Such 620 

encounters have not been directly documented in situ, but indirect evidence indicates they are 621 

likely inevitable. For example, altimetry observations have tracked Agulhas eddies that 622 
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crossed the South Atlantic Ocean and closely approached the South American continent (Fig. 623 

1A). We calculated the radii of the ten eddies observed to have made this transoceanic 624 

journey between 1998 and 2006 (Fig. 1A). Eddy radius at the western terminus of each 625 

trajectory was calculated as the radius of a circle with an area equal to that enclosed by the 626 

contour of maximum circum-average speed (Chelton et al. 2011). These westernmost eddy 627 

radii ranged from 51 to 145 km (Fig. 1B).  628 

 Assuming that all eddies are lenses and that any eddy that reaches 38.5ºW will also reach 629 

the continental boundary, it is possible to estimate the equivalent eddy train that corresponds 630 

to the sequence of ten eddies displayed in Fig. 1B. The following assumptions were also 631 

considered for this equivalent eddy train (ET): (i) the time interval Tet between identical 632 

successive eddies is calculated by 
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when the ith successive trajectory reaches 38.5ºW; (ii) the radius of the identical eddies (Ret) 634 
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! , where Di is the length of the ith 635 

trajectory (measured west of 38.5ºW) and RTi is the mean eddy radius of the ith trajectory 636 

(calculated west of 38.5ºW); and (iii) the translation velocity of the eddies, Vet, is the 637 

weighted velocity obtained from the mean velocity VTi of the ith trajectory and is calculated 638 

similarly to radius Ret. Each mean velocity VTi is calculated by VTi = Di/timei.  639 

 With the above assumptions, the resulting equivalent eddy train would have successive 640 

identical eddies with radii of 85 km, each moving westward at 5.4 cm s-1 and separated by a 641 

uniform distance of ~1500 km. The time interval between eddies would be 322 days (i.e., 642 

approximately one eddy per year would collide with the South American continental 643 

boundary). The resulting eddy-train transport is approximately 0.17 Sv. Using Eqs. (12), (25–644 

27), and (36) for the case of a meridional wall yields a narrow northward current (leakage) 645 

with a width of 2.6 km and a stationary eddy with a radius of 60 km. Currently, it would be 646 
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difficult to observe such an eddy from satellites, primarily because the altimetry data lack the 647 

requisite resolution. However, a stationary eddy could appear in the form of a recirculation 648 

cell embedded within the BC, thus offering a potential avenue for future research.  649 

 During the 16-year period covered by the Chelton et al. (2011) dataset, many eddies were 650 

pinched off from the retroflection zone of the Agulhas Current, but only ten were observed to 651 

cross the South Atlantic Ocean. (The other eddies could have met a variety of fates, perhaps 652 

drifting northward, advected by the Benguela Current, or perhaps splitting into other eddies 653 

or simply decaying, partially or totally.) Other types of eddies generated by other 654 

mechanisms—for example, eddies shed by the Brazil Current meanders—might also impinge 655 

on the South American continental boundary. In this work, we focus on Agulhas rings 656 

because they are much larger than the other rings and are therefore more easily observed 657 

from space and are likely have a greater effect on boundary-current processes upon collision. 658 

 We have considered only eddy–wall interactions in the absence of a swift western 659 

boundary current. However, it is reasonable to assume that the presence of the Brazil Current 660 

is important to the process because its cross-shore scale has roughly the same Rossby radius 661 

as the impinging eddies. Therefore, at least part of the signal of the impinging eddy train may 662 

become embedded in the current, thus being carried away from the collision area. In fact, 663 

propagation of sea level anomalies has been previously documented in some Southern 664 

Hemisphere western boundary currents, such as the East Australian Current (Bowen et al.  665 

2005; Mata et al. 2006) and the Brazil Current (Campos 2006). Future studies are needed to 666 

investigate further the dynamics associated with interactions between eddies and western 667 

boundary currents.  668 

 Finally, the eddy–wall interaction model developed here suggests that the Brazil Current 669 

transport is weakened upstream from (north of) the collision zone, while its downstream 670 

transport (south of the collision zone) remains unaltered. Unfortunately, in keeping with most 671 
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Southern Hemisphere oceanic features, the current remains undersampled despite its regional 672 

and local importance. Therefore, it is not possible at this time to directly compare our results 673 

to observed transport values. Our results can be used, however, to support the development of 674 

future field experiments, which can in turn provide data to help evaluate the theory proposed 675 

here. Yet another intriguing aspect of eddy–wall interactions is the influence of eddy 676 

collisions on boundary current variability, locally as well as upstream and downstream from 677 

the collision zone. These effects can be investigated using our proposed model by replacing 678 

the continuous events modeled here with "burst" events—i.e., impingement of distinct trains 679 

consisting of several eddies each, with each train separated by periods of quiescence. 680 
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APPENDIX 696 

