

Universidade Federal do Rio Grande – FURG Programa de Pós-Graduação em Oceanografia Física, Química e Geológica

Tendências de variação na linha de costa de Cidreira (RS) e suas relações com parâmetros oceanográficos e meteorológicos.

Alice Ioppi Casagrande

Rio Grande 2016

Universidade Federal do Rio Grande – FURG Programa de Pós-Graduação em Oceanografia Física, Química e Geológica

Tendências de variação na linha de costa de Cidreira (RS) e suas relações com parâmetros oceanográficos e meteorológicos.

Alice Ioppi Casagrande

Dissertação apresentada ao Programa de Pós-graduação em Oceanografia Física, Química e Geológica do Instituto de Oceanografia da Universidade Federal do Rio Grande, como requisito parcial para obtenção do título de MESTRE.

Orientador: Prof. Dr. João Luis Nicolodi

Rio Grande 2016

Agradecimentos

Gostaria de agradecer primeiramente a Deus que sempre esteve ao meu lado, a minha mãe Maria de Lourdes, meu porto seguro, minha conselheira meu mãetrocínio, tu é tudo pra mim, meu orgulho, meu exemplo. À tia Ana minha segunda mãe te amo.

Ao meu pai Coxa, ao Vini, Pablo, Cí e toda minha família que eu amo tanto, pelo apoio que me proporcionaram durante toda a minha vida.

Ao meu namorado, amigo, parceiro André que me aguentou e apoiou nos momentos mais estressantes, te amo.

Não posso deixar de agradecer a minha mais fiel amiga de todas as horas, Kaya te amarei pra sempre, minha princesa!

Agradecer a Ferrari, que aguentou firme e forte o Cassinão e suas intempéries, tu é guerreira!

A minha amiga Deborah Aguiar, que foi fundamental na elaboração deste trabalho, principalmente da parte de ondas na qual ela é mestre.

Ao amigo Clabisnei do LOG, que me conduziu até Cidreira nos cansativos bate-volta.

Chayonn, Marcel, Lucas, Pablo e André Martelo por me auxiliarem nas coletas de dados em campo.

Ao Jean do IF meus mais sinceros agradecimentos, sem você esse trabalho não seria possível.

Ao Lauro Calliari por ter avaliado e contribuído no aperfeiçoamento deste trabalho.

Agradeço também ao (LOG) Laboratório de Oceanografia Geológica, a FURG e a CAPES e ao meu orientador João Luiz Nicolodi pela oportunidade. Obrigado a todos, todos fizeram parte dessa conquista!

Resumo

Grande parte da população mundial vive em zonas costeiras, o crescimento urbano quando desordenado, acarreta em prejuízos tanto econômicos quanto ambientais para esses locais. As variações no clima também possuem importante papel como agente modificador dos ambientes costeiros, dessa forma a variabilidade da linha de costa é de fundamental importância para uma melhor compreensão desse ambiente altamente dinâmico tornando-se uma ferramenta de auxílio para os gestores públicos nas tomadas de decisão. A partir do aumento da especulação imobiliária nas regiões costeiras, torna-se necessária uma melhor compreensão dos processos dinâmicos atuantes nesses locais com a finalidade de conhecer as variações da linha de costa em diferentes escalas, para que não hajam obras que venham a ser prejudiciais para a zona litorânea. Visando contribuir ao desenvolvimento sustentável da zona costeira, este trabalho tem como objetivo obter a tendência de variação da linha de costa da praia de Cidreira. Para isso foram utilizadas fotografias aéreas dos anos de 2004, 2009, 2012 e 2015. As imagens de alta resolução foram obtidas no programa Google Earth Pro e passaram por programas de sistemas de informação geográficas (ENVI, Erdas, Arcgis e Multispec) onde foram georreferenciadas e calculadas as taxas de variação da linha de costa em metros quadrados a partir do Método do Polígono da Mudança. Também foram analisados bancos de dados de ondas disponíveis no web site do NCEP (National Centers for Environmental Prediction) (http://polar.ncep.noaa.gov) e dados de ventos adquiridos através do web site CPTEC/INPE (Centro de Previsão do Tempo e Estudos Climáticos). Ressalta-se que ambos bancos de dados adquiridos correspondem a uma serie temporal de 11 anos (2003-2014). Para avaliação sazonal do perfil praial uitlizou-se uma estação total NIKON DTM-330, foram obtidos nove perfis em três pontos distintos ao longo de 12 meses. As imagens de satélite apontaram uma tendência estável/progradante da linha de costa em Cidreira havendo saldo sedimentar positivo ao longo de todo período analisado. Os dados de vento apontam uma variação dentro dos padrões conhecidos principalmente devido a um aumento na frequência dos ventos provindos do continente (N, NW e SW), os ventos continentais são responsáveis por transportar sedimentos do cordão de dunas transgressivas para a praia contribuindo para que haja acúmulo no pacote vertical sedimentar na região. Os dados de onda apontaram maior frequência da direção S seguidas da direção ENE, sendo o período mais frequente entre 6s e 8s e altura de onda entre 1,5m e 2,0m . Os perfis praiais analisados reforçam a sazonalidade dos dados, havendo acresção nos meses de primavera e verão, e erosão nos meses de outono e inverno, isso principalmente devido a entradas de frentes frias e centros de baixa pressão no inverno, as frentes frias chegam acompanhadas de elevada energia de onda incidente na costa e empilhamento de água devido ao efeito de Eckman. Conclui-se, portanto, haver uma reversão de tendência da variação da linha de costa de Cidreira de um padrão erosivo para estável e ou progradante, relacionado principalmente à variação nos padrões de ventos da região nos últimos 10 anos, tendo como conseguência principal acresção no pacote vertical de sedimentos.

