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This paper evaluated the chemoprotective effect of lipoic acid (LA) against microcystin (MC) toxicity in
carp Cyprinus carpio. To determine the LA dose and the time necessary for the induction of three different
classes (alpha, mu and pi) of glutathione S-transferase (GST) gene transcription, carp were i.p. injected with
40 mg/kg lipoic acid solution. A group was killed 24 h after the first i.p. injection (condition 1); another group
received two i.p. injections with a 24 h of interval between each one and was killed 48 h after the first
injection (condition 2) and a third group received one i.p. injection and was killed 48 h latter (condition 3).
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Lipoic acid Results showed that LA was effective in promoting an increase in GSTs gene transcription in liver only in the
Microcystin condition 2. A second experiment was done, where carp pre-treated with LA (condition 2) were gavaged

twice with a 24 h interval with 50 pg MC/kg. Ninety-six hours after experiment beginning, carp were killed,
and organs were dissected. Results of GST activity in liver and brain suggest that LA can be a useful
chemoprotection agent against MC induced toxicity, stimulating detoxification through the increment of
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GST activity (brain) or through reversion of GST inhibition (liver).
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1. Introduction

Lipoic acid (LA) is well-known as a cofactor of Krebs cycle dehy-
drogenases (Trattner et al. 2007). Some of their antioxidants
properties (metal chelator, free radical interception, control of anti-
oxidant genes expression) were recognized long time ago (Packer
et al. 1997), leading to the study of its protective effects in different
fields of science like toxicology and cancer prevention (Shila et al.
2005; Wang et al. 2008), aging (Suh et al. 2004), aquaculture
(Terjesen et al. 2004; Trattner et al. 2007) and fish biochemistry
(Monserrat et al. 2008). The use of LA as chemo and neuroprotective
molecule has been proposed (Packer et al. 1997; Suh et al. 2004;
Wang et al. 2008) in virtue of the control that LA exerts on genes of
antioxidant defense like the rate-limiting enzyme of glutathione
synthesis (glutamate cysteine ligase or GCL; EC 6.3.2.2) and
glutathione-S-transferase (GST; EC 2.5.1.18) forms that confer to
cells and organs a better antioxidant competence and also better
abilities to detoxify through phase II reactions catalyzed by GST (Lee
and Surh 2005; Monserrat et al. 2008).
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Treatment with LA can be considered a potential preventive
procedure to be applied in aquaculture, since LA posses the ability to
cross the brain blood barrier (Packer et al. 1997), and also confers
protection to cells infected by different strains of the bacteria
Pseudomona aeruginosa (de Assis et al. 2004). The use of open ponds
to rear aquatic organisms is common in Brazil (Poersch et al., 2006),
an un-expensive practice that depends on water quality where
organisms are reared. The confinement is a problem in subtropical
environments, because of the occurrence of cyanobacterial blooms
(Magalhdes et al. 2001) that frequently releases cyanotoxins like
microcystins (MC) exerting their primary toxic effect through inhi-
bition of phosphatases (Dawson 1998). It is known that microcystins
affect various wild fish (Qiu et al. 2007) as well as human health
through food chain (Chen et al. 2009). However, well documented
evidences in the last years point to other toxic mechanisms after
microcystins exposure in several aquatic organisms: oxidative stress
(Jos et al. 2005; Wiegand and Pflugmacher 2005) and alteration of
glutathione-S-transferase (GST) activity, even augmenting (Cazenave
et al. 2008) or lowering (Cazenave et al. 2006) this enzyme activity.

The family of GST is a well-known group of enzymes that catalyzes
phase Il reactions, conjugating glutathione (GSH) with a broad range
of hydrophobic and electrophilic compounds, chemically non-related,
including microcystins (Pflugmacher et al. 1998; Huang et al. 2008).
Interestingly, recent reports indicate that fish species exposed to MC
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altered the transcriptional levels of several GST forms. For example,
Li et al. (2008) found that microcystin exposure of goldfish
(Carassius auratus) suppressed transcripts of GST alpha in liver
and intestine, contrary to result obtained in kidney. A dose of 50 ug
of MC/kg reduced transcript levels of GST theta in the three organs
cited above. Other GST forms, like mu and pi decreased in at least
one of the analyzed organs of the same fish species when exposed
to crude extracts of MC (Hao et al. 2008). In common carp Cyprinus
carpio, a decrease in transcription levels of GST pi was observed in
liver after 24 h of exposure to 100 pug of MC/kg and also a transient
augmented expression of GST alpha after 6 h exposure. A transient
lowered expression (12 h) was registered for liver GST mu (Fu and
Xie 2006).

