NOVEMBER 10-13, 2013. PIRENOPOLIS-GO.

NUMERICAL SIMULATION AND CONSTRUCTAL THEORY
APPLIED FOR GEOMETRIC OPTIMIZATION OF THIN
PERFORATED PLATES SUBJECT TO ELASTIC BUCKLING

Anderson L. G. Correia

Daniel Helbig

Mauro de V. Real

Elizaldo D. dos Santos

Liércio A. Isoldi

anderson_luis_88@hotmail.com

daniel.helbig@gmail.com

mauroreal@furg.br

elizaldosantos@furg.br

liercioisoldi@furg.br

Universidade Federal do Rio Grande (FURG) - Esdel&ngenharia (EE)
Italia Ave. km 8, 96203-900, Rio Grande do Sul, Brande, Brazil
Luiz A. O. Rocha

luizrocha@mecanica.ufrgs.br

Universidade Federal do Rio Grande do Sul (UFRG)epartamento de Engenharia
Mecéanica (DEMEC)

Sarmento Leite St. n°® 425, 90050-170, Rio Grand8wpPorto Alegre, Brazil

Abstract. Many elements in engineering are formed by thatgsl. Hulls and decks of ships
are examples of application. These elements cae hales that serve as inspection port,
access or even to weight reduction. The presendeolals causes a redistribution of the
membrane stresses in the plate, significantly edtetheir stability. In this paper the Bejan’s
Constructal Theory was employed to discover thé besmetry of thin perforated plates
submitted to elastic buckling phenomenon. To sttldg behavior simply supported
rectangular plates with a centered elliptical pedbon were analyzed. The purpose was to
obtain the optimal geometry which maximizes thecati buckling load. For this, the degrees
of freedom H/L (ratio between width and length teé plate) and bIL, (ratio between the
characteristic dimensions of the hole) were variddreover, different values of hole volume
fraction ¢ (ratio between the perforation volume and the nvasplate volume) were also
investigated. A computational modeling, based an REmite Element Method (FEM), was
used for assessing the plate buckling load. Thelteshowed that Constructal Design can be
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employed not only in the heat transfer and flu@hflproblems, but also to define the best
shapes in solid mechanics problems.

Keywords: Numerical Simulation, Constructal Theory, Elasiuckling

1 INTRODUCTION

It is possible to state that improving systems igumhtion for achieving better
performance is the major goal in engineering. le thast, the scientific and technical
knowledge combined with practice and intuition lgagded engineers in the design of man-
made systems for specific purposes. Soon afteratlvent of the computational tools has
permitted to simulate and evaluate flow architeesuwith many degrees of freedom.
However, while system performance was analyzedezatlated on a scientific basis, system
design was kept at the level of art (Bejan & Loegi2006a).

The Constructal Theory was created by Adrian Bejarl 997, when a new geometric
solution philosophy was applied to the conductigeling of electronics (Bejan, 1997, 2000).
These studies have a significant importance bectheseplayed a basic and starting point
role for the extension and application of Consalidtheory to problems in engineering and
other branches of science (Bejan & Lorente, 200&dbéossi, 2004). Moreover, Constructal
Theory has been employed to explain determinisyidhle generation of shapes in nature
(Bejan, 2000).

The Constructal Theory states that: “for a flowtegs to persist in time (to survive) it
must evolve in such a way that it provides easmr @asier access to the currents that flow
through it”. It is not only a principle from whiojeometric shape and structure are deduced,
but also an engineering method for optimizing tla¢hp for flows through finite-size open
systems (Bejan & Lorente, 2006b).

This is a major step toward making system desigaience. This theory indicates that if
a system is free to morph under global constrathtsbetter flow architecture is the one that
minimizes the global flow resistances, or maximittes global flow access. A basic outcome
of the Constructal Theory is that system shapeimtednal flow architecture do not develop
by chance, but they result from the permanent gteutpr better performance and therefore
must evolve in time. As in engineered systems,aiture the competition is permanent (e.qg.,
river basins, global circulations, trees and angnmabrph and improve in time under changing
constraints) (Bejan & Lorente, 2006a).