Abstract

Much of the world population lives in coastal zones. Urban growth, when disordered, can result in economical and environmental damage to these places. Climate variations also have an important role as coastal environments modifying agents. This way, the coastline variability is of fundamental importance to a better understanding of this highly dynamic environment, becoming a tool for public managers in decision-making. Due to the increase in real estate speculation in coastal regions, a better understanding of the dynamic processes operating in these places with the purpose of knowing the coastline variation at different scales becomes extremely necessary, so that there won't be constructions that are hazardous to the coastal environment. Aiming for a sustainable development of the coastal zone, this study has as an objective to obtain a tendency of the coastline variation for the beach of Cidreira. For this purpose, aerial photographs of the years 2004, 2009, 2012, and 2015 were utilized. The high resolution images were obtained from the software Google Earth Pro and then passed through GIS softwares (ENVI, Erdas, ArcGis and Multispec), where they were georeferenced and the coastline variation rates were calculated in meters squared using the Change Polygon method. Wave databases available on the NCEP website (National Center for Environmental Prediction - http://polar.ncep.noaa.gov) and wind data acquired on the CPTEC/INPE website (Center of Weather Prediction and Climate Studies) were also analyzed. It is worth noting that both databases correspond to a time series of 11 years (2003-2014). For the seasonal evaluation of beach profile, a NIKON DTM-330 total station was used. Nine profiles at each of the three distinct locations of the beach were obtained over 12 months. The satellite images showed a stable/progradational trend of the shoreline of Cidreira, with a positive sedimentary budget throughout the analyzed period. The wind data point to a variation of the known patterns, mainly in the frequency of the winds from the continent (N, NW and SW). The continental winds are responsible for transporting sediments from the transgressive dunes to the beach, contributing to an increase in the vertical sedimentary package in the region. The wave data show a larger frequency of the direction S, followed by ENE; wave period (Tp) was more frequent in the interval between 6-8; and wave height (Hs) between 1,5-2,0m. The analyzed beach profiles reinforce the seasonality of the data, with accretion in spring and summer months, and erosion in the fall and winter months. This is mainly due to cold fronts and low pressure systems. Cold fronts are accompanied by the incidence of waves with high energy and the stacking of water on the coast due to the Eckman transport effect. Therefore, it is observed a reversal in the trend of the Cidreira shoreline variation from erosion to stable and/or progradational, mainly related to changes in wind patterns in the region over the last 10 years, resulting in accretion of vertical sediment package.

Lista de Figuras

Figura 2: Foto mostrando a altura do pacote vertical de sedimentos acumulados junto ao calçadão......4

Figura 3: Representação dos limites de zona costeira. Retirado de www.mar.mil.br/dhn/dhn/quadros/assleplacamazul.html......6

Figura 5: Imagem mostrando estruturas de conteção do avanço do mar cobertas por areia e vegetação (2015).....10

Figura 6: Estruturas de contenção recobertas por areia e vegetação (2015)......11

Figura 8: Imagem da largura de praia em Cidreira durante passagem de frente fria (julho de 2015)......12

Figura 9: Imagem de praia de Portugal onde observa-se o enrocamento atuando como barreira à ação das ondas......13

Figura 12: Representação da barreira holocênica no trecho de Cidreira. Fonte: Almeida Travessas (2005)......16