It is also important to consider that other important findings about
the subject of this study show that: MC are cyanotoxins that elicit
oxidative stress and can be conjugated with glutathione, a reaction
catalyzed by GST that lowers microcystins toxicity (Metcalf et al.
2000; Jos et al. 2005); conspicuous fish inter-organ differences exist
in terms of antioxidant defenses (Amado et al. 2009), as well as their
ability to up or down regulate genes coding for phase II reactions as
GST, showing differences in the activity of this enzyme (Li et al. 2008;
Monserrat et al. 2008); LA possess not only the ability to act as a
direct antioxidant (Packer et al. 1995) but also the capacity of acti-
vate genes associated to antioxidant defense as well as phase II
reactions (Suh et al. 2004), resulting in higher activity of brain and liver
GCL and brain GST in fish fed with an LA enriched ration (Monserrat
et al. 2008).

Taking into account the information cited above, the present study
analyzed possible inter-organ differences of the common carp
C. carpio after MC exposure to evaluate the role of LA as a chemo-
protective molecule. The few studies that analyzed biochemical
responses in fish treated with LA performed protocols where the
antioxidant was added to the food (Terjesen et al. 2004; Trattner et al.
2007; Monserrat et al. 2008). However, in this kind of treatment the
nominal dose always differs from the actual dose, as different fish
will eat different amounts of food. In the present study, we preferred
to use i.p. injection as the route for LA administration. Gavage was
chosen as the exposure route for MC, as a way to represent the actual
via of MC ingestion and also to control the dose of toxin given to
exposed organisms. In order to verify the effects of the different
treatments detailed below, we analyzed the following parameters:
expression of different forms of glutathione S-transferase - GST
(alpha, mu and pi); concentration of GST mu and pi; GST activity;
antioxidant competence against peroxyl radicals (ANCOMROS);
reduced glutathione (GSH) concentration and glutamate cysteine
ligase (GCL) activity.

2. Materials and methods
2.1. Fish

Common carp (C. carpio, Teleostei, Cyprinidae), an omnivorous
fish that can have a significant portion of its diet constituted of
Microcystis cells during bloom periods (Li et al., 2004), was the
biological model of this study. Forty-eight carp, with mean mass of
279+ 7.7 g (mean4 SEM) were obtained from local suppliers and
acclimated in a 300L aerated freshwater tank equipped with a
filtering system ( pH 7.0; 7.20 mg O,/L, 20 °C), for at least two weeks
prior experiments. Feeding of food pellets at a rate of 1% of the body
mass per day was terminated 1 day before beginning of experiments.
No food was supplied to fish during experimental periods.

2.2. Preparation of lipoic acid solution

Lipoic acid (DL-a-lipoic acid, Fluka, BioChemika) solutions were
prepared according to Suh et al. (2004) at a concentration of 4 mg/mL,

employing an alkaline solution (2 mM NaOH and 154 mM NacCl) as
solvent. After dissolution, the pH was adjusted to 7.40 and the final
volume of the solution was obtained by employing 2.154 M NaCl. A
similar solution without lipoic acid was prepared in order to inject in
control fish (see 2.4.1).

Each fish was weighed prior to the i.p. injection and the volume
injected in each animal was adjusted to achieve a dose of 40 mg/kg
(around 280 pL per fish). This dose is known to induce Nrf-2 migration
to nuclei in rats i.p. injected up to 48 h, leading to an increase in
expression of genes regulated by this transcription factor, such as
glutamate-cysteine ligase and phase Il enzymes, improving antioxi-
dant defenses and detoxification processes (Suh et al. 2004).

2.3. Microcystin solution

Cells of M. aeruginosa strain RST 9501 were cultured in BG11
(8.82 mM of NaNOs) medium at 2541 °C and employed as toxin
source. Toxin identification was performed through high performance
liquid chromatography (Shimadzu SCL-10Avp HPLC) and mass
spectrophotmetry (Lawton et al. 1995). Lyophilized M. aeruginosa
cells were re-suspended in MilliQ water to reach a toxin concentration
of 5 pg/mL (~5 mg/mL of lyophilized cells), frozen and thawed three
times and centrifuged (12,000g; 4 °C) for 10 min. Each fish was
weighed prior to the gavage and the volume of microcystin solution
injected was adjusted to achieve a dose of 50 pg/kg. Previously it was
showed that strain RST 9501 altered the antioxidant status in liver,
gills and brain of the fish Jenynsia multidentata (Anaplebidae) (Amado
et al. 2009).