List of Symbols 697 

 698 

d45   distance between points 4 and 5 of the double-frontal current (Figs. 6, 8) 699 

Di   length of the westernmost (west of 38.5°W) segment of the ith eddy trajectory of the 700 

Chelton et al. (2011) data subset (Fig. 1B) 701 

Do   model domain (Fig. 4) 702 

f   Coriolis parameter [defined by f = f0 + β(Y – Y0)] 703 

f0   Coriolis parameter at the central meridional coordinate (latitude) Y0 of the domain 704 

g   gravity 705 

g´   reduced gravity [g´ = (∆ρ/ρ)g] 706 

h   depth in an xy Cartesian system 707 

h*   depth in an XY Cartesian system 708 

hi   depth at the interface between the stationary eddy and the surrounding current  (see 709 

Fig. 9) 710 

hnc   depth (vertical thickness) of the northward current 711 

hse   depth (vertical thickness) of the stationary eddy (Fig. 9) 712 

  
h

zc

!   depth (vertical thickness) of the zonal current (or DFC) in an XY Cartesian system 713 

h∞   depth (vertical thickness) of the zonal current (or DFC) when x→ !  714 

h1,2...  depth (vertical thickness) at point 1, 2 ... (Fig. 8) 715 

Hse  maximum depth of the stationary eddy (Fig. 9) 716 

Hzc  maximum depth of the zonal current (or DFC) 717 

k, K    integration constants 718 

ℓ   zonal dimension (width) of the domain 719 

Lnc  width of the northward current (Fig. 8) 720 
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L

zc

!   width of the zonal current (or DFC) in an XY Cartesian system (Figs. 6, 8) 721 

Mnc  momentum of the northward current 722 

Mse  momentum of the stationary eddy 723 

Mzc  momentum of the zonal current (or DFC) 724 

r   cylindrical coordinate (radius) 725 

r0    stationary eddy radius (Fig. 9), as measured from the eddy center to the eddy border 726 

(where hse=0) 727 

R   stationary eddy radius (Fig. 9), as measured from the eddy center to the eddy's 728 

interface with the surrounding current (where hse=hi)  729 

Rd   Rossby deformation radius of the zonal current (or DFC) 730 

Rde    Rossby deformation radius of the stationary eddy 731 

Ret   radius of individual eddies in the analytical eddy train that corresponds to the ten 732 

eddies of the Chelton et al. (2011) data subset (see Fig. 1B) 733 

Ro   Rossby number 734 

RTi   mean radius of the ith Chelton et al. (2011) eddy over its westernmost trajectory 735 

segment (west of 38.5°W; Fig. 1B) 736 

S   surface area of the model domain Do 737 

Sse   surface area of the stationary eddy 738 

TBC,AB..   transport across sections BC and AB of the model domain (Fig. 5, right panel) 739 

Tet   time interval between successive eddies of the eddy train  740 

timei  time when the ith eddy reaches 38.5°W       741 

Tnc  transport of the northward current 742 

Tzc   transport of the zonal current (or DFC) 743 

u   zonal component of velocity in an xy Cartesian system 744 

u*   zonal component of velocity in an XY Cartesian system 745 
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u

zc

!

    zonal component of velocity of the westward current (or DFC) in an XY Cartesian 746 

system 747 

v   meridional component of velocity in an xy Cartesian system 748 

 v
!    meridional component of velocity in an XY Cartesian system 749 

Vet   translational velocity of the eddies in the eddy train corresponding to the Chelton et 750 

al. (2011) data subset (Fig. 1B) 751 

vnc   meridional component of velocity of the northward current (Fig. 8) 752 

VTi   mean velocity of the ith Chelton et al. (2011) eddy over its westernmost trajectory 753 

segment (west of 38.5°W; Fig. 1B)  754 

v1,2...  meridional component of velocity at point 1, 2, ... (Fig. 8) 755 

vθ   orbital (tangential) velocity of the stationary eddy 756 

x, X  zonal coordinate in an xy (XY) Cartesian system (Fig. 4) 757 

y, Y  meridional coordinate in an xy (XY) Cartesian system (Fig. 4) 758 

yN, yS  northern and southern limits of the model domain (Figs. 7, 8, 10)  759 

Y0   central meridional coordinate of the model domain 760 

Y4,6  meridional coordinate of points 4 and 6 (Fig. 6) of the zonal current (or DFC) 761 

