
M I N I R E V I E W

E¥uxas amechanismfordrug resistance in
Mycobacteriumtuberculosis
Pedro Eduardo Almeida da Silva1, Andrea Von Groll1,2, Anandi Martin2 & Juan Carlos Palomino2

1Universidade Federal do Rio Grande, Rio Grande, Brazil; and 2Mycobacteriology Unit, Institute of Tropical Medicine Antwerp, Belgium

Correspondence: Juan Carlos Palomino,

Mycobacteriology Unit, Institute of Tropical

Medicine, Nationalestraat 155, 2000

Antwerp, Belgium. Tel.: 132 3 247 6334; fax:

132 3 247 6333; e-mail: jcpalomino@itg.be

Received 13 January 2011; revised 7 June 2011;

accepted 7 June 2011.

Final version published opline 4 July 2011.

DOI:10.1111/j.1574-695X.2011.00831.x

Editor: Patrick Brennan

Keywords

tuberculosis; drug resistance; efflux;

transporters; ATP-binding cassette; pumps.

Abstract

Tuberculosis remains an important global public health problem, with an

estimated prevalence of 14 million individuals with tuberculosis worldwide in

2007. Because antibiotic treatment is one of the main tools for tuberculosis

control, knowledge of Mycobacterium tuberculosis drug resistance is an important

component for the disease control strategy. Although several gene mutations in

specific loci of the M. tuberculosis genome have been reported as the basis for drug

resistance, additional resistance mechanisms are now believed to exist. Efflux is a

ubiquitous mechanism responsible for intrinsic and acquired drug resistance in

prokaryotic and eukaryotic cells. Mycobacterium tuberculosis presents one of the

largest numbers of putative drug efflux pumps compared with its genome size.

Bioinformatics as well as direct and indirect evidence have established relation-

ships among drug efflux with intrinsic or acquired resistance in M. tuberculosis.

This minireview describes the current knowledge on drug efflux in M. tuberculosis.

Introduction

The high mortality and morbidity associated with tubercu-

losis (TB), especially in poor countries, is one of the features

characterizing tuberculosis as a major public health concern

worldwide. In the absence of a more effective vaccine,

chemotherapy is one of the main tuberculosis control tools.

There is an important increase in the prevalence of tubercu-

losis cases in several settings with multidrug- and exten-

sively-drug resistance rates on the rise (World Health

Organization, 2010b). Multidrug-resistant tuberculosis

(MDR-TB) is caused by strains of Mycobacterium tubercu-

losis that are resistant to at least rifampicin and isoniazid,

two key drugs in the treatment of the disease. Extensively

drug resistant tuberculosis(XDR-TB), on the other hand, is

caused by strains of M. tuberculosis that, in addition to being

MDR, are also resistant to any quinolone and to one of the

three injectable second-line drugs: kanamycin, capreomycin

or amikacin (Migliori et al., 2007). Patients with MDR-TB are

treated following the recommendations of the WHO accord-

ing to defined parameters (World Health Organization,

2010a). There are no official specific recommendations for

the treatment of patients with XDR-TB, although positive

experiences have been reported (Bonilla et al., 2008). Patients

with XDR-TB have fewer options for treatment and risk

higher mortalities, especially in HIV-coinfected persons, as

has been reported earlier (Gandhi et al., 2006).

Although new candidate drugs are under development, it

will probably take several years until one new anti-tuberculosis

drug becomes available, stressing the need to better understand

the mechanisms of resistance to the currently available drugs

and to reduce the incidence of drug-resistant cases (Dye, 2009).

Intrinsic drug resistance in M. tuberculosis has been attrib-

uted to a combination of a highly impermeable mycolic acid-

containing cell wall and an active drug efflux mechanism

(Jarlier & Nikaido, 1994; De Rossi et al., 2006). Acquired drug

resistance, on the other hand, does not occur by horizontal gene

transfer as in other microorganisms, because M. tuberculosis

lack plasmids and genomic DNA transfer has not been

described, occurring instead by spontaneous mutations in

specific target genes rendering the bacteria resistant to a given

drug (Ramaswamy & Musser, 1998). This has to be distin-

guished from the clinical definition of acquired drug resistance,

defined as resistance to one or more drugs in M. tuberculosis

strains recovered from patients who have received previous

anti-tuberculosis treatment (World Health Organization, 1997).

