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ABSTRACT

Questions regarding accuracy and efficiency of deterministic transport methods are still on our mind today, even
with modern supercomputers. The most versatile and widely used deterministic methods are the P approxima-
tion, the S method (discrete ordinates method) and their variants. In the discrete ordinates (S, ) formulations
of the transport equation, it is assumed that the linearized Boltzmann equation only holds for a set of distinct
numerical values of the direction-of-motion variables. In this work, looking forward to confirm the capabilities
of deterministic methods in obtaining accurate results, we present a general overview of deterministic methods
to solve the Boltzmann transport equation for neutral and charged particles. First, we describe a review in the
Laplace transform technique applied to Sy two dimensional transport equation in a rectangular domain consid-
ering Compton scattering. Next, we solved the Fokker-Planck (FP) equation, an alternative approach for the
Boltzmann transport equation, assuming a monoenergetic electron beam in a rectangular domain. The main idea
relies on applying the Py approximation, a recent advance in the class of deterministic methods, in the angular
variable, to the two dimensional Fokker-Planck equation and then applying the Laplace Transform in the spatial
z-variable. Numerical results are given to illustrate the accuracy of deterministic methods presented.

1. INTRODUCTION

The Boltzmann equation is an integro-differential equation representing a wide range of trans-
port problems from astrophysics to traffic low [1]. Elegant analytical and numerical techniques
have been developed to solve the Boltzmann equation for a broad class of transport and radia-
tive transfer problems. These methods follow two distinct schools of thought: the probabilistic
school, such as the Monte Carlo methods, which basic philosophy is to solve approximately the
exact problem, and the deterministic school, such as the discrete ordinates methods, which ba-
sic philosophy is to solve exactly an approximate problem. The stochastic Monte Carlo method
often is considered to be the ultimate numerical approach for radiation transport calculations,
especially for complicated geometries. However if differential distributions are required, then
a deterministic solution of the Boltzmann transport equation is often more efficient.



Questions regarding accuracy and efficiency of deterministic transport methods are still on our
mind today, even with modern supercomputers. The most versatile and widely used determin-
istic methods are the P approximation [2, 3], the Sy method (discrete ordinates method) [4, 5]
and their variants [6, 7]. In the discrete ordinates (S ) formulations of the transport equation,
it is assumed that the linearized Boltzmann equation only holds for a set of distinct numerical
values of the direction-of-motion variables.

In the last decade, the LTSy method was presented in the literature. This method solves, an-
alytically, the discrete ordinates equation (Sy equation) in a slab by the Laplace transform
technique. The main idea comprehends the following steps: application of the Laplace trans-
form technique to the set of the Sy equations, solution of the resulting algebraic equation by
the matrix diagonalization approach and inversion of the transformed angular flux by standard
results of the Laplace transform theory. In earlier works [6, 8] the LTS y method was applied in
the solution of two dimensional transport equation assuming neutrons and photons in cartesian
geometry.

On the other hand, in a recent work [9] we solved the Fokker-Planck (FP) equation, an alterna-
tive approach for the Boltzmann transport equation, assuming a monoenergetic electron beam
in a rectangular domain. The Fokker-Planck (FP) approximation represents the impact of soft
reactions as continuously slowing down the electrons, while also continuously changing their
direction; e.g., a monodirectional beam will be dispersed into a finite beam width. This approx-
imation can be derived from a Taylor series expansion of the integrand in the scatter source term
appearing in the Boltzmann equation, with the assumption that only small changes in energy
and direction are significant. The main idea relies on applying the Py approximation, a recent
advance in the class of deterministic methods, in the angular variable, to the two dimensional
Fokker-Planck equation and then applying the Laplace Transform in the spatial x-variable. As
a result, a first order linear differential equation in the spatial y-variable, is attained, which the
solution is straightforward. The Py approximation consists in expanding the angular variable of
the angular flux in terms of the Legendre polynomials. Therefore, in this work, looking forward
to confirm the capabilities of deterministic methods in obtaining accurate results, we present a
general overview of deterministic methods to solve the Boltzmann transport equation for neu-
tral and charged particles. Indeed, to reach our objectives, we organized this work as follows:
in section 2 we present a review in the Laplace transform technique applied to Sy two dimen-
sional transport equation in a rectangular domain considering Compton scattering. In section
3 we describe in detail the two dimensional Fokker-Planck (FP) equation solution. In section
4 we report numerical simulations and comparisons. Concluding remarks and suggestions for
future work are given in section 5.