Figura 15: Imagem representando os três pontos de amostragem dos perfis praiais. Fonte: Google Earth Pro (2016)22
Figura 16: Estação total Nikon sendo instalada no ponto23
Figura 17: Representação dos pontos utilizados para georreferenciamento de imagem (2015)25
Figura 18: Representação do mosaico fotográfico gerado no programa ENVI25
Figura 19: Imagem representando os três pontos possíveis para utilização dos dados29
Figura 20: Gráfico da variação no perfil praial no ponto 1 (plataforma)
Figura 21: Fotografia do cordão de dunas frontais do ponto 1 (plataforma)
Figura 22: Gráfico da variação no perfil praial no ponto 2 (calçadão)
Figura 23: Imagem representando o ponto calçadão. Fonte do próprio autor32
Figura 24: À esquerda calçadão de Cidreira em 1999 após maré meteorológica, no centro 2009, à direita em 201533
Figura 25: Ponto calçadão após receber caminhões com areia. Fonte João Luiz Nicolodi (outubro de 2014)34
Figura 26: Gráfico da variação no perfil praial no ponto 3 (seminário)
Figura 27: Fotografias comparativas do ponto 3 (seminário) em 2008, 2014 e 2015. Fonte pescador e próprio autor

Figura 28: Imagem representando o ponto seminário. Fonte do próprio Figura 30: de dispersão da velocidade Diagrama do Figura 31: Rosa dos ventos para todo o período de estudo (2003 a Figura 32: Rosa dos ventos para todo o período de primavera (2003-Figura 33: Rosa dos ventos para todo o período de verão (2003-Figura 34: Rosa dos ventos para todo o período de outono (2003-Figura 35: Rosa dos ventos para todo o período de inverno (2003-Figura 36: Mosaico das imagens e linha de costa vetorizada para os anos de 2004, 2009, 2012 e 2015......60 Figura 37: Linhas de costa de 2015 (A), e 2012 (B); e seus respectivos polígonos (C) e (D).....61 Figura 38: Polígonos sobrepostos......61 Figura 39: Programa Multispec que calcula as áreas de erosão e progradação a partir dos polígonos......61 Figura 40: Rosa de ondas representando altura de onda Hs(m) para todo período de estudo (2003-2014).....66 Figura 41: Rosa de ondas representando período de onda Tp(s) para todo período de estudo (2003-2014).....66 Figura 42: Rosa de ondas representando altura de onda Hs(m) para a primavera, período de estudo (2003-2014).....67 Figura 43: Rosa de ondas representando período de onda Tp(s) para a primavera, período de estudo (2003-2014).....67

Figura 44: Rosa de ondas representando altura de onda Hs(m) para o verão, período de estudo (2003-2014)68
Figura 45: Rosa de ondas representando período de onda Tp(s) para o verão, período de estudo (2003-2014)68
Figura 46: Rosa de ondas representando altura de onda Hs(m), para o outono, período de estudo (2003-2014)69
Figura 47: Rosa de ondas representando período de onda Tp(s)para o outono, período de estudo (2003-2014)69
Figura 48: Rosa de ondas representando altura de onda Hs(m) para o inverno, período de estudo (2003-2014)70
Figura 49: Rosa de ondas representando período de onda Tp(s) para a inverno, período de estudo (2003-2014)70

Lista de tabelas

Tabela 9: Comparação dos dados de frequência dos ventos no inverno obtidosporTomazelli (1970-1982) e os do atual trabalho (2003-2014)......51

Sumário

Estrutura da dissertação
Capítulo 1
1. 1 Introdução1
1.2 Objetivos2
1.2.1 Objetivo Geral2
1.2.2 Objetivos específicos2
1.3 Motivação3
Capítulo 2
2.1 Revisão Bibliográfica5
2.1.1 Zonas costeiras5
2.1.2 Variabilidades da linha de costa7
2.1.3 Erosão e progradação costeiras8
Capítulo 3
3.1 Área de estudo14
3.1.1 Geologia e sedimentologia15
3.1.2 Características morfodinâmicas16
3.1.3 Climatologia Regional17
3.1.3.1 Ventos e clima17
3.1.3.2 Ondas, marés e correntes19

Capítulo 4

4.1 Metodologia	.22
4.1.1 Obtenção de perfis praias	.22
4.1.2 Comparação das imagens de satélite	.23

4.1.3 Análise de ondas	.26
4.1.4 Análise dos ventos	28

Capítulo 5

5.1 Síntese dos resultados e discussão e considerações finais	32
5.1.1 Perfis Praiais	32
5.1.2 Ventos	40
5.1.3 Imagens de satélite	60
5.1.4 Ondas	66
5.1.5 Conclusão e considerações finais	84

Estrutura da dissertação

O 1º capítulo é composto de introdução e os objetivos geral, específico e motivação.

No 2º capítulo visa fornecer uma revisão bibliográfica.

No 3º capítulo encontra-se a área de estudo.

No 4º capítulo encontra