Our knowledge of drug resistance in M. tuberculosis has

increased considerably in the last 20 years. Gene mutations
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in several loci have now been characterized as the main basis

for drug resistance (Zhang & Telenti, 2000). However, in a

certain proportion of clinical isolates, resistance cannot be

explained by the presence of gene mutations as it occurs in

up to 30% of isoniazid-resistant or in around 5% of

rifampicin-resistant clinical isolates of M. tuberculosis, sug-

gesting that other mechanisms of drug resistance must exist

(Louw et al., 2009). Among these, efflux has been proposed

as the basis for drug resistance in clinical isolates lacking

previously described gene mutations (Escribano et al., 2007;

Spies et al., 2008)

Drug efflux, where a transporter is capable of extruding

multiple drugs without apparent common structural simi-

larity, was first described in eukaryotic cells. (Ambudkar

et al., 1992, 1999). Soon, it became apparent that multidrug

efflux systems were also present in several microorganisms

(McMurry et al., 1980; Nikaido, 1998; Paulsen & Lewis,

2001).

More recently, drug efflux has been described as an

important mechanism for intrinsic and acquired drug

resistance in numerous prokaryotic and eukaryotic cells

(Levy, 1992; Nikaido & Zgurskaya, 1999; Li et al., 2003,

2004; Webber & Piddock, 2003; Piddock, 2006a). Drug

efflux has also been associated with pathogenicity, virulence,

biofilm formation and quorum sensing (Piddock, 2006b;

Bina et al., 2009; Chan & Chua, 2010; Høiby et al., 2010).

Not all the currently available antituberculosis drugs, how-

ever, are considered as substrates of efflux mechanisms

(Palomino et al., 2009).

Analysis of the available bacterial genomes has shown that

putative drug efflux pumps (EPs) constitute 6–18% of all

transporters found in any given bacterial cell. Mycobacter-

ium tuberculosis presents one of the largest numbers of

putative EPs compared with its genome size (Paulsen et al.,

2001). Consequently, active drug efflux systems have been

shown to be present in mycobacteria (Sander et al., 2000;

Pasca et al., 2005), extruding structurally and functionally

unrelated compounds, and for this reason, they are also

known as MDR EPs. The mechanisms for the induction

and regulation of these EPs are not yet fully understood.

Moreover, their implication in clinical drug resistance needs

to be completely elucidated (Putman et al., 2000). This

minireview summarizes our current knowledge on EPs in

M. tuberculosis taking into account bioinformatics as well as

direct and indirect evidence (Table 1).

Drug efflux in the genus Mycobacterium

In Mycobacterium smegmatis as well as in other mycobacter-

ia, the cell wall, rich in mycolic acids, functions as an

efficient barrier limiting the access of several molecules

including antibiotics. However, this is not enough for

explaining the intrinsic drug resistance of these microorgan-

isms (Li et al., 2004).

Although efflux mechanisms have been studied in several

mycobacteria (Aı́nsa et al., 1998; Nomura et al., 2004;

Ramon-Garcia et al., 2006; Rodrigues et al., 2008), for

practical reasons, M. smegmatis has been used as the model

system for expressing heterologous putative EP genes and to

study the efflux mechanism itself (Liu et al., 1996; Takiff

et al., 1996; De Rossi et al., 1998a; Silva et al., 2001; Pasca

et al., 2005; Kim et al., 2008).

The first EP characterized in mycobacteria was the LfrA

present in M. smegmatis that, expressed in multicopy

plasmids, confers low-level resistance to fluoroquinolones,

ethidium bromide, acridine and some quaternary ammo-

nium compounds (Liu et al., 1996; Takiff et al., 1996).