β   parameter that expresses meridional variation of the Coriolis parameter [β = Δf /ΔY] 762 

ε   parameter defined by ε=βRd /|f0| 763 

θ   angle between the xy and XY Cartesian systems—i.e., the angle of the wall with 764 

respect to geographic north (Fig. 4) 765 

ϕ   boundary of the domain (Fig. 4)  766 

ρ   density 767 

∆ρ   density difference between fluid layers 768 

Δt   time step 769 

ψ   typical streamfunction (defined by ∂ψ/∂ y= –uh and ∂ψ/∂x = vh) 770 
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ψse    streamfunction of the stationary eddy (defined by ∂ψse /∂r = vθhse) 771 

ψ∞    streamfunction of the zonal current (or DFC) when x→ !   772 

ξ   potential vorticity 773 

774 



35 

 
 

 

List of Abbreviations 775 

 776 

BC  Brazil Current 777 

BMCZ Brazil–Malvinas Confluence Zone 778 

DFC  double-frontal current 779 

ET  eddy train 780 

NC  current entering or exiting the northern boundary of the model domain (in the case 781 

examined here, NC always exits northward) 782 

SC  current entering or exiting the southern boundary of the model domain (in the case 783 

examined here, SC does not exist) 784 

SE   stationary eddy 785 

WC  westward current 786 

ZC  zonal current  787 

 788 

789 



 
 

36 
 

References  790 
     791 

Agra, C., and D. Nof, 1993: Collision and separation of boundary currents. Deep-Sea Res., 792 

40, (11/12), 2259–2282. 793 

Arruda, W., 2002: Eddies along western boundaries. Ph.D. dissertation, The Florida State 794 

University, 90 pp. 795 

Arruda, W. Z., D. Nof, and J. J. O´Brien, 2004: Does the Ulleung eddy owe its existence to β 796 

and nonlinearities? Deep-Sea Res. I, 51, 2073–2090. 797 

Beal, L. M., W. P. M. De Ruijter, A. Biastoch, R. Zahn, and SCOR/WCRP/IAPSO Working 798 

Group 136, 2011: On the role of the Agulhas system in ocean circulation and climate. 799 

Nature, 472, 429–436, doi: 10.1038/nature09983. 800 

Biastoch, A., C. W. Böning, F. U. Schwarzkopf, and J. R. E. Lutjeharms, 2009: Increase in 801 

Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462, 802 

495–498, doi: 10.1038/nature08519. 803 

Bleck, R., and D. Boudra, 1981: Initial testing of a numerical ocean circulation model using a 804 

hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11, 755–770. 805 

Bowen, M., J. L. Wilkin, and W. J. Emery, 2005: Variability and forcing of the East Australian 806 

Current. J. Geophys Res., 110, C03019, doi:10.1029/2004JC002533. 807 

Byrne, D. A., A. L. Gordon, and W. F. Haxby, 1995: Agulhas eddies: A synoptic view using 808 

Geosat ERM data. J. Phys. Oceanogr., 25, 902–917. 809 

Campos, E. J. D., 2006: Equatorward translation of the Vitoria Eddy in a numerical 810 

simulation. Geophys. Res. Lett., 33, L22607, doi:10.1029/2006GL026997. 811 

Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. Szoeke, 2007: Global observations 812 

of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi: 10.1029/2007GL030812. 813 

Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear 814 

mesoscale eddies. Prog. Oceanogr., 91, 167–216, doi:10.1016/j.pocean.2011.01.002. 815 



37 

 
 

 

Cushman-Roisin, B., E. P. Chassignet, and B. Tang, 1990: Westward motion of mesoscale 816 

eddies. J. Phys. Oceanogr., 20, 758–768. 817 

Duncombe Rae, C. M., 1991: Agulhas retroflection rings in the South Atlantic Ocean: An 818 

overview. South Afr. Mar. Sci., 11, 327–344. 819 

Flierl, G. R., 1979: A simple model for a structure of warm and cold core rings. J. Geophys. 820 

Res., 84, C2, 781–785. 821 

Garzoli, S. L., P. L. Richardson, C. M. Duncombe Rae, D. M. Fratantoni, G. J. Goni, and A. 822 