2.4. Experimental protocols

2.4.1. Determination of lipoic acid dose and exposure time

Two experiments were done to determine the dose and the
time of lipoic acid exposure needed to induce transcriptional re-
sponses of GST. Firstly, sixteen carp were equally distributed in four
aquaria. Fish of two aquaria received saline i.p. injection (control
group; CTR) and fish of the other two aquaria were i.p. injected with
lipoic acid solution (lipoic acid group; LA), prepared as described in
2.2. Twenty-four hours after the first injection, four fish from each
group (CTR and LA) were killed (condition 1) and the remaining fish
received another i.p. injection (CTR, saline; LA, lipoic acid). Twenty-
four hours after the second injection, these fish were also killed
(condition 2). Carp were cryoanesthetized, killed by spinal section
and liver, brain, gills and muscle were dissected and stored at
—80 °C. In the second experiment, 8 carp were equally distributed in
two aquaria. Fish of one aquarium received saline i.p injection (CTR)
and the others received lipoic acid i.p. injection (LA). Forty-eight
hours after injection fish were cryoanesthetized, killed and dissected
as described above (condition 3).

2.4.2. Determination of lipoic acid antioxidant and detoxification
potential against microcystin intoxication

Twenty-four carp were equally distributed in four aquaria, each
aquaria corresponding to a different treatment: (1) control group
(CTR); (2) lipoic acid group (LA), (3) microcystin group (MC); and
(4) lipoic acid + microcystin group (LA + MC). In the first two days of
experiment, CTR and MC groups received saline i.p. injection whereas
LA and LA + MC groups received lipoic acid i.p. injection, according to
the results obtained in the first set of experiments described in 2.4.1
(condition 2). In the following two days CIR and LA groups were
gavaged with Milli Q water whereas MC and LA+ MC groups were
gavaged with a microcystin solution prepared as described in Section
2.3. The gavages were performed twice with a 24 h interval between
each one. Ninety-six hours after experiment beginning all carp were
cryoanesthetized, killed by spinal section and dissected. Liver, brain,
gills and muscle were stored in — 80 °C until analyses.
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2.5. Analysis of GST forms expression

2.5.1. Sequences analysis and primers design

Carp sequences encoding to GST alpha, GST mu and GST pi were
retrieved from GenBank database and aligned using ClustalX program.
Regions with low scores of similarity among the sequences were used
for searching specific primers, which were designed using the
program Oligos 9.6. In order to confirm the primers specificity, each
primer was compared with carp genome using NCBI BLAST searches
of GenBank (nucleotide database) and it was able to recognize only
its specific target sequence. Thus, the strategy adopted to construct
the primers did not allow cross-amplification. The (-actin primers
were designed as described previously for zebrafish (Chen et al. 2004)
and the optimal PCR conditions were determined (Table 1).

2.5.2. Semi-quantitative reverse transcription — polymerase chain
reaction (RT-PCR) analysis

Carp brain, gills and liver were dissected and immediately total
RNA was isolated from each organ using TRIzol® Reagent (Invitrogen)
in accordance with manufacturer instructions, adapted as follow:
tissues were homogenized in 500 pL of TRIzol® Reagent and 100 pL
chloroform was added and then vortexed and centrifuged at 10,600 g
for 15 min at 5 °C. The transparent aqueous phase was transferred to
250 pL of isopropyl alcohol for RNA precipitation through centrifuga-
tion (10,600 g for 10 min at 5 °C). RNA pellets were washed with
500 pL of 75% cold ethanol and centrifuged at 6800 xg for 5 min at
5 °C. Supernatant was dispensed and RNA re-suspended in 15 L of
RNase-free water plus 0.4 uL of RNAse OUT Ribonuclease Inhibitor
Recombinant (Invitrogen). RNA was quantified by spectrophotometry
and all samples were adjusted to 160 ng/uL. cDNA species were
synthesized with SuperScript™ First-Strand (Synthesis System for
RT-PCR) from Invitrogen, following the manufacturer instructions.
Each RNA sample (2 pg/mL) was mixed with 1 pL of 50 uM oligo(dT)
and 1pL of annealing buffer up to a final volume of 8 pL. Samples
were incubated at 65 °C for 5 min in a thermal cycler, following a
1 min on ice step, when 10 pL of 2 X First-Strand Reaction Mix and 2 puL
of SuperScript™ I1I/RNaseOUT™ Enzyme Mix were added. Products
were incubated by 50 min at 50 °C and next 85 °C for 5 min. The cDNA
products were used as a template for each PCR amplification. PCR
parameters were first optimized and reactions were performed
allowing product detection within the linear phase of mRNA
transcripts amplification for each primer pair (Table 1). The amplified
products were visualized on 1.0% agarose gel with GelRed® under
ultraviolet light. Low DNA Mass Ladder (Invitrogen) was used as
molecular marker. The relative mRNA abundance of each GST versus
-actin was determined by optical densitometry using Image]1.37
freeware. Each experiment was repeated at least four times, using
RNA isolated from independent extractions.