Concerning the engineering problems, the applitgbibf Constructal Design
(Constructal Theory for optimization of severaltsyss, e.g., engineering) has been discussed
largely in the recent literature: Azad & Amidpo@0(Q1), Beyene & Peffley (2009), Kang et
al. (2010) and Kim et al. (2010, 2011). As can Wmsenved, these studies have been
dominantly applied for the study of fluid mechanéesl heat transfer.

However, few studies in the field of mechanics dtenials employing the Constructal
Design have been developed. In this subject,wtaghy to mention the studies of Lorente &
Bejan (2002) and Lorente et al. (2010). The fispgr draws attention to a specific class of
thermal design problems, in which the system aechitre is derived from a combination of
heat transfer and mechanical strength considemtionthe latter work, it was studied the
analogy between the geometric configuring of heal ffuid flow and the configuring of the
stress distribution (“flow of stresses”). Recentiyher studies using the Constructal Design
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method in pure solid mechanics applications wereldped, see Rocha et al. (2012), Isoldi
et al. (2013) and Rocha et al. (2013). In theseksvetastic buckling and stress concentration
of thin perforated plates were analyzed.

In this context, the present work aims to apply @mnstructal Design method to define
the best shape of a thin perforated plate subjdotetastic buckling. To do so, a rectangular
simply supported plate with a centered ellipticatfpration was considered. The degree of
freedomH/L (ratio between height and length of the plate) #reddegree of freedoido/Lo
(ratio between the characteristic dimensions of ib&e) are optimized for different hole
volume fractionsp(ratio between the perforation volume and the magdate volume). The
objective is to maximize the critical buckling load

A numerical approach was adopted for assessingl#te buckling load, and the Lanczos
method was applied to the solution of the corredpan eigenvalue problem. The
computational model, based on the Finite Elemerthbtt (FEM), was verified comparing its
results with analytical solutions and with othenairical results.

2 BUCKLING OF PLATES

Buckling is an instability phenomenon that can ed€wa slender and thin-walled plate
(plane or curved) is subjected to axial compressidra certain given critical load the plate
will buckle very sudden in the out-of-plane transesdirection (Akesson, 2007).

The problem of the elastic buckling of a simply gogied rectangular plate of lendth
width H, thicknesst, and subjected to an axial lo&jJ as can be seen in Fig. 1, has great
importance in structural design.
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in the out-of-plane direction
Figure 1. Rectangular plate subject to uniaxial compressive load

The general expression for the critical bucklingess is (Akesson, 2007; El-Sawy &
Nazmy, 2001; Wang et al., 2005):

o. =k (1)
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where 77is the mathematical constaiit,and v are the Young’'s modulus and the Poisson’s
ratio of the plate material, respectively, the dgrttH/t is the slenderness (ratio) of the plate
andk is the buckling coefficient, given by:

beingm the number of half waves that occur in the plakersyitudinal direction at buckling,
defining the buckling mode of the plate. The budklcoefficient varies depending on the
type of stress distribution, and on the quotiertivieen the length and the width of the pldte (
has its lowest value for pure axial loading in coesgion, which also gives the lowest value
for the critical buckling stress). An important cheteristic of the buckling is that the
instability may occur at a stress level that isssaibtially lower than the material yield stress,
0.

When the load® (see Fig. 1) reaches a certain critical valueyesged a®., (or o for
the critical stress), the plate buckles and codlaps-or any given axial loading below this
critical value, it is possible to apply an addisbtransversal force without the occurrence of
buckling. The closer the axial load is to the catibuckling load, the less the ability to carry
an additional transversal horizontal loading becanfd exactly the critical buckling load,
this ability becomes zero — the plate is then lyaable to just carry the axial load. The critical
buckling load is defined by the product of crititaickling stress and thickness of the plate:

TE

12H2(1—|/2) ()

o

3 COMPUTATIONAL MODEL

In the present study the critical buckling loadotdtes was determined using the general-
purpose finite element program ANSY.SThe approach adopted for buckling analysis was
the eigenvalue buckling (linear). This numerical qadure is used for calculating the
theoretical buckling load of a linear elastic stune. Since it assumes the structure exhibits
linearly elastic behavior, the predicted bucklingds are overestimated (Madenci & Guven,
2006).