J. Roubicek, 1999: Three Agulhas rings observed during the Benguela Current 823 

Experiment. J. Geophys. Res., 104, C9, 20971–20985, doi:10.1029/1999JC900060.  824 

Goni, G. J., S. L. Garzoli, A. J. Roubicek, D. B. Olson, and O. B. Brown, 1997: Agulhas ring 825 

dynamics from TOPEX/POSEIDON satellite altimeter data. J. Mar. Res., 55, 861–883. 826 

Killworth, P. D., 1983: On the motion of isolated lenses on a beta-plane. J. Phys. Oceanogr., 827 

13, 368–376. 828 

Kundu, P. K., and I. M. Cohen, 2008: Fluid Mechanics, Academic Press, Elsevier, 4th Ed., 829 

878 p. 830 

Lamb, H., 1932: Hydrodynamics, Cambridge University Press, Cambridge, 738 pp. 831 

Lebedev, I., and D. Nof, 1996: The drifting confluence zone. J. Phys. Oceanogr., 26, 2429-832 

2448. 833 

Lebedev, I., and D. Nof, 1997: Collision of boundary currents: beyond a steady state. Deep 834 

Sea Res., 44, 771–791. 835 

Lentini, C. A. D., D. B. Olson, and G. P. Podestá, 2002: Statistics of Brazil Current rings 836 

observed from AVHRR: 1993 to 1998. Geophys. Res. Lett., 29, doi 837 

10.1029/2002GL015221. 838 

Lutjeharms, J. R. E., 2010: The Agulhas Current, Springer-Verlag, 342 p. 839 



 
 

38 
 

Masuda, A., 1988: A skewed eddy of Batchelor-modon type. J. Ocean. Soc. Japan, 43, 383–840 

394. 841 

Mata, M. M., S. E. Wijffels, J. A. Church, and M. Tomczak, 2006: Eddy shedding and energy 842 

conversions in the East Australian Current. J. Geophys. Res., 111, C09034, 843 

doi:10.1029/2006JC003592. 844 

Matano, R. P., 1993: On the separation of the Brazil Current from the coast. J. Phys. 845 

Oceanogr., 23, 79–90. 846 

McDonagh, E. L., K. J. Heywood, and M. P. Meredith, 1999: On the structure, paths, and 847 

fluxes associated with Agulhas rings. J. Geophys. Res., 104, C9, 21007–21020, 848 

doi:10.1029/1998JC900131.   849 

Minato, S., 1982: Geostrophic adjustment near the coast. J. Ocean. Soc. Japan, 38, 225–235. 850 

Minato, S., 1983: Geostrophic response near the coast. J. Ocean. Soc. Japan, 39, 141–149.  851 

Nof, D., 1981: On the β-induced movement of isolated baroclinic eddies. J. Phys. Oceanogr., 852 

11, 1662–1672. 853 

Nof, D., 1983: On the migration of isolated eddies with application to Gulf Stream rings. J. 854 

Mar. Res., 41, 399–425. 855 

Nof, D., 1988a: Draining vortices. Geophys. Astrophys. Fluid Dyn., 42, 187–208. 856 

Nof, D., 1988b: Eddy-wall interactions. J. Mar. Res., 46, 527–555. 857 

Nof, D., 1999: Strange encounters of eddies with walls. J. Mar. Res., 57, 739–761. 858 

Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. 859 

Phys., 21, 251–269. 860 

Palma, E. D., R. P. Matano, and A. R. Piola, 2008: A numerical study of the Southwestern 861 

Atlantic Shelf circulation: Stratified ocean response to local and offshore forcing. J. 862 

Geophys. Res., 113, C11010, doi: 10.1029/2007JC004720. 863 

Pichevin, T., and D. Nof, 1996: The eddy cannon. Deep-Sea Res. I, 43 (9), 1475–1507. 864 



39 

 
 

 

Pichevin, T., D. Nof, and J. Lutjeharms, 1999: Why are there Agulhas rings?. J. Phys. 865 

Oceanogr., 29, 693–707. 866 

Saffman, P., 1979: The approach of a vortex pair to a plane surface in inviscid fluid. J. Fluid 867 

Mech., 92, 497–503. 868 

Shi, C., and D. Nof, 1993: The splitting of eddies along boundaries. J. Mar. Res., 51, 771–869 

795. 870 

Shi, C., and D. Nof, 1994: The destruction of lenses and generation of wodons. J. Phys. 871 