2.6. Organs samples preparation

Organs samples (liver, brain, gills and muscle) were homogenized
(1:5 - w/v) in Tris-HCl (100 mM, pH 7.75) buffer plus EDTA (2 mM)
and Mg?* (5 mM) (Amado et al., 2009). Samples were centrifuged at
10,000 xg during 20 min at 4 °C and the supernatant were employed

Table 1
PCR conditions used in this study.

for all measurements described below. Previously, total protein con-
tent was determined through Biuret method (A=550nm), in
triplicate, using a microplate reader (BioTek LX 800).

2.7. Antioxidant competence against peroxyl radicals (ANCOMROS)

Total antioxidant competence against peroxyl radicals was
analyzed through ROS determination in organs samples incubated
or not with a peroxyl radical generator. Peroxyl radicals were pro-
duced by thermal (35 °C) decomposition of 2, 2°-azobis 2 methylpro-
pionamidine dihydrochloride (ABAP; 4 mM; Aldrich). For ROS
determination it was employed the fluorogenic compound 2°,7°-
dichlorofluorescin diacetate (H,DCF-DA) at a final concentration of
40 M, according to the methodology described by Amado et al.
(2009). H,DCF-DA passively diffuses through cellular membranes and
once inside the acetates are cleaved by intracellular esterases.
Thereafter, the non-fluorescent compound H,DCF is oxidized by ROS
to the fluorescent compound DCF. The readings were carried through
in a fluorescence microplate reader (Victor 2, Perkin Elmer), in a
medium containing 30 mM HEPES (pH 7.2), 200 mM KCI, 1 mM
MgCl,, 40 uM DCF-DA and 166 g of proteins of tissues samples.
Background fluorescence was determined before the addition of
DCF-DA. Total fluorescence production was calculated by integrating
the fluorescence units (FU) along the time of the measurement, after
adjusting FU data to a second order polynomial function. The results
were expressed as area difference of FUx min in the same sample
with and without ABAP addition and standardized to the ROS area
without ABAP (background area). The relative difference between
ROS area with and without ABAP was considered a measure of
antioxidant capacity, with high area difference meaning low antiox-
idant capacity, since high fluorescence levels were obtaining after
adding ABAP, meaning low competence to neutralize peroxyl radicals.

2.8. Glutathione (GSH) concentration and glutamate cysteine ligase
(GCL) activity

Activity of GCL (EC 6.3.2.2) and GSH levels were determined
according White et al. (2003). This method is based in the reaction of
naphthalene dicarboxialdehyde (NDA) with GSH or y-glutamylcysteine
(+y-GC) to form cyclic products that are highly fluorescent. On a 96-well
round-bottom reaction plate, aliquots (25 pL) of GCL reaction cocktail
(400 mM Tris, 40 mM ATP, 20 mM L-glutamic acid, 2.0 mM EDTA,
20 mM sodium borate, 2 mM serine and 40 mM MgCl,) were added into
each well. For assays, aliquots of 25 pL of sample were pipetted into a
pre-warmed (25 °C) reaction plate at 15 s time intervals. After 5 min of
pre-incubation, the GCL reaction was initiated by adding 25 pL of 2 mM
cysteine dissolved in buffer solution (100 mM Tris-HCl, 2 mM EDTA and
5 mM MgCl, 6H,0, pH 7.75). In order to measure GCL activity, cysteine
was not added to the GSH-baseline wells at this time. After 10 min, the
GCL reaction was stopped by adding 25 pL of 200 mM sulfosalicylic acid
to all wells, and then 25 L of 2 mM cysteine was added to the GSH-
baseline. An aliquot (20 pL) was mixed with 180 pL of NDA derivatiza-
tion solution (50 mM Tris, pH 12.5; 0.5 N NaOH; and 10 mM NDA in
dimethyl sulfoxide, 1.4/0.2/0.2 v/v/v) in 96 wells plate. The plate was
covered to protect the wells from ambient light and was allowed

Enzymes Primers sequences (5’ —3') Annealing temperature (°C) PCR product (bp) GenBank accession number (mRNA)

GST-alpha F-GGTGGAAATAGACGGGATGCAGCTCG 60 394 DQ411310
R-GGCCTTCATCTTCTCTTGAAACGCCTG

GST-Mu F-TCTGTGGGGAAACTGATGAAGCGCAG 60 383 DQ411312
R-TTTGGCCATCTTGTTGTTCACGGGTG

GST-Pi F-CTATGTTAAGGCATTTGGGTCGCAAAC 60 338 DQ411313

R-ATCCACATAGCTCTTGAGAGTTGGGAAGG
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to incubate at room temperature for 30 min. Following incubation,
NDA-y-GC or NDA-GSH fluorescence intensity was measured (472 nm
excitation/528 nm emission) in a fluorescence microplate reader
(Victor 2, Perkin Elmer).