2. THE LTSy NODAL SOLUTION IN A RECTANGULAR DOMAIN

Let us consider the two dimensional S nodal problem assuming Klein-Nishina scattering ker-
nel and multigroup model [8]:
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subject to vacuum boundary condition in arectangle 0 < x < aand0 <y < b. Herej = 1: G,
n=1:N,N= w is the cardinality of the discrete ordinates set (number of discrete
directions), M represents the order of the angular quadrature, GG is the number of energy groups
(wavelengths), y; is the linear attenuation coefficient, ;,(z,y) = I(x,y, \;, 2,) is the angu-
lar flux at the discrete direction €2, = (u,,n,) for the j,, group, w; are the Level Symetric
Quadrature (LQy) weights and k,; = k(\,, );) is the Klein-Nishina scattering kernel [6, 10].

It is important to mention that, in this work, the integral term in the wavelenght variable is
approximated by the Simpson’s rule [10].

To construct the LTS y nodal solution for problem (1) we begin performing the transverse in-
tegration of this equation. This procedure yields to the set of the ensuing two coupled Sy
equations,

B o
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forj=1:G,n=1:N. Here [;,(a,y) and 1,,(0,y) are the angular fluxes exiting at the
boundary and the average angular flux is written like,

1 a
Ling(y) = = / Ljn(x, y)da. (3)
aJo
2 )+ T [1 (2,0) — In(z b)}wﬂ. () =
nax jnx b n Jn\+, JjLinx
A 2+1E N
== =5 D 0k AL+ A = A)Pn) 3 Pipi) Iyia (), )
=0 r=1 =1

forj =1:G,n=1:N. Here I;,(z,b) and I,,(x,0) are the angular fluxes exiting at the
boundary and the average angular flux is written like,

1 b

To this point we are in position to apply the LTSy method. Indeed, we begin applying the
Laplace transform technique in equation (2). This procedure yields:
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forj=1:Gand n =1 : N, which can be recast in matrix form like,

(81 = Bjny) Liny(s) = Ljny(0) + Z(J 1y (s) + Sjny( )-

(7)

Here I;,,(s) is the N components of the angular flux Laplace transformed vector in y variable
and 1;,,,(0) is the N components of the angular flux vector in y variable at y = 0. They have

the form: L L .
Ling(8) = [Tny(s) ILigy(s) .. Liny(s)]

T

Liny(0) = [L1y(0) Ljgy(0) ... Liny(0)]

On the other hand, the components of matrix 5;,, are given by,

by(p, q) = 77: Sy o S 25tk Py Pipp)wy sep =g
7 30, Zz =0 21;1 cjoky; Pr(pp) Pr(fig)wq sep #q

and the scattering term reads like,

where the entries of constant matrix H;, are written like,

hy(p,q) = 377? Zl =0 QZJICzak’JPI(l +Ai— A )Pl(ﬂp)Pl(,up)wq sep=gq
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The vector S}, (s) has the generic component:

Sjols) = =4[ Tilass) = Ti(0,9)].

Similar procedure in the x variable leads to the ensuing linear algebraic system,
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which again can be recast in the matrix form as,
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Here [}, (s) is the N components of the angular flux Laplace transformed vector in x variable
and 1;,,,,(0) is the N components of the angular flux vector in x variable at = 0. They have
the form:

Line() = [[12(3) Te(s) o La(9)] (16)

Lina(0) = [1j12(0) I12o(0) o Iina(0)]" (17)

Bearing in mind that for the Klein-Nishina scattering kernel the wavelength ranges from A, to
Ao + 2 (\g is the wavelength of the slab incoming radiation), we discretize, without loss of
generality, this interval in five sub-intervals, we mean five groups, with the main feature that
the first group (group 1) corresponds to the sub-interval with shortest wavelength and higher
energy and group 35, to the sub-interval with the longest wavelength and lowest energy.

Solving recursively equations (7) and (15) for increasing wavelength, (j from 1 to 5) due to the
down-scattering, the LTS y solution for these equations are given by

Liny(s) = (sI = Bjny) " [Liny(0) + Z(j—1)y(5) + Sjny(5)] (18)

and

Tina(s) = (s = Ajnz) ™ [Ljna(0) + Z(j-1)a(5) + Sjna(s)]- (19)

Taking the Laplace inversion of the above ansatz we get,

Ling(y) = L7H(sT = Bjny) ™ [Liny(0) + Z( 13 (5) + Sjmy(s)]} (20)

and

Ljng(x) = L7H(s] = Ajna) ™ Ljna(0) + Z(j-1)0(5) + Sjna ()]}, 2D

which by the Heaviside expansion technique can be recast like [10],

Ljny( Zﬁkesky[my + Z(1yy(y) % L7H(s] = Bjny) ™'} + (22)