Other EPs initially characterized in mycobacteria were

TetV, conferring resistance to tetracycline (De Rossi et al.,

1998a), and Tap, which confers low-level resistance to

aminoglycosides and tetracycline when overexpressed in M.

smegmatis (Aı́nsa et al., 1998). These reports can be con-

sidered as precursors of the different studies of drug efflux in

M. tuberculosis that will be described below.

Putative EPs in M. tuberculosis

EPs, also known as transporters, have been classified into

five superfamilies: ATP-binding cassette (ABC), major facil-

itator super-family (MFS), resistance nodulation division

(RND), small multidrug resistance (SMR) and multidrug

Table 1. Efflux pumps for anti-tuberculosis drugs

Drug efflux pump Transporter family Drug References

Rv1258c MFS STR RIF, OFX, INH� Aı́nsa et al. (1998), Jiang et al. (2008)

Rv1410c MFS STR,INH, RIF Silva et al. (2001), Jiang et al. (2008)

Rv1634 MFS FQ De Rossi et al. (2002)

Rv2459 MFS INH, EMB Gupta et al. (2010a, b)

Rv2846c (EfpA) MFS INH, ETH Wilson et al. (1999)

DrrABC ABC EMB, FQ, STR Choudhuri et al. (2002)

Rv2686c-Rv2687c-Rv2688c ABC FQ Pasca et al. (2004)

Rv0194 ABC STR Danilchanka et al. (2008)

MmpL RND INH Pasca et al. (2005)

STR, streptomycin; RIF, rifampicin; OFX, ofloxacin; INH, isoniazid; FQ, fluoroquinolones; ETH, ethionamide; EMB, ethambutol.
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and toxic-compound extrusion (MATE). While MFS, SMR,

RND and MATE members are secondary transporters,

typically energized by the proton motive force (H1 or

Na1), members of the ABC superfamily use ATP as the

energy source and are considered as primary transporters

(Tseng et al., 1999; Putman et al., 2000; Cattoir, 2004; Li &

Nikaido, 2009; Saier et al., 2009).

The ABC superfamily is a large and ancient family that

consists of 52 subfamilies comprising uptake or efflux

systems for a wide range of substrates including drugs,

sugars, amino acids, carboxylates, metal ions and peptides

(Paulsen et al., 2001). ABC transporters have been associated

with the acquisition of drug resistance in mycobacteria. The

gene cluster drrA-drrB-drrC, with high similarity to an ABC

exporter of daunorubicin in various Streptomyces species,

determines resistance to a broad range of clinically relevant

antibiotics when overexpressed in M. smegmatis (Guilfoile &

Hutchinson, 1991; Choudhuri et al., 2002). Another ABC

transporter coded by the genes Rv2686c-Rv2687c-Rv2688c

when overexpressed in M. smegmatis increased by eightfold

the minimum inhibitory concentrations (MIC) of ciproflox-

acin when the entire operon was overexpressed and by four-

fold when only Rv2686c was overexpressed (Pasca et al., 2004).

In M. tuberculosis, genes coding for ABC transporters

represent 2.5% of its entire genome and by sequence analysis

at least 12 putative EP genes have been identified: Rv0194,

Rv1218c-Rv1217c, Rv1273c-Rv1272c, Rv1348-Rv1349,

Rv1456c-Rv1457c-Rv1458c, Rv1473, Rv1667c-Rv1668c,

Rv1686c-Rv1687c, Rv1819, Rv2477, Rv2688c-Rv2687c-

Rv2686c and drrA-drrB-drrC (Braibant et al., 2000).

A novel ABC multidrug EP was identified in M. tubercu-

losis while investigating the molecular mechanisms for

resistance to b-lactam antibiotics (Danilchanka et al.,

2008). Rv0194 was identified not only as an EP involved in

resistance to b-lactams in M. tuberculosis, but it was also

found that low-level expression of rv0194 increased the

resistance of Mycobacterium bovis BCG to several antibiotics.

More recently, Balganesh et al. (2010) characterized another

new major ABC transporter in M. tuberculosis found to be

responsible for the efflux of a wide variety of substrates

including novobiocins, pyrazolones, biarylpiperazines, bisani-

linopyrimidines, pyrroles and pyridones. MICs of these com-

pounds were decreased by four- to eightfold in mutants

lacking Rv1218c compared with the wild-type strain.

Until now, however, the role of ABC EPs in conferring

clinically relevant resistance to multiple drugs has not been

described (Piddock, 2006a).