2.9. Determination of glutathione S-transferase (GST) activity

The activity of the enzyme GST (EC 2.5.1.18) was determined
following the conjugation of 1 mM glutathione and 1 mM 1-chloro-
2,4-dinitrobenzene (CDNB) at 340 nm, as described by Habig and
Jakoby (1981).

2.10. Western blot of GST forms

Liver, brain and gills samples (4 mg/mL) were submitted to
SDS-PAGE and electroblotted to PVDF membranes. Immune reactions
for GST forms content were performed with antibodies against GST pi
and mu (AbCam) after SDS-PAGE and Western transfer. Bands were
visualized using a chromogenic immunodetection kit (Invitrogen).
After scanning the PVDF membrane, bands intensity was analyzed in
each treatment and organ using the ImageJ1.37 freeware.

2.11. Statistical analysis

All variables were analyzed by means of ANOVA (Zar, 2010). Pre-
viously, normality and variance homogeneity were verified and
mathematical transformation applied if at least one assumption was
violated. Means comparisons were performed with the Newman-
Keuls method. In all cases, the significance level was fixed at 0.05.

3. Results

A single lipoic acid i.p. injection (40 mg/kg) 24 h or 48 h (one
injection) before carp were killed did not induce the expression of any
GST isoform (p>0.05; Fig. 1). However, two i.p injections of lipoic acid
with an interval of 24 h from each other, lead to a significant (p<0.05)
increment of all GST isoforms expression, as shown in Fig. 1.

The expression of the three isoforms was suppressed in liver of
carp that were treated both with i.p. LA injection and MC gavage. It
was not observed the induction of any isoform in this organ 96 h after
the last LA i.p. injection (Fig. 2a). In brain, although GST mu and pi did
not varied among treatments, GST alpha had a significant decrease of
its expression (p<0.05) both in carp that received only MC and in carp
that were pre-treated with LA (Fig. 2b). In gills, the expression of all
GST isoforms was significantly higher (p<0.05) in carp treated with
LA than in control carp. The expression of GST alpha was also induced
in the other treatments, but it was not significant different from the
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Fig. 2. Gene expression patterns of GST alpha, mu and pi in the liver (a), brain (b) and
gills (¢) samples from common carp Cyprinus carpio. CTR: control group; LA: lipoic acid
group (i.p.injection 40 mg/kg); MC: group gavaged with microcystin (50 pg/kg); LA+ MC:
group pre-treated with LA (i.p. injection 40 mg/kg) and subsequently gavaged with
MC (50 pg/kg). Data are expressed as relative area mean + 1 SE (n = 4). Different letters or
asterisks indicate significant differences (p<0.05) between groups for GST alpha (lower
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of i and all of them are different of iii).
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Fig. 1. Gene expression patterns of GST alpha, mu and pi in the liver of common carp Cyprinus carpio injected (i.p.) with lipoic acid (40 mg/kg). CTR: control group; LA: lipoic acid
group; 2I: two injections; 11: one injection. Data are expressed as relative area mean = 1 SE (n =4). Different letters indicate significant differences (p<0.05) between groups for GST
alpha (lower case letters); GST mu (capital letters) and GST pi (i is different of ii and both are different of iii).
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control. GST mu expression was increased both in carp treated only
with LA and only with MC, but the co-administration of LA and MC
lead to a significant decrease in the expression of this isoform. The
expression of GST pi was higher in all treatments than in the control
(Fig. 2c).

In liver, total antioxidant capacity was higher in carp treated both
with MC and with MC plus LA than in the control carp (p<0.05). LA
treatment alone did not lead to an increase in ANCOMROS (Fig. 3a).
In brain (Fig. 3b) and in muscle (Fig. 3d) there were no significant
differences among treated and control fish (p>0.05), whereas in gills,
all treatments improved total antioxidant capacity compared to the
control (Fig. 3c).

GSH concentration was higher (p<0.05) in carp brain from all
treatments than in control carp. In the other analyzed organs the GSH
concentration remained the same as in control (p>0.05) (Fig. 4). GCL
activity in all analyzed organs was not altered by the treatments
(p>0.05) (data not shown).