+Sjny(y) * E_l{(sj - Bjny)_l}
and
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Here star denotes convolution. To complete the solution we have to determine the unknown
leakage angular fluxes at boundary namely /;,(z,0), 1;,(0,v), ;,(z,b) and I;,(a,y). Fol-
lowing the work of Hauser [8] which states that the exponential approximation gives the best
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results for the two dimensional LTS y nodal solution for deep penetration problems, we assume
the ensuing approximation for the leakage angular fluxes,

Lin(x,0) = Fj,esonum)Ae (24)
Lin(0,y) = Gjesionlm)iy (25)
Lin(x,b) = Ojne_Sig”(”")Ax (26)
Lin(a,y) = Pjne™ 1M @7)

where sign(y:) denotes the signal function:

. 1 ifu>0
sign(p) = {_1 155 0 (28)

and A represents the decay constant parameter, which has to be choice a priori. In this work,
we assume A, likewise [8], as being the absorption cross section. The functions sign(pu,) and
sign(n,) which appear in the equations (24) - (27) guarantee that the approximated angular
fluxes will decay for any discrete direction. Replacing (24) - (27) in equations (23) and (24)
the z-averaged and y-averaged angular fluxes solutions are complete after the Laplace Trans-
form inversion. Applying the boundary conditions, we determine the integration constants and
consequently the two dimensional LTS 5 nodal solution is well determined.

3. THE SOLUTION OF THE TWO DIMENSIONAL FOKKER-PLANCK EQUATION

In order to determine the angular flux of electrons in a rectangular domain, let us consider the
following two dimensional, time independent electron transport equation [6],

0 ) 757E 0 ) 757E
p Y(z,y )H] Y(z,y )
ox dy

:/ - / Ao (B — B0 - Q(x,y, 9, E), (29)
vd

+ Ut<E>w(xvy7§7 E) =

in arectangle 0 < x < g and 0 < y < b, subject to vacuum boundary conditions. Here the
angular flux, denoted as 1(x,y, E, Q), represents the flux of particles at position (z,y), with
energy E travelling in direction Q = (p, 7). The quantity o, in Eq. (29) is the differential
scattering cross-section and is written as,

a(E)n*(n*+1
m(1+ 20" — p5)

(30)
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where 77* > 0 is a typically small constant called the screening parameter.

Here it is important to mention that, in this work we focus on screened Rutherford scattering.
Screened Rutherford scattering is one of the simplest models of elastic scattering of electrons
from nuclei taking into account the screening of the nuclei by atomic electrons. It is obtained
from the Schrodinger equation in the first Born approximation, using an exponential factor in
the potential to model the screening effect [11]. An approximate formula for the screening
parameter is written as, ,
272
= % (31)
(am)?(mev)

where Z denotes the atomic number of the nucleus, m.v is the (relativist) momentum of the
electron that is being scattered, 7 is the Planck constant and ay is the Bohr radius.

We now assume that the scattering process is sufficiently peaked in the forward direction so
that the Fokker-Planck scattering description [12] is appropriate. Thus, the Fokker-Planck
approximation [13] to transport problem (29) is given by,

oVt (z,y, QB oV (z,y, QO E
Hw(y )+n¢(y ) _

ox oy
. Utr 8 _ 8 FP —

where 1)'"(x,1,Q, E) represents the Fokker-Planck angular flux of particles at position (z,y),
with energy E travelling in direction €2 = (u,7) and the coefficient oy, is called the transport
cross-section and is defined as,

1 1
O = 27r/ / os(E, 1) (1 — po)dpedn. (33)
—1Jo

Multiplying the Fokker-Planck equation (32) by P, (), integrating over p, and using a recur-
sion formula [14], we came out with the following Py equations:
n+1 0 pp 2n —|— 1 8
— E BT, =
Utr

= 5 l=n <n+1)w P(a,y,B), (34)

with the angular flux moments in discrete ordinates approximated by a quadrature formula as
follows,

_ 2 1
GFP (2,0, B) = Z ST @,y E)Palp), (35)
=0

forn = 0,..., N, with ¢}, (z,y, EF) = 0 in the Py approximation and T, represented by an
integral term, which can be analytic solved, written as,

T_/\/l— )Py (1) Prsr (1)de. (36)
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Once applied the Laplace transform technique in equation (34) in the spatial variable x, we
came out with the following linear algebraic system in the matrix form,

