XVI Encontro de Química da Região Sul (16-SBQSul)

Otimização da proporção da mistura mamona:soja para a produção de biodiesel etílico.

Adriane da Conceição Oliveira (PG)*, Luíza Burns Barreto (IC), Ricardo Zottis (IC), Marcelo Gonçalves Montes D'Oca (PQ), Rosilene Maria Clementin (PQ). h.adri@terra.com.br.

Escola de Química e Alimentos, Universidade Federal do Rio Grande-FURG, Av Itália Km 08 s/n, Rio Grande, RS, Brasil.

Palavras Chave: biodiesel etílico, misturas manona/soja.

Introdução

A escolha do biodiesel por muitos países como fonte de energia, deve-se ao fato de além de ser renovável e minimizar os problemas ambientais também aumenta a segurança em relação ao suprimento futuro de energia. A diversificação de fontes para produção do biodiesel visa diminuir a dependência de fornecimento a sazonalidade. Assim, a utilização de misturas de óleos no processo diminui esta dependência. O objetivo deste trabalho é utilizar várias proporções de misturas de óleo de soja e mamona e determinar as melhores proporções para estudos de aumento de produção, investigando variáveis como temperatura catalisador e relação óleo:álcool.

Resultados e Discussão

Foi investigada a reação de transesterificação de mistura de óleo de mamona/soja de proporções de 90:10 até 10:90. As proporções que apresentaram maior rendimento foram as misturas 80:20 e 30:70. Para estas proporções foram realizados estudos variando a concentração do catalisador, razão molar etanol:óleo e a temperatura, como mostrado na Tabela 1. Todas as reações foram acompanhadas por CCD para determinar a conversão do óleo em biodiesel, por uma 1:30 h. A seguir o catalisador foi neutralizado pela adição de H₂SO₄ ao meio reacional e mantido sob agitação por 45 min. A separação do biodiesel dos co-produtos (glicerol e Na₂SO₄) foi realizada através das seguintes operações unitárias, evaporação (parcial do etanol) decantação, filtração e evaporação (total do etanol). Das variáveis estudadas, a que apresentou uma maior dificuldade no processo de obtenção foi com a utilização de 2% em massa de catalisador e relação molar óleo:álcool de 6:1. O biodiesel apresenta-se não homogêneo. Também foi determinado o índice de acidez do biodiesel produzido. Devido ao alto índice de acidez determinado, foi inserido no processo esterificação posterior do biodiesel. A reação de esterificação foi estudada para os experimentos 1-4 utilizando como catalisador H_2SO_4 concentrações de 5% e 10% em massa e relação álcool:ácido de 60:1 e 80:1. Os resultados obtidos estão apresentados na Tabela 2. A redução mais significativa do IA foi para a reação 4, com uma proporção de 30:70 para a mistura de óleos mamona:soja e relação ácido:álcool de 80:1. A variação da concentração do catalisador não influenciou na redução do IA.

Tabela 1. Resultados de rendimento em biodiesel a partir da transesterificação das misturas de óleos

Parti	partir da transesterincação das misturas de oleos								
Nº	Mistura Mamona/ soja	T (°C)	EtOH/ óleo	Cat. NaOH em (%)	Biodiesel (%)	Glicerol (%)			
1	80/20	60	6:1	1,0	84,56	73,41			
2	30/70	60	6:1	1,0	90,57	58,13			
3	80/20	70	6:1	1,0	93,54	64,58			
4	30/70	70	6:1	1,0	92,89	71,82			
5	80/20	60	12:1	1,0	90,52	73,80			
6	30/70	60	12:1	1,0	90,89	65,67			
7	80/20	70	12:1	1,0	84,22	52,08			
8	30/70	70	12:1	1,0	85,15	58,03			
9	80/20	60	6:1	2,0	88,25	47,32			
10	30/70	60	6:1	2,0	94,42	50,49			
11	80/20	70	6:1	2,0	73,55	50,39			
12	30/70	70	6:1	2,0	92,04	66,36			
13	80/20	60	12:1	2,0	85,60	81,35			
14	30/70	60	12:1	2,0	85,64	47,32			
15	80/20	70	12:1	2,0	87,28	86,51			
16	30/70	70	12:1	2,0	95,98	85,91			

Tabela 2. Valores de Índice de Acidez (IA) após esterificação.

		IA	IA	IA	IA
No	IA	5 % de	10 % de	5 % de	5 % de
		H₂SO₄	H_2SO_4	H_2SO_4	H_2SO_4
		80:1	80:1	60:1	60:1
1	12,67	4,28	3,96	5,87	5,87
2	11,75	3,67	3,57	4,41	4,41
3	15,02	4,29	4,49	5,22	5,22
4	13,76	2,95	2,63	3,78	3,89

Conclusões

As misturas 80:20 e 30:70 forneceram bons rendimentos, no entanto segundo a ANP o limite de óleo de mamoma deve ser de 30% para que a viscosidade do biodiesel seja adequada ao uso. O IA ainda não se encontra de acordo com as normas da ANP.

Agradecimentos

MCT-FINEP

Meneghetti, S. M. P. et al, *Energy & Fuels*. 2006, 20, 2262.
M.A. Martín, M. Berrios, J. Siles, A. Martín; 2007, Fuel 86,

³ Revista Biodiesel Julho **2008**, nº 30, Editora Letra Boreal, ISSN 1980-4008.

XVI Encontro de Química da Região Sul (16-SBQSul)