Oceanogr., 24, 1120–1136. 872 

Umatani, S., and T. Yamagata, 1987: Evolution of an isolated eddy near a coast and its 873 

relevance to the “Kyucho”. J. Ocean. Soc. Japan, 43, 197–203.  874 

Wainer, I., P. Gent, and G. Goni, 2000: Annual cycle of the Brazil–Malvinas confluence 875 

region in the National Center for Atmospheric Research Climate System Model. J. 876 

Geophys. Res., 105, C11, 26167–26177. 877 

Witter, D. L., and A. L. Gordon, 1999: Interannual variability of South Atlantic circulation 878 

from 4 Years of TOPEX/POSEIDON satellite altimeter observations. J. Geophys. Res., 879 

104, 20927–20948. 880 

Yasuda, I., K. Okuda, and K. Mizuno, 1986: Numerical study on the vortices near 881 

boundaries—considerations on warm core rings in the vicinity of east coast of Japan. Bull. 882 

Tohoku Regional Fish. Res. Lab., 48, 67–86. 883 

884 



 
 

40 
 

TABLES 885 

TABLE 1. Numerical model experiments and principal parameters. Ret is the radius of each 886 
eddy in the eddy train, θ is the angle of the tilted wall (Fig. 4), Δt is the time step, and ν is the 887 
eddy viscosity. The remaining notation is conventional and is defined in the text and 888 
appendix. All eddies had a zero potential vorticity. Experiments taken as representative 889 
examples of each case (scenario) are marked in bold. 890 
 891 

Group Eddy-train 
generation Case Scenario Principal Parameters Variations/Experiments 

A Eddy  
cannon 

I 

Large eddies and a 
meridional wall 

Grid size (x vs. y): 
 320 x 95 

Grid resolution: 
5 x 10 km 
Basin size: 

 1600 x 950 km  

β = 8.10-11 m-1 s-1 
ν = 400 m2 s-1 
f0 = –10-4 s-1 

g´ = 10-2 m s-2 
Δt = 288 s 

  Exp. 01: Ret = 220 km (θ  =  0°) 
  Exp. 02: Ret = 240 km (θ  =  0°) 
  Exp. 03: Ret = 280 km (θ  =  0°) 
 

II 

Large eddies and a 
tilted wall 

For Exp. 01, 02, 03, 
08, 09, and 10, grid 
size, grid resolution, 
and basin size are the 

same as for case I.  

For the other 
experiments, 

Grid size (x vs. y): 
 350 x 95 

Grid resolution: 
5 x 10 km 
Basin size: 

 1750 x 950 km 

 

 

β = 8.10-11 m-1 s-1 
ν = 400 m2 s-1 
f0 = –10-4 s-1 

g´ = 10-2 m s-2 
Δt = 288 s 

  Exp. 01: Ret = 240 km (θ  =  0°) 
  Exp. 02: Ret = 240 km (θ  =  8°) 
  Exp. 03: Ret = 240 km (θ  =  16°) 
  Exp. 04: Ret = 240 km (θ  =  23°) 
  Exp. 05: Ret = 240 km (θ  =  30°) 
  Exp. 06: Ret = 240 km (θ  =  35°) 
  Exp. 07: Ret = 240 km (θ  =  40°) 
 
  Exp. 08: Ret = 280 km (θ  =  0°) 
  Exp. 09: Ret = 280 km (θ  =  8°) 
  Exp. 10: Ret = 280 km (θ  =  16°) 
  Exp. 11: Ret = 280 km (θ  =  23°) 
  Exp. 12: Ret = 280 km (θ  =  30°) 
  Exp. 13: Ret = 280 km (θ  =  35°) 
  Exp. 14: Ret = 280 km (θ  =  40°) 

B 

Analytically 
created 

within the 
domain 

III 

Medium and small 
eddies and a 

meridional wall 

Grid size (x vs. y): 
 410 x 64 

Grid resolution: 
1 x 5 km 

Basin size: 
 410 x 320 km 

β = 4.10-11 m-1 s-1 
ν = 200 m2 s-1 
f0 = –10-4 s-1 

g´ = 10-2 m s-2 
Δt = 72 s 

  Exp. 01: Ret = 65 km (θ  =  0°) 
  Exp. 02: Ret = 80 km (θ  =  0°) 
  Exp. 03: Ret = 95 km (θ  =  0°) 
  Exp. 04: Ret = 117 km (θ  =  0°) 
 