Each organ presented a different pattern of GST activity according
to treatment. In liver, GST activity was suppressed in carp exposed to
MC, however the pre-treatment with LA prevented this effect as
animals treated with LA plus MC showed the same activity as controls
and LA treated carp (Fig. 5a). In brain, GST activity was higher in carp
treated with LA plus MC than in carp from other treatments (Fig. 5b).
In gills, GST activity was higher in all treatments respect to the control
(Fig.5c). In muscle, GST activity was not altered by the treatments
(Fig. 5d).

We performed the western blot assays using three antibodies,
against three different GST isoforms (alpha, mu and pi). As polyclonal
antibodies used in this study were raised against rabbit GSTs, the
bands that appeared in western blot membranes are referred to as
GST immune reactive bands. Rabbit polyclonal antibody against GST
alpha showed many cross reactions in the three analyzed organs and
could not be applied in this study. The same occurred with GST pi in
brain samples. Rabbit polyclonal antibody against GST mu showed 2
immune reactive bands in liver samples. These bands had very close
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molecular masses (between 82.2 and 64.2 kDa). In brain samples, we
also observed 2 GST mu immune reactive bands, and both showed
molecular masses close to 64.2 kDa. The C. carpio GST mu amino acid
sequence (NCBI, protein database, http://www.ncbi.nlm.nih.gov)
deduced from the mRNA sequence (Fu and Xie, 2006) was used to
calculate the expected molecular mass (25.98 kDa). Taking into
account these results, only data of GST pi isoform in brain and liver
were considered, since the molecular masses of immune reactive
band ranged between 37.1 and 25.9 kDa, close to 23.57 kDa of carp
GST pi primary sequence deduced from the mRNA sequence (Fu and
Xie, 2006).

Rabbit polyclonal antibody against GST pi in liver and brain
showed an immune reactive band in a molecular mass between 37.1
and 25.9 kDa. The analysis of the bands intensity showed no
difference among treatments (data not shown). In gills the concen-
tration of the isoforms mu and pi was very low, as showed by weak
bands in western blot analysis. This finding is consistent with the
lower GST activity (p<0.05) observed in this organ respect to liver
and brain.

4. Discussion

The obtained results confirmed previous studies that reported [D-
Leul] microcystin-LR as the most abundant MC produced by strain
RST 9501, a variant with a similar potency in terms of phosphatases
inhibition respect the common [D-Alal]microcystin-LR (Matthiensen
et al., 2000).

As oxidative stress is a well-known toxic effect of MC exposure
(Ding and Ong 2003), different kinds of antioxidants have been used
prior to MC exposure, trying to identify possible protective effects
against MC intoxication. Vitamin E, for example, was used in several
studies, showing its protective effects in crabs (Pinho et al. 2005)
and fish (Prieto et al. 2008). In fish, selenium proved to have
chemoprotective roles (Atencio et al. 2009) against microcystin-
induced toxicosis.
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Fig. 3. Total antioxidant capacity against peroxyl radicals in liver (a), brain (b), gills (c) and muscle (d) samples from common carp (Cyprinus carpio). CTR: control group; LA: lipoic
acid group (i.p. injection 40 mg/kg); MC: group gavaged with microcystin (50 pg/kg); LA 4+ MC: group pre-treated with LA (i.p. injection 40 mg/kg) and subsequently gavaged with
MIC (50 pg/kg). Data are expressed as relative area mean+1 SE (n=4-5). Relative area was calculated dividing area difference (with and without ABAP - 2, 2"-azobis 2
methylpropionamidine dihydrochloride) by area without ABAP (background area). Different letters indicate significant differences (p<0.05) between groups.
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Fig. 4. Reduced glutathione (GSH) concentration (in nmol GSH/mg of proteins) in liver
(a), brain (b) and gills (c) samples from common carp (Cyprinus carpio). CTR: control
group; LA: lipoic acid group (i.p. injection 40 mg/kg); MC: group gavaged with micro-
cystin (50 pg/kg); LA+ MC: group pre-treated with LA (i.p. injection 40 mg/kg) and
subsequently gavaged with MC (50 pg/kg). Data are expressed as relative area mean =+ 1
SE (n=5). Different letters indicate significant differences (p<0.05) between groups.

Because it is known that MC exposure can affect the expression of
different classes of GST (Fu and Xie 2006; Hao et al. 2008), the enzyme
involved in MC detoxification, a chemical inducing the expression of
these enzymes could have important roles in protection against MC
toxicity. The present study shows, for the first time, the effects of
lipoic acid administrated i.p. on different GST classes transcripts,
correlating expression, enzyme activity and protein concentration in
order to analyze the role of its pre-treatment in MC induced toxicity.