Bioinformatics tools (http://www.membranetransport.

org/) have identified up to 20 potential EP genes belonging

to the MFS drug transporters in the M. tuberculosis genome

(Saier et al., 2009). Furthermore, by sequence and motif

similarity to EPs present in several microorganisms, at least

16 putative EP genes of this family have been identified in

M. tuberculosis: Rv0037c, Rv0191, Rv0783c, Rv0849,

Rv1250, Rv1258c, Rv1410c, Rv1634, Rv1877, Rv2333c,

Rv2456c, Rv2459, Rv2846c (efpA), Rv28994, Rv3239c and

Rv3728 (De Rossi et al., 2002). The Tap protein and LfrA

mentioned before are EPs belonging to the MFS family

conferring resistance to tetracycline and fluoroquinolones,

respectively (Takiff et al., 1996; Aı́nsa et al., 1998). Also, P55,

the protein encoded by the Rv1410c gene, was characterized

as a multidrug EP of the MFS family in M. tuberculosis and

M. bovis conferring resistance to streptomycin and tetracy-

cline (Silva et al., 2001). P55 has been recently been shown

to require the cell surface LprG lipoprotein to function

properly (Farrow & Rubin, 2008), with both proteins being

critical for the survival of M. tuberculosis during infection

(Bigi et al., 2004).

The Mmr protein of M. tuberculosis has been identified as

a multidrug EP of the SMR family that confers resistance to

acriflavine, ethidium bromide and erythromycin in M.

smegmatis when expressed in a multicopy vector (De Rossi

et al., 1998b).

EPs of the RND family are most commonly found in

Gram-negative bacteria. In M. tuberculosis, the mmpL7 gene

that encodes a putative RND transporter confers a high-level

resistance to isoniazid when overexpressed in M. smegmatis

(Pasca et al., 2005). This resistance was reversed in the

presence of EP inhibitors. More recently, on characterizing

several azole-resistant spontaneous mutants of M. tubercu-

losis and M. bovis BCG, an increased econazole efflux and an

increased transcription of mmpS5-mmpL5 genes that encode

a hypothetical EP of the RND family were also found.

Furthermore, it has been demonstrated that upregulation

of these genes was linked to mutations in either the Rv0678

gene, its hypothetical transcriptional regulator or in its

putative promoter/operator region (Milano et al., 2009).

Interestingly, the M. tuberculosis genome revealed the pre-

sence of 15 putative transmembrane proteins, predicted to

belong to the RND family (http://genolist.pasteur.fr/Tuber

cuList/). Because these proteins showed some characteristics

restricted to mycobacteria they were designated MmpL

(mycobacterial membrane proteins, large).

Transporters belonging to the MATE family have not

been reported in mycobacteria, being more common in

Escherichia coli and Vibrio sp. (Li & Nikaido, 2004).

Overexpression and antimicrobial
resistance profile

Using M. smegmatis or M. bovis as expression hosts and

plasmids carrying genes coding for putative EPs in M.

tuberculosis, increased resistance to several drugs has been

reported. Using this approach, Rv1258c and Rv1410

(P55) encoding MFS transporters, produced resistance to

tetracycline and aminoglycosides. Similarly, overexpression
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of Rv1634, another MFS family member, was found to

confer resistance to fluoroquinolones (Silva et al., 2001; De

Rossi et al., 2002).

The study by Ramon-Garcia et al. (2007) showed that the

stp gene (Rv2333c) from M. tuberculosis conferred resistance

to spectinomycin and tetracycline when expressed in M.

bovis BCG. Overexpression studies have also shown that

Rv0194 that codes for an ABC-type EP conferred MDR in

M. bovis BCG and M. smegmatis and also reduced the

accumulation of ethidium bromide in the latter (Danilchanka

et al., 2008).

More recently, using recombinant strains of M. tubercu-

losis H37Ra, the overexpression of Rv2459 (jefA) led to an

increase in the MICs of isoniazid and ethambutol. These

MIC values decreased again when the bacteria were grown

in the presence of the EP inhibitors carbonyl cyanide

m-chlorophenyl hydrazone (CCCP) and verapamil.