AEP (5,9, E) + Ba(s)0FP (5,, E) — CothEP(0,, E) = 0. (37)

Here I'"'(s,y, E) is the N components vector of the derivative of the angular flux Laplace
transformed in the = variable with respect to y and is written as,

e —_—/ / — =/ T
U (5,9, B) = [0 (5.0 B) 77 (5,0.B) . ORT(syB)] - (39)

Here the column vector ¢/ (s,y, E') is the N components of the angular flux Laplace trans-
formed vector in z variable and )27 (0, y, F) is the N components of the angular flux vector in
2 variable at x = 0. They have the form:

- _ - _ T
O, ) = (007 (5,0, ) 07 (5,9, B) . 07 (5,0 B)] (39)

U0y, E) = [WE7 (0,9, E) FP(0,y,E) ... ¥EP0,4,E)]". (40)

On the other hand, the components of matrices A,,, B,(s), and C,, are given, respectively, by

(1T, 0 0o 0 --- 0
0 97, 0 0 --- 0
A,=| 0 0 25T, 0 -- 0 , 41)
0 0 0 0 (2N + 1)*Ty |
0 2s 0 0 0 T
2s 6oy, 4s 0 0
B,(s)=1 0 4s 3004 6s --- : : (42)
: : : : 2Ns
L0 0 0 --- 2Ns N(N+1)2N+ 1oy, |
[0 2 0 0 0 ]
2 0 4 0 0
0 4 0 6 e 0
Co=1|. . . i i i , (43)
00 -~ 2N—2 0 2N
(00 0 : 2N 0 |

where o, and 7, are defined by Eq. (33) and Eq. (36) respectively.

The solution of equation (37) is given by,

UFP(s, 4, E) = cl(s) - e (B0l L o [BL(s) w0, , B), (44)
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where ¢, (s) is an arbitrary constant. In this problem we determine the ¢;(s) value, by apply-
ing the boundary and interface conditions. Due to the linear character of the inverse Laplace
Transform operator, taking the Laplace inversion of the above ansatz we get,

vy (2., B) = El{cl(S) e [Bn<8>~An1]y} + (45)

+C, - cl{[Bn@)]l} (0,9, E).

Once obtained the inverses matrices A ' and B, !(s), we calculate the inversion of the first
term of the equation (42) by using the Laplace convolution property. Here, it is important to
mention that the inverse matrix B, '(s) wasn’t obtained analytically, due to the existence of
the s parameter, a non numeric parameter. Therefore, we opt to calculate the inverse Laplace
transform numerically — in this work we apply the Gauss quadrature inversion method, [15, 16].

4. NUMERICAL RESULTS

In order to illustrate the aptness of the deterministic methods to solve the two dimensional trans-
port equation for neutral and charged particles, in the sequel we report numerical simulations
for the absorbed energy in rectangular domains with different dimensions and compositions.
We considered a homogeneous rectangular domain composed by water, tissue or bone. We
also assume a monoenergetic (E = 1.25 MeV) and monodirectional photon beam incoming on
the edge of a rectangle. In this study, the energy deposited by the secondary electrons, gener-
ated by the Compton Effect, will be considered. The remaining effects will not be taken into
account. The numerical results encountered for absorbed energy are compared with the ones
obtained by the program Geant4.

The data were simulated using the Geant4 (version 9.1) Monte Carlo program. Just recalling,
Geant4 [17] is a toolkit for simulating the passage of particles through matter. It includes a com-
plete range of functionality including tracking, geometry, physics models and hits. The com-
putational universe considered in this work was a monoenergetic and monodirecional source
incomming in the centre line of a volume. In that way, it was possible to prevent the lost of par-
ticles on the borders, “named borders effect”. For each simulation 10° histories were generated.
In what follows, we present numerical results for the problems:

Problem 1: Let us consider a homogeneous rectangular domain, constituted by water (Z/A =
0.55508, p = 1 g/cm?®) and vacuum boundary condition.