Therefore, if the component is expected to exhibitcsural instability, the search for the
load that causes structural bifurcation is refetieds a buckling load analysis. Because the
buckling load is not known a priori, the finite glent equilibrium equations for this type of
analysis involve the solution of homogeneous algiebequations whose lowest eigenvalue
corresponds to the buckling load, and the assatiatgenvector represents the primary
buckling mode (Madenci & Guven, 2006).

The strain formulation used in the analysis incluldeth the linear and nonlinear terms.
Thus, the total stiffness matrix<], is obtained by summing the conventional stiffhesatrix
for small deformation, Kg], with another matrix, Kg], which is the so-called geometrical
stiffness matrix. The matrixklg] depends not only on the geometry but also onirhl
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internal forces (stresses) existing at the starthefloading step,Ro}. Therefore the total
stiffness matrix of the plate with load levélg can be written as (Przeminieck, 1985):

[K]=[Ke]+[Ke] @

When the load reaches the level 8} £ A{ Py}, whereA is a scalar, the stiffness matrix
can be defined as:

[K]=[Ke]+A[K] )

Now, the governing equilibrium equations for thatplbehavior can be written as:

[[Ke]+A[Ke] {u} =A{R} (6)

where {U} is the total displacement vector, that may therefbe determined from:

{u} :[[KE]+/][KG]]_1/1{R)} (7)

At buckling, the plate exhibits a large increasésrdisplacements with no increase in the
load. From the mathematical definition of the mainverse as the adjoint matrix divided by
the determinant of the coefficients it is possitdenote that the displacementg}{tend to
infinity when:

det [[K]+A[Kg]]=0 (8)

Equation (8) represents an eigenvalue problem, whicen solved provides the lowest
eigenvalue A3, that corresponds to the critical load levetf = A{Po} at which buckling
occurs. In addition, the associated scaled displaoé vector U} defines the mode shape at
buckling. In the finite element program ANSYS, thigenvalue problem is solved by using
the Lanczos numerical method (ANSYS, 2005).

In all numerical simulations throughout this worket ANSYS' SHELL93 reduced
integration eight-node thin shell element (Figw@&)s adopted. This element has six degrees-
of-freedom at each node: three translatiams,{) and three rotationsg(,6,.6,) (ANSYS,

2005).
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Figure 2. ANSYS SHELL93 8-node element geometry

3.1 Computational model verification

To verify the computational modeling the criticait of non perforated plates are carried
out, and these numerical results are compared thwtfanalytical solutions given by Eqg. (3).
Considering the Fig. 1, steel plates with matepr@perties oft = 210 GPay = 0.30, and
oy= 250 MPa are simulated. The domain is dicretizganleans of triangular elements with
side size of 0.05 m. The dimensions, number of Wwalfes, and buckling coefficient for each

plate are presented in Table 1, as well as, thitaoed and numerical results for the critical
buckling load.

Table 1. Values and simulations of model verificatin process

Value Plate 1 Plate2 Plate 3
H (m) 1.43 1.00 0.77
L (m) 1.40 2.00 2.60
t (m) 0.01 0.01 0.01
m 1 2 3
k 4.00 4.00 4.06

Analytical Solution (kN/m) 372.16  759.20 1301.39
Numerical Solution (kN/m) 370.31  755.30 1294.00
Difference (%) -0.50 -0.51 -0.57

Observing the difference between analytical andemigal results in Table 1 it is possible
to affirm that the computational model to obtaire tbritical buckling load of a simply
supported massive plate is verified.

Another model verification is performed taking irdocount thin perforated steel plates.
The same plate 2 (see Table 1) used in the finsficagion is studied, however centered
circular holes are considered. In Table 2 the tedat the critical buckling load are compared
with those obtained by the numerical study devealdpeEl-Sawy & Nazmy (2001).
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Table 2. Comparison of critical buckling load for date with centered circular hole

Per (KN/m) Per (KN/m)

Hole Diameter (m) Reference Present work

Difference (%)

0.10 766.19 763.56 -0.34
0.20 789.36 786.50 -0.36
0.30 825.08 820.87 -0.51
0.40 849.26 847.78 -0.17
0.50 901.54 898.79 -0.31
0.60 986.46 981.22 -0.53

Again an excellent agreement is obtained, bein®3%. the maximal difference
encountered, i.e., the computational model propasedrified.