As mentioned in the Introduction, lipoic acid could have positive
effects against MC toxicity because it can act both as a direct anti-
oxidant molecule, chelating metals and intercepting free radicals
(Packer et al. 1995; Packer et al. 1997) and also controlling expression
of genes involved on antioxidant defense like GCL and GST (Lee and
Surh 2005). In this study, the experiments performed to determine
the time and the dose of lipoic acid needed to alter positively GSTs
classes expression, revealed that, at least in liver, it was necessary two
i.p. injections of 40 mg/kg lipoic acid in a 48 h period to induce a
significant increment of GST alpha, mu and pi classes. Based on these
data, a second experiment was done; where after treatment with

lipoic acid i.p. injections in the conditions determined by the first
experiment, carp were gavaged with microcystin (50 pug/kg) twice
with a 24 h interval between each gavage. The objective of this
experimental design was to determine whether a previous lipoic acid
treatment that was able to promote an increase in expression of
different GST genes involved in MC detoxification, could protect
against MC toxic effects.

Similar to previous studies (Cazenave et al. 2006), we observed the
inhibition of GST activity in liver of carp exposed to MC. However,
carp pre-treated with LA i.p. injections showed a recovery of liver
GST activity, returning to the levels of control and LA groups. Atencio
et al. (2009) showed similar results in terms of recovery of GST
inhibition induced by MC exposure. They analyzed the role of sele-
nium dietary supplementation (1.5; 3.0 and 6.0 pg Se/g diet) during
seven days in tilapia (Oreochromis niloticus) subsequently exposed to
MC-LR (120 pg MC-LR/fish) for 24 h. Authors showed that the GST
inhibition was reverted in fish fed with the highest Se dose, returning
GST activity to control levels.

Results of GST forms mRNA levels in liver were not similar to those
of GST activity. We observed that the increase in GST forms
expression, verified in carp treated with two lipoic acid i.p. injections
in a 48 h period (Fig. 1), was not maintained 96 h after the experiment
beginning. Also, the co-administration of LA and MC led to a reduction
in transcription of all GST forms after 96 h (Fig. 2a), a result not
observed when GST activity was analyzed in liver (Fig. 5a).

Some studies have demonstrated that, in terms of antioxidant
defense, there is a lack of correlation between mRNA transcription
levels and enzymes activities. For example, Henrik-Hansen et al.
(2007) demonstrated that the mRNA levels of oxidative stress related
proteins in gills of brown trout (Salmo trutta) exposed to waterborne
Cd/Zn did not correlated with enzymes activities. They found no
induction in catalase mRNA in gills, but enzyme activity measure-
ments showed that there was an initial non-significant decrease two
days after exposure, with a subsequent increase above control levels
after 15 days.

There are at least three possible explanations for the lack of
similarity between mRNA levels and GST activity observed in
this study:

(1) the classes of GST involved in the recovery of GST activity
were not analyzed in terms of mRNA levels, as we only studied
the alpha, mu and pi forms and there are at least 6 classes more;

(2) there is a time window between transcription and translation
of GST proteins. Thus, the observed increase in the expression
of the three GST forms after 48 h of LA injection led to the
recovery of GST activity demonstrated after 96 h, when
expression of GST forms in LA group have returned to control
levels.

GSTs are subjected to post-transcriptional regulation. Some

(and few) experimental evidences have shown that GST can

have its activity increased when phosphorylated (Lo et al. 2004)

which is very likely after MC exposure, because of their well-

known inhibitory effects on phosphatase activity (Dawson,

1998). However, we cannot discard the effect of LA in the

reversion of inhibition, as carp exposed only to MC showed

lower GST activity than the other treatment groups.

(3

—

We also observed in carp liver an increase of antioxidant capacity
against peroxyl radicals in both groups that were gavaged with MC
(MC and LA+ MC). As GCL activity and GSH concentration in these
groups were not significantly different from the control group, it is
possible that other antioxidant defenses have been induced by MC
exposure. Li et al. (2003) showed in C. carpio hepatocytes a reduction
in GSH concentration accompanied by an increase in the activity of the
antioxidant enzymes superoxide dismutase, catalase and glutathione
peroxidase, suggesting that these enzymes can have significant roles
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Fig. 5. Glutathione-S-transferase (GST) activity (in nmol CDNB-GSH conjugate/min/mg of proteins) in liver (a), brain (b), gills (c) and muscle (d) samples from common carp
(Cyprinus carpio). CTR: control group; LA: lipoic acid group (i.p. injection 40 mg/kg); MC: group gavaged with microcystin (50 pg/kg); LA+ MC: group pre-treated with LA (i.p.
injection 40 mg/kg) and subsequently gavaged with MC (50 pg/kg). Data are expressed as mean 4 1 SE (n=>5). Different letters indicate significant differences (p<0.05) between

groups. CDNB: 1-chloro-2,4-dinitrobenzene.