In Tables 1 and 2 we present, respectively, the LTSg Nodal and the Py approximation numerical
simulations for the absorbed energy in a homogeneous rectangular geometry composed by
water and comparisons with the Geant4 program results. Bearing in mind that Geant4 program
applies the Monte Carlo’s technique, given a closer look to the results in Tables 1 and 2, we
promptly realize a good coincidence. In fact, observing the results in Tables 1 and 2, we notice
that the maximum discrepancy found is lower than 3% and 7%, respectively. In Tables la
and 2a we display the numerical convergence, respectively, of the LTS Nodal and the Py
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Table 1. Absorbed energy [keV/photon emitted from the source] in a homogeneous
rectangular domain composed by water

Water, liquid
Domain dimension LTSs Geant4 Discrepancy
20cmx 10 cm 0.00309 | 0.00315 1.9%
20 cm x 20 cm 0.00457 | 0.00468 2.3%
30cm x 40 cm 0.00114 | 0.00116 1.7%

Table 1a. LTSy numerical convergence

N 20 cm x 20 cm

2 0.00359043

4 0.00411992

6 0.00446904

8 0.00457042

Table 2. Absorbed energy [keV/photon emitted from the source] by the free electron in a
homogeneous rectangular domain composed by water

Water, liquid
Domain dimension Py Geant4 Discrepancy
20cm x 10 cm 0.01845 | 0.01971 6.4%
20 cm x 20 cm 0.03379 | 0.03609 6.4%
30 cm x 40 cm 0.04581 | 0.04893 6.4%

Table 2a. Py numerical convergence

N 20 cm x 20 cm

1 0.02590432

3 0.03199219

5 0.03252043

7 0.03370622

9 0.03378688
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approximation results, in a rectangular domain composed by water for increasing /N. In fact,
observing the results in Table la, for N = 6 and N = 8 we notice a coincidence of one
significant digits. Here, it is important to mention that the unique approximation made along
the derivation of the LTS y nodal solution was in the leakage angular flux at boundary. In Table
2a,for N = 7and N =9, we notice a coincidence of three significant digits.

Problem 2: To check the influence of the material density in the absorbed energy calculation,
let us consider a rectangular domain composed by bone cortical (Z/A = 0.51478, p = 1.92
g/cm?®) and vacuum boundary condition.

Table 3. Absorbed energy [keV/photon emitted from the source] in a homogeneous
rectangular domain composed by bone, cortical [18]

Bone, cortical (ICRU44)
Domain dimension LTSs Geant4 Discrepancy
20cm x 10 cm 0.05588 | 0.05781 3.3%
20 cm x 20 cm 0.09087 | 0.09487 3.4%
30 cm x 40 cm 0.15771 | 0.16375 3.7%

Table 4. Absorbed energy [keV/photon emitted from the source] by the free electron in a
rectangular domain composed by bone, cortical [18]

Bone, cortical (ICRU44)
Domain dimension Po Geant4 | Discrepancy
20cmx 10 cm 0.83790 | 0.91244 8.2%
20 cm x 20 cm 0.79284 | 0.86380 8.%
30 cm x 40 cm 0.89218 | 0.97249 8.3%

In Tables 3 and 4 we present, respectively, the LTSg Nodal and the Py approximation numerical
simulations for the absorbed energy in a rectangle composed, respectively, by bone cortical and
tissue soft, and comparisons with the Geant4 program results, where the maximum discrepancy
found is lower than 4% and 9%. Our numerical results demonstrate that, for higher density ma-
terials, other effects must be taken into account, because when the density is increases, the num-
ber of interaction increases as well as the possibility of other processes production involving
secondary electrons. We must also mention that we have done all the LTS y nodal calculations
using an AMD Athlon 1700 (1.4 GHz) microcomputer while the Geant4 results are obtained
using a Pentium 4 (1.7 GHz) microcomputer. Furthermore, the maximum computational time
observed to generate all the results in each table was 30 minutes for both methods: LTS  nodal
solution and Monte Carlo technique.

INAC 2009, Rio de Janeiro, RJ, Brazil



5. CONCLUSIONS

In this work, we described the advances in a class of deterministic methods for the Boltzmann
transport equation for monoenergetic problems in z,y-geometry. We must emphasize that the
Fokker-Planck solution reported keeps the analytical feature, in the sense that no approximation
is made along its derivation from the Py equations, except for the round-off error. Regarding
the topic of analyticity, the LTSy nodal solution reported also keeps the analytical feature, in
the sense that the unique approximation made along the derivation of the LTS 5 nodal solution
was in the leakage angular flux at the boundary. We must also emphasize that we attained
a good agreement with the Monte Carlo technique results with a small computational effort.
Bearing in mind the good agreement between the results attained by the deterministic methods
described with the ones of Geant4, we are confident to stress that these methods are promising
to solve the two dimensional Boltzmann transport equation for neutral and charged particles.
Finally, we focus our future attention to the issue of extending the Boltzmann transport solution
for two dimensional problems in a heterogeneous rectangle.
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