 892 
 893 

 894 

895 
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FIGURE CAPTIONS  896 

FIG. 1. (A) Anticyclonic eddy trajectories that began near the Agulhas retroflection zone and 897 

ended west of 38.5°W, as tracked between 14 October 1992 and 31 December 2008. (B) 898 

Final eddy position and radius (km) for each trajectory. The dashed line shows the average 899 

latitude at which these eddies approach the South American continental boundary (27.9°S). 900 

The 200 m and 2000 m isobaths are shown in both figures. Eddy data are from 901 

http://cioss.coas.oregonstate.edu/eddies/ (Chelton et al. 2011). 902 

 903 

FIG. 2. Bathymetry and western boundary currents of the Southwestern Atlantic Shelf region. 904 

The white circles represent anticyclonic eddies that originated from the Agulhas Current and 905 

are now approaching the South American boundary. Map and schematic current paths 906 

adapted from Palma et al. (2008). 907 

 908 

FIG. 3. Forces influencing the migration of an eddy along a continental wall. The annotations 909 

ac and c indicate anticyclonic and cyclonic eddies, respectively. The zonal white arrows 910 

represent a westward eddy velocity due to β or advection. The small meridional white arrows 911 

indicate the leak of the eddy after contact with the wall. The thick meridional white arrows 912 

represent the image effect, the gray arrows represent β-induced forces, and the black arrows 913 

represent rocket forces.  The net balance of these three forces determines the post-collision 914 

rate and direction of eddy migration along the wall.  915 

 916 

FIG. 4. Plan view of domain Do with a wall tilted at angle θ with respect to geographic north. 917 

The domain contains a zonal current that enters through the eastern boundary and two 918 

currents that enter or exit along the wall. The meridional axis of the coordinate system XY is 919 

aligned north–south; the meridional axis of the system xy is aligned with the wall. The term 920 
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u*(Y) is the velocity of the westward current. The numbers indicate the different domain 921 

boundaries ϕ; the letters indicate boundary limits.   922 

 923 

FIG. 5. Left panel: Forces acting during an encounter of a westward current with a wall. The 924 

horizontal gray arrow indicates the force exerted in the domain by the westward current 925 

(WC) that enters the domain’s eastern boundary. The vertical gray arrow indicates the β force 926 

due to a permanent eddy inside the domain. Both forces have wall-perpendicular (white 927 

arrows) and wall-parallel (black arrows) components. The SC and NC forces are exerted by 928 

currents entering or exiting through the southern and northern boundaries, respectively. Each 929 

wall-parallel force (black arrow) is associated with a corresponding term in Eq. (10). Right 930 

panel: Transports T at the boundaries of the domain. TBC corresponds to the first term in Eq. 931 

(11), and TAB (TCD) corresponds to the second (third) term. 932 

 933 

FIG. 6. Cross-sectional view of the double-frontal current (DFC) representing the train of 934 

eddies as defined by Eqs. (12a) and (12b). The meridional positions of the current's fronts are 935 

Y4 and Y6, its maximum depth is Hzc (at Y = 0), and its width is 
  
L

zc

! = Y4 – Y6. This current is 936 

asymmetrical (|Y4| > |Y6|) due to β, and it has the same transport and potential vorticity as the 937 

eddy train. The DFC has density ρ, and it is embedded in an infinitely deep layer of depth H 938 

(where H >> Hzc) and density ρ+Δρ. Positions Y4 and Y5 delimit the zone of DFC net 939 

transport, which has width d45 and maximum depth h5. These two variables are of ~ O(ε1/2), 940 

and the net transport is of O(ε). The net transport between points Y5 and Y6 is zero. 941 

 942 

FIG. 7. Plan view of the encounter between a zonal double-frontal current and a meridional 943 

wall (gray rectangle). The current enters the domain through its eastern boundary (boundary 944 

BC). Leakage of the impinging eddies, which are here represented by the DFC, results from 945 
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the wall interaction and produces a northward current (NC) that exits the domain through its 946 

northern boundary (CD). The ocean is stagnant in two regions: a large area in the north and 947 

also a smaller area in the south where the transport function ψ was assumed to be zero. In 948 

these regions, the upper layer vanishes.  949 

 950 

FIG. 8. Detailed plan view of the encounter between the double frontal-current and a 951 

meridional wall. The main scales [Eqs. (20) and (21)] are shown, as are the main velocity 952 

profiles [Eqs. (12a) and (23)] and the forces acting in the domain Do. In this limiting 953 

scenario, the coordinate systems xy and XY are identical. For definition of terms, see text and 954 

previous figures. 955 

 956 

FIG. 9. Cross-sectional view of the stationary eddy (SE). The shaded zone on the northern 957 

side represents the surrounding current. The radius r0 is the total radius of the eddy, which is 958 

measured from the eddy's center to its rim (where the eddy thickness vanishes). R is the 959 

distance from the eddy's center to the eddy–current interface; the vertical dimension of the 960 

interface is hi. Radius r is the distance from the eddy center to any location where the eddy 961 

thickness is hse. The maximum thickness of the eddy is Hse (at the eddy center). 962 