Bioinformatics analyses have also shown a close relation of

the JefA protein with drug EPs in other clinically relevant

bacteria (Gupta et al., 2010b).

Drug-induced EPs

Although the overexpression of genes coding for putative

EPs has been a widely used strategy, exploring drug-induced

alterations in gene expression has also been used to associate

several EPs with different drugs.

Using this approach, Siddiqi et al. (2004) reported a MDR

clinical isolate of M. tuberculosis that, when grown in the

presence of subinhibitory concentrations of rifampicin and

ofloxacin, showed increased transcription of the gene

Rv1258c that encodes a tap-like EP. Although drug resis-

tance-associated mutations were detected in gyrA and rpoB,

it was hypothesized that the high level of resistance to

rifampicin and ofloxacin could reflect an additional over-

expression of the gene Rv1258c. Similar results were ob-

tained in another study with a clinical MDR isolate in which

the expression of Rv1258c and Rv1410c was significantly

increased in the presence of rifampicin or isoniazid (Jiang

et al., 2008). Another study that supports the involvement of

Rv1258c as a putative EP in M. tuberculosis has been

reported by Sharma et al. (2010), showing that piperine, a

trans–trans isomer of 1-piperoyl-piperidine, inhibited the

clinically overexpressed Rv1258c gene.

One of the first studies to use genome-wide expression

analysis in the presence of an antibiotic was reported by

Wilson and colleagues. In this study, using microarray

hybridization and induced gene expression, it was found

that isoniazid and ethionamide increased the expression of

efpA, a member of the MFS family of EPs (Wilson et al.,

1999). A more recent study by Gupta et al. (2010a), using a

DNA microarray with 25 drug EP genes of M. tuberculosis,

found overexpression of 10 genes after exposure to various

anti-tuberculosis drugs. These included Rv3065 and

Rv2938, already reported as active drug EPs in M. tubercu-

losis in previous studies, and eight other EP genes reported

for the first time (Rv1819, Rv2209, Rv2459, Rv2477c,

Rv2688, Rv2846, Rv2994 and Rv3728). The simultaneous

overexpression of the EP genes Rv2459, Rv3728 and Rv3065

was associated with resistance to the combination of iso-

niazid and ethambutol that, along with streptomycin, were

identified to group together, signaling their probable im-

portance in the development of MDR in M. tuberculosis. An

interesting study has reported the induction of high-level

resistance to isoniazid (up to 20 mg mL�1) in M. tuberculosis,

which could be reduced 100-fold by subinhibitory concen-

trations of reserpine, supporting the argument that induced

drug resistance might be due to an EP mechanism (Viveiros

et al., 2002).

Finally, expression of Rv0341, Rv0342 and Rv0343 (iniB,

iniA and iniC, respectively) is induced by isoniazid or

ethambutol. It has been proposed that iniA, albeit not a

typical EP, could be functioning like an MDR-pump system

(Colangeli et al., 2005).

The use of EPs inhibitors as a possible alternative or

adjuvant in antituberculosis therapy has been considered as

an interesting option since some time ago. Shortening the

duration of tuberculosis treatment and reducing the spread

of drug resistance are high priorities for the control of the

disease. The effects of EP inhibitors in reducing the resis-

tance to antibiotics have been clearly shown in other

bacteria (Aeschlimann et al., 1999). Considering tuberculo-

sis, Amaral et al. (2008) have recently argued on the

possibility of using thioridazine, an inhibitor of EPs, in the

treatment of MDR/XDR-TB. Thioridazine has been found

previously to be active in killing intracellular MDR M.

tuberculosis at concentrations below those normally present

in the plasma of patients (Ordway et al., 2003). Similarly, a

recent study has reported promising therapeutic activity of

thioridazine in a mouse model of MDR-TB (Van Soolingen

et al., 2010). Another study has shown that the addition of

verapamil, a known EP inhibitor, to first-line anti-tubercu-

losis drugs significantly reduced CFU in the lungs of mice

after 1 and 2 months of treatment (Louw et al., 2011).