4 CONSTRUCTAL DESIGN

Most of the activity in the field of constructaletbry and design is devoted to the
development of tree-shaped architectures for filosv and heat transfer. However, it is
possible to consider the solid structures as flgstesns that are configured and morph so that
they facilitate the flow of stresses. To look atsses as flow is quite unusual but it is
effective when the objective is to discover thetbmmnfiguration of the stressed volume
(Lorente et al., 2010).

Based on this, the geometric elastic buckling ogation for thin plates with centered
elliptical hole was investigated. Keeping consttrg plate thickness)( the characteristic
dimensions of the perforatiofi{ andLy, as can be seen in Fig. 3) can vary, as wellhas, t
plate external dimensionsl@ndL). So, the degrees of freedom are definedHagk:o andH/L
for constant areas of the hole. In addition, th& hariation is governed by the parameter
called hole volume fractiong]. This parameter represents the relation betwbenhble
volume {p) and the total plate volume without hol&).( Therefore, for the plate with a
centered elliptical perforation (Fig. 3) the hotdume fraction is defined as:

Vo _ (H,Lt)/4 _ mHo L,

=0= 9
¢ \% HLt 4HL ®)

whereris the mathematical constahty andLg the hole characteristic dimensions of hole in
y and x directions, respectivelyH is the height of platd, is the length and is the plate
thickness.
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Figure 3. Plate with centered elliptical hole

The objective is to determine the optimal plate ety that is characterized by the
maximization of critical buckling load for the peréted plate. For this, based on Constructal
Design, the variables of the problem were constldimensionless:

~ ~ % 1T O T Xy 1t1H!LaH’

%5 0,LA,L=2Y i L (10)
beingA the area of plate without hole defined as:

A=HL (11)

In summary, six different values are consideredtiier hole volume fraction parameter
(@. For eachgthree different ratio$d/L were considered and hence for e&tth several
values ofHy/L, were investigated, as illustrated in Fig. 4.

/

¢

H
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{ \ H
Several =% y Several =2
Ly —= 0.50 L
H
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0

Figure 4. Flow chart illustrating the optimization process

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American @ass on Computational Methods in Engineering
Z.J.G.N Del Prado (Editor), ABMEC, Pirendpolis, GBrazil, November 10-13, 2013



A. Correia, D. Helbig, M. Real, E. dos Santos,daldli, L. Rocha

5 RESULTS AND DISCUSSION

To define the best shape of a rectangular simpdpaeued perforated thin plate subjected
to elastic buckling, by means the Constructal Desigethod, six values are adopted for the
hole volume fractionyp= 0.02, 0.05, 0.08, 0.15, 0.20, and 0.25. For eaithree steel plates
with different ratioH/L are considered (see Fig. 4). The external dimessioandL are the
same presented in Table 1. Besides, several tdgibs are investigated for each plate.

It is worth to emphasize that the highest numeracdical buckling load presented in
Table 1 is used as reference to obtain the dimelesis value for the critical bucking load of
perforated plates.

In a first optimization level it is possible to éiroptimal geometries related to tHg/L,
variation. So, for eachd/L and for eachg a best shape for the perforated plate can be
obtained. For instance, Fig. 5 shows the variatiberitical buckling load regarding the ratio
Ho/Lo, for plates withH/L = 0.50 and for the six value of hole volume frastimentioned
above.

1.10

1.00 -

0.90 ~

0.80 -

P crdim

0.70 ~

0.60 -

0.50 +

0.40
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

H/L,

Figure 5. Effect of Ho/L o over P i fOr various values ofg and fixed ratio of H/L = 0.50

In Fig. 5 it is possible to observe that for thghast values ofpthere are intermediate
well defined optimal geometries, i.e., a geometrgttconducts to the maximum critical
buckling load. As the value @f decreases, the optimal value blylLo), increases until the
lowest value ofgp = 0.02 where the highest value d§/Ly leads to the best mechanical
performance.

Figure 6 also presents the valuesPafqim versus theHo/Lo variation, however in this
graph all ratiodH/L for a specific hole volume fractio€ 0.20) are exhibited.
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Figure 6. Effect of Ho/Lo over P gim for various values ofH/L and fixed value ofg = 0.20

Figure 6 indicates that comparatively the plate grasents the higher critical buckling
has the ratidH/L = 0.30. However, the best shape for the plate With = 1.02 reaches a
superior value of maximum critical buckling if coampd with that obtained for the plate
H/L = 0.50. In addition, the worst case for the pldte = 0.30 has a value for the critical load
lower than those obtained for several cases oépkf. = 0.50 andH/L = 1.02, showing the
importance of the shape perforation in the perforweaof the plates subjecting to buckling.