 963 

FIG. 10. Plan view of a double-frontal current with a tilted wall. The angle between the xy 964 

and XY coordinate systems is θ.  965 

 966 

FIG. 11. Eddy thicknesses obtained in a representative eddy–wall numerical simulation (Case 967 

I, Exp. 02, Table 1). The contour interval is 300 m. This frame shows one eddy (E1) 968 

contacting the western wall and leaking toward the north while a second eddy (E2) is nearly 969 

pinched off from the eddy cannon on the right.  Section A indicates where the transport of the 970 
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leak was calculated. Eddy transport was calculated as the difference between the transports 971 

across sections B and C. Numerical stability demands an eddy viscosity of 400 m2 s-1 (see 972 

text for explanation); g´ = 0.01 m s-2 and f0 = –10-4 s-1. The time step is 288 sec. 973 

 974 

FIG. 12. Eddy train (double-frontal current) thickness for one of the numerical simulations 975 

(Case I, Exp. 02, Table 1). The DFC was generated by continuous production of eddies on 976 

the right. All other model conditions are as for Fig. 11. Note the stationary eddy (SE) 977 

generated in the DFC–wall encounter region.  978 

 979 

Fig. 13. Stationary eddy radii obtained for different angles of wall tilt (θ) with the analytical 980 

model and representative Case AII numerical experiments (Exp. 01–07, Table 1). 981 

 982 

 983 

 984 

 985 

 986 

 987 
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 994 
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FIGURES 996 

 997 

 998 

FIG. 1. (A) Anticyclonic eddy trajectories that began near the Agulhas retroflection zone and 999 
ended west of 38.5°W, as tracked between 14 October 1992 and 31 December 2008. (B) 1000 
Final eddy position and radius (km) for each trajectory. The dashed line shows the average 1001 
latitude at which these eddies approach the South American continental boundary (27.9°S). 1002 
The 200 m and 2000 m isobaths are shown in both figures. Eddy data are from 1003 
http://cioss.coas.oregonstate.edu/eddies/ (Chelton et al. 2011). 1004 
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 1005 

 1006 

FIG. 2. Bathymetry and western boundary currents of the Southwestern Atlantic Shelf region. 1007 
The white circles represent anticyclonic eddies that originated from the Agulhas Current and 1008 
are now approaching the South American boundary. Map and schematic current paths 1009 
adapted from Palma et al. (2008). 1010 
 1011 

 1012 

 1013 
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 1014 

 1015 

FIG. 3. Forces influencing the migration of an eddy along a continental wall. The annotations 1016 
ac and c indicate anticyclonic and cyclonic eddies, respectively. The zonal white arrows 1017 
represent a westward eddy velocity due to β or advection. The small meridional white arrows 1018 
indicate the leak of the eddy after contact with the wall. The thick meridional white arrows 1019 
represent the image effect, the gray arrows represent β-induced forces, and the black arrows 1020 
represent rocket forces.  The net balance of these three forces determines the post-collision 1021 
rate and direction of eddy migration along the wall.  1022 
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 1024 
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 1028 

FIG. 4. Plan view of domain Do with a wall tilted at angle θ with respect to geographic north. 1029 
The domain contains a zonal current that enters through the eastern boundary and two 1030 
currents that enter or exit along the wall. The meridional axis of the coordinate system XY is 1031 
aligned north–south; the meridional axis of the system xy is aligned with the wall. The term 1032 
u*(Y) is the velocity of the westward current. The numbers indicate the different domain 1033 
boundaries ϕ; the letters indicate boundary limits.   1034 
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 1040 