Taking these results into account, further clinical trials

might be warranted to assess whether these compounds

may be safely and efficiently used as an adjunct therapy in

tuberculosis.

Putative transcriptional regulator of EP
genes

Several examples of the transcriptional regulation of EP

genes have been described in the literature. The TetR-like

transcriptional repressor LfrR regulates the expression of

lfrA and it has been shown that some compounds such as
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acriflavine, ethidium bromide or rhodamine 123 enhance

the expression of this local regulator. Gene disruption in the

native host rendered the mutant more susceptible to multi-

ple drugs such as fluoroquinolones, ethidium bromide and

acriflavine (Buroni et al., 2006; Bellinzoni et al., 2009).

In M. tuberculosis, an antibiotic tolerance system similar

to the MDR system present in Actinobacter sp has been

described. This system is dependent on whiB7, which is

induced by subinhibitory concentrations of antibiotics.

Expression of whiB7 was found to be increased fivefold in

the late exponential and early stationary phases, with a

subsequent decline to control levels in the late stationary

phase of growth. Gene expression analysis showed that

transcription of whiB7 determined drug resistance by acti-

vating the expression of a regulon that includes Rv1258c and

Rv1473 (Morris et al., 2005; Geiman et al., 2006).

MarA is another transcriptional regulator that, in E. coli,

is related to an increase of drug efflux and, when over-

expressed in M. smegmatis, resulted in an increased resis-

tance to rifampicin, isoniazid, ethambutol, tetracycline and

chloramphenicol. MarA was mainly associated with a posi-

tive regulation of an EP of the RND family of transporters

(McDermott et al., 1998). In M. tuberculosis, Schaller et al.

(2002) observed that low concentrations of salicylate in-

duced resistance to different drugs such as rifampicin,

isoniazid, ethambutol and streptomycin. Although salicylate

can also induce antibiotic resistance through a Mar-inde-

pendent pathway, it is possible to infer the presence of a

transcriptional activator like MarA in M. tuberculosis (Co-

hen et al., 1993). In fact, Rv1931c, Rv3736 and Rv3833

present in the M. tuberculosis genome show 30% identity to

MarA and could be related to an EP gene overexpression

(http://genolist.pasteur.fr/TubercuList/).

It remains to be seen and investigated how these mechan-

isms of transcriptional regulation occur in real life and

whether they are responsible for clinically relevant drug

resistance in M. tuberculosis.

EPs and virulence

It has been recently shown that there is a relationship

between EPs and virulence. In some bacteria, EPs can also

export virulence determinants such as adhesins, toxins or

other proteins that are important for colonization and

persistence in human and animal cells (Piddock, 2006b).

The survival of M. tuberculosis in the macrophage de-

pends on its capacity to obstruct the normal maturation of

the phagosome. Isolation of defective mutants unable to

arrest phagosome maturation showed that some affected

genes were homologues of putative EPs and lipid synthesis

enzymes. One such mutant had a knockout in Rv1819c,

which is characterized as a putative EP of the ABC family. It

is interesting to note that an increasing number of MDR

ABC transporters have been shown to transport lipids. Thus,

it is feasible that Rv1819c might also be responsible for the

transport of lipids to the exterior of the bacterium (Borst

et al., 2000; Pethe et al., 2004).

In M. tuberculosis lprG (Rv1411) and P55 (Rv1410) form

an operon. Mutants DRv1411 of M. tuberculosis H37Rv do

not produce LprG or P55 and result in attenuated strains in

a mouse model of infection, confirming that lprG is required

for the growth of M. tuberculosis in immunocompetent mice

(Bigi et al., 2004). However, conservation of the operon in

the nonpathogenic M. smegmatis suggests that the protein is

at least partially necessary in environmental mycobacteria. It

has also been shown in M. smegmatis that the lprG-Rv1410c

operon is required for resistance to ethidium bromide and

for maintaining a normal cell surface composition. (Farrow

& Rubin, 2008). More recently, the role of P55 in the

oxidative stress response and normal growth in vitro has

been reported (Ramón-Garcı́a et al., 2009).