in protecting cells from oxidative stress induced by MC. Studies with
other fish species exposed to MC also showed increase in antioxidant
competence, demonstrated by the increment in the activity of
different antioxidant enzymes (Jos et al. 2005) or liver total anti-
oxidant competence (Amado et al. 2009). In this context it is
important to cite the study of Qiu et al. (2007), where they found
that the phytoplanktivorous fishes possessed higher basal GSH
concentrations and better correlations between the major antioxidant
enzymes in liver, which might be responsible for their powerful
resistance to MC.

Fischer et al. (2005) provided evidences on the ability of MC to
cross through the blood-brain barrier and raised questions on the
probable neurotoxicity of MC, especially considering that fish exposed
to MC-LR evidenced behavioral changes (Cazenave et al. 2008). In the
present study, the co-exposure with MC and LA led to an increase in
GST activity in brain tissue (Fig. 5b), suggesting that LA can have an
important role in neuroprotection against MC intoxication.

Besides the increase of the total GST activity in brain samples of
LA + MC group, the mRNA levels of GST mu as well as GST pi was not
affected by the treatments and GST alpha expression was lower in
both groups that received MC (MC and LA + MC) than in CTR and LA
groups (Fig. 2b). Again, a lack of parallelism was observed between
GST expression and activity, as previously observed in liver.

In gill samples, treatments induced different patterns of GST forms
expression. LA significantly induced the three GST forms analyzed.
Treatment with MC was also efficient in inducing the expression of
two GST forms (mu and pi). The co-administration of LA and MC
affected differently the three forms: GST mu had decreased expres-
sion, GST pi showed augmented transcription and GST alpha was
unaffected, respect to the CTR group (Fig. 2c). As gills are not the
preferential targets of MC and LA, the effects observed in this organ
could occur latter than in liver and brain. So, in this organ it was
possible to verify the modulation of GST forms induced both by MC

and LA in a latter time window, whereas in liver and brain these
effects probably had occurred earlier. Note also that the toxin was
administered through gavaging, a route that also should aid to get a
latter time window in this organ.

GST activity in gills samples was higher in all treatments respect
the CTR group, probably as a result of the transcriptional induction.
Also, the total antioxidant activity against peroxyl radicals was higher
in all treatments when compared with CTR group, perhaps a
consequence of the increased detoxification capability. The results
in MC-exposed carp gills are in complete agreement with Vinagre
et al. (2003), which found both increased GST activity and total
antioxidant capacity in gills of the crab Chasmagnathus granulata (now
Neohelice granulata) injected at every 24 h intervals during 48 h with
an aqueous extract of Microcystis aeruginosa from the same strain
used in the present study.

In muscle, treatments did not affect analyzed parameters. Several
laboratory and field studies have shown that MC is accumulated in
muscle of different fish species, although the concentration of MC in
muscle is usually much lower than that in other tissues (Magalhaes
et al. 2001). So, the lack of effects on analyzed parameters in carp
muscle exposed to MC is considered a consequence of the lower toxin
concentration in muscle than in other organs. Cazenave et al. (2006)
also observed differential responses in fish organs exposed to MC-RR
and suggested that it might be related to the uptake route as well as
biotransformation and bioaccumulation capabilities of the different
studied organs.

Regarding to the lack of LA effects in muscle, our results are in
agreement with Monserrat et al. (2008), that reported no difference in
glutathione concentration and GCL, GST and glutathione reductase
(GR) activities between muscles of Corydoras paleatus fed during four
weeks with a LA enriched diet.

In conclusion, the results obtained in liver and brain suggest that
LA can be a useful chemoprotective agent against MC induced
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toxicosis, stimulating detoxification through the increment of GST
activity (brain) or through reversion of GST inhibition (liver). Also, i.p.
injection can be an interesting route of LA administration in aqua-
culture systems, leading to fish protection against MC toxicity more
efficiently than food supplementation due to its faster mode of action
(within 48 h). Besides that this kind of treatment assures the desired
dose, i.p. injection is a common practice in aquaculture drug adminis-
tration (Stoskopf, 1993; Prieto and Romano, 1998).
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