FIG. 5. Left panel: Forces acting during an encounter of a westward current with a wall. The 1041 
horizontal gray arrow indicates the force exerted in the domain by the westward current 1042 
(WC) that enters the domain’s eastern boundary. The vertical gray arrow indicates the β force 1043 
due to a permanent eddy inside the domain. Both forces have wall-perpendicular (white 1044 
arrows) and wall-parallel (black arrows) components. The SC and NC forces are exerted by 1045 
currents entering or exiting through the southern and northern boundaries, respectively. Each 1046 
wall-parallel force (black arrow) is associated with a corresponding term in Eq. (10). Right 1047 
panel: Transports T at the boundaries of the domain. TBC corresponds to the first term in Eq. 1048 
(11), and TAB (TCD) corresponds to the second (third) term. 1049 
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 1057 

FIG. 6. Cross-sectional view of the double-frontal current (DFC) representing the train of 1058 
eddies as defined by Eqs. (12a) and (12b). The meridional positions of the current's fronts are 1059 
Y4 and Y6, its maximum depth is Hzc (at Y = 0), and its width is 

  
L

zc

! = Y4 – Y6. This current is 1060 
asymmetrical (|Y4| > |Y6|) due to β, and it has the same transport and potential vorticity as the 1061 
eddy train. The DFC has density ρ, and it is embedded in an infinitely deep layer of depth H 1062 
(where H >> Hzc) and density ρ+Δρ. Positions Y4 and Y5 delimit the zone of DFC net 1063 
transport, which has width d45 and maximum depth h5. These two variables are of ~ O(ε1/2), 1064 
and the net transport is of O(ε). The net transport between points Y5 and Y6 is zero. 1065 
 1066 
 1067 
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 1070 

FIG. 7. Plan view of the encounter between a zonal double-frontal current and a meridional 1071 
wall (gray rectangle). The current enters the domain through its eastern boundary (boundary 1072 
BC). Leakage of the impinging eddies, which are here represented by the DFC, results from 1073 
the wall interaction and produces a northward current (NC) that exits the domain through its 1074 
northern boundary (CD). The ocean is stagnant in two regions: a large area in the north and 1075 
also a smaller area in the south where the transport function ψ was assumed to be zero. In 1076 
these regions, the upper layer vanishes.  1077 
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 1082 

FIG. 8. Detailed plan view of the encounter between the double frontal-current and a 1083 
meridional wall. The main scales [Eqs. (20) and (21)] are shown, as are the main velocity 1084 
profiles [Eqs. (12a) and (23)] and the forces acting in the domain Do. In this limiting 1085 
scenario, the coordinate systems xy and XY are identical. For definition of terms, see text and 1086 
previous figures. 1087 
 1088 
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 1091 

FIG. 9. Cross-sectional view of the stationary eddy (SE). The shaded zone on the northern 1092 
side represents the surrounding current. The radius r0 is the total radius of the eddy, which is 1093 
measured from the eddy's center to its rim (where the eddy thickness vanishes). R is the 1094 
distance from the eddy's center to the eddy–current interface; the vertical dimension of the 1095 
interface is hi. Radius r is the distance from the eddy center to any location where the eddy 1096 
thickness is hse. The maximum thickness of the eddy is Hse (at the eddy center). 1097 
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 1103 
FIG. 10. Plan view of a double-frontal current with a tilted wall. The angle between the xy 1104 
and XY coordinate systems is θ.  1105 
 1106 
 1107 

 1108 

 1109 
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 1111 

FIG. 11. Eddy thicknesses obtained in a representative eddy–wall numerical simulation (Case 1112 
I, Exp. 02, Table 1). The contour interval is 300 m. This frame shows one eddy (E1) 1113 
contacting the western wall and leaking toward the north while a second eddy (E2) is nearly 1114 
pinched off from the eddy cannon on the right.  Section A indicates where the transport of the 1115 
leak was calculated. Eddy transport was calculated as the difference between the transports 1116 
across sections B and C. Numerical stability demands an eddy viscosity of 400 m2 s-1 (see 1117 
text for explanation); g´ = 0.01 m s-2 and f0 = –10-4 s-1. The time step is 288 sec.  1118 
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 1119 

FIG. 12. Eddy train (double-frontal current) thickness for one of the numerical simulations 1120 
(Case I, Exp. 02, Table 1). The DFC was generated by continuous production of eddies on 1121 
the right. All other model conditions are as for Fig. 11. Note the stationary eddy (SE) 1122 
generated in the DFC–wall encounter region.  1123 
 1124 
  1125 
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 1127 

Fig. 13. Stationary eddy radii obtained for different angles of wall tilt (θ) with the analytical 1128 
model and representative Case AII numerical experiments (Exp. 01–07, Table 1). 1129 