Recently, Domenech et al. (2009) showed that the ABC

transporter encoded by Rv1819c, which shares 39% similarity

to the BacA protein of Brucella abortus, plays a significant role

in the maintenance of extended chronic tuberculosis infection

in mice. Mycobacterium tuberculosis strains deficient in BacA

showed no compromise of the membrane integrity, but had

increased resistance to bleomycin. Expression of this BacA

homologue in E. coli conferred resistance to antimicrobial

peptides (Domenech et al., 2009). It is not known by which

mechanism the BacA deficiency causes this attenuation of

infection in mice; however, it has been reported that in B.

abortus bacA mutants induce larger amounts of proinflamma-

tory cytokines compared with the parental strain (Parent et al.,

2007). While BacA does not appear to contribute directly to

drug efflux or efflux of components of the M. tuberculosis cell

wall, it may be involved in the transport of certain antimicro-

bial peptides important in determining the progression of

infection in the host.

A recent interesting study has been reported by Dutta

et al. (2010) analyzing the effects of thioridazine in

M. tuberculosis. On analyzing gene expression profiles after

the treatment of M. tuberculosis with thioridazine, it was

found that the drug modulated the expression of genes

coding for membrane proteins, EPs, oxidoreductases and

enzymes of fatty acid metabolism and aerobic respiration.

The authors hypothesize that thioridazine also damages the

cell envelope of the bacteria and turns on the expression of

the sigmaB regulon that has been shown to be responsible

for the protection of M. tuberculosis from envelope damage

(Fontán et al., 2009).

Concluding remarks

Bioinformatics and experimental data showing the rela-

tionship between efflux mechanisms and drug resistance in
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M. tuberculosis have stressed the need to further our knowl-

edge on the mechanisms of drug resistance in tuberculosis.

It is necessary to better identify the correlation between

EP gene expression and their inducers, both under environ-

mental conditions and in the presence of drugs. Although

the EPs described in M. tuberculosis show a narrow spectrum

of substrates, point mutations could radically alter the

spectrum of substrates as has been described in other

microorganisms (Klyachko & Neyfakh, 1998).

Molecular analysis using multicopy plasmids or gene

knockouts has the advantage of identifying the precise locus

involved in efflux-mediated resistance; however, its limitation

is the limited approach on the complex interaction between

the EP, the regulatory proteins and several inducers. Pheno-

typic methods, on the other hand, have the advantage of

identifying integral efflux mechanisms as a result of the broad

interaction of several genes responsible for efflux, but they are

unable to determine the specific EP involved. While the role of

efflux in acquired and intrinsic drug resistance is not com-

pletely elucidated, it is possible to consider this mechanism as

a factor contributing to clinical drug resistance working in

synergy with other mechanisms of resistance such as imper-

meability of the cell wall and drug resistance mutations.

Regarding clinical practice, the detection of drug efflux

remains an important goal because it allows identifying the

mechanisms that could be related to an increase in drug

resistance. For this reason, it would be important to develop

accurate and simple diagnostic methods that could identify

and characterize efflux events. Along this line, although not

yet used routinely, MIC determination in the presence or

absence of known efflux inhibitors or evaluation of substrate

accumulation using radiolabeled substrates or instrument-

free methods have been proposed (Martins et al., 2006;

Viveiros et al., 2008).

Our current knowledge on EPs indicates that efflux

inhibitors could become candidate tools to treat infectious

diseases (Lomovskaya & Bostian, 2006; Piddock, 2006a).

Certain compounds already in use in clinical practice for

other purposes, such as verapamil, reserpine and omepra-

zole, are capable of inhibiting efflux mechanisms in several

eukaryotic and prokaryotic cells. However, they have been

mostly active at concentrations higher than those used

clinically (Kaatz, 2002).

In conclusion, several compounds that inhibit efflux

activity have been synthesized or obtained from natural

sources, but none of them are currently being used to treat

infectious diseases (Yamada et al., 1997; Lomovskaya et al.,

2001; Kaatz, 2005). Considering the limited number of

antimicrobials available for the treatment of tuberculosis

and the unquestionable relationship between efflux and

drug resistance in M. tuberculosis, it is urgent to deepen our

knowledge on drug efflux as well as to develop compounds

that could offset this resistance mechanism.
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