After that a second optimization level can be dafirstarting from the best shapes
encountered in the first optimization level. Nowy Bach hole volume fraction proposed the
maximum value of critical load for each rahidL is achieved, as can be seen in Fig. 7.

One can note in Fig. 7 that for valuesgfrgest than 0.08 the critical buckling load for
the plateH/L = 1.02 achieves a superior level than the critioad of plateH/L = 0.50.
However this trend is not observed for valuegggmaller than 0.08. Moreover, it is possible
to identify that the dimensionless maximum critibackling loads for all cases have a value
around 1.05, except the platé&. = 0.30 which achieves 1.15.

The best geometry that conducts to the maximuncaribuckling load obtained in Fig. 7
are depicted in Fig. 8. In this figure it is po$sito observe the effect ¢f/L over the once
optimized ratio of /L), for all studied hole volume fractiong)( In general, it is observed
an augmentation of the optimal ratio d¢fo(lLo)o With the increase of the ratitd{L), with
exception forg = 0.02 where the ratibl/L is almost insensitive over the optimal ratio of

(HOILO)O-
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Finally, the influence of the hole volume fractignin the geometrical optimization
process was determined by grouping the best restilisg. 7 and its correspondent ratio
Ho/Lo (showed in Fig. 8), generating the Fig. 9 and E@.respectively. In other words, it is
obtained the twice maximized dimensionless critioad P gim)mm and the twice optimized
ratio of Ho/Lo)oo @s function of the perforation volume fracti@). (

CILAMCE 2013
Proceedings of thEXXIV Iberian Latin-American Congress on Computaidviethods in Engineering
Z.J.G.N Del Prado (Editor), ABMEC, Pireno6polis, G&azil, November 10-13, 2013



Numerical Simulation and Constructal Theory Applied Geometric Optimization of Thin Perforated Riat
Subject to Elastic Buckling

1.16

1.14

1.12

1.10

1.08 -

(Pcr,dim )mm

1.06 -

1.04 -

1.02 T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

4

Figure 9. Effect of gover the twice maximized Pe,gim)mm

Figure 9 indicates that there is a hole volumetibac(¢ = 0.15) that conducts to a
minimum value among the maximum critical bucklingds. Other indication of Fig. 9 is that
the maximum critical buckling load among all cases obtained for @@= 0.25.
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Figure 10. Effect ofgover the twice maximized Ho/Lg)oo
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In Fig. 10 one can observe how the hole volumetitvacis related with theHg/Lo,
existing a @ value augmentation accompanied by a decreaseeofatiio Ho/Lo. It is also
noticed that, for the highest values éfthe twice optimized ratio ofHy/Lo)oo tends to a
constant value ofHy/Lg)oo = 0.4.

6 CONCLUSIONS

The importance of a better understanding aboutnteehanical behavior of thin steel
plate structural components is evident due its waplication in main branches of
engineering, mainly if these plates have a pernfomathat causes meaningful changes in its
mechanical behavior. Moreover, the search for giratelements with optimized geometries
IS a constant requirement in engineering applioatio

In this context, the main goal of the present wods to develop a numerical study of
thin perforated steel plates subjected to elastaklng, aiming do obtain its best shapes, i.e.,
the shapes that can support the higher valueshirctitical buckling load. To do so a
computational model based on the Finite Elemenhbt{FEM) was employed to solve the
several geometries for the perforated plate whidrewdefined according to Constructal
Design methodology.

The results indicated that the variation of thepghand dimensions of the plate and hole
can define geometries with excellent performancesvell as geometries which lead to an
undesirable mechanical behavior. The best shapdyrieéimes better than the worst shape.
Moreover, the optimization results showed thateherno universal shape that leads to the
best mechanical performance, being required thdayment of Constructal Design method
to seek for the best shapes.

In addition, once again, it was possible to showat tthe Constructal Design can be
employed in mechanic of materials with the sameieficy that it has been broadly used in
fluid mechanics and heat transfer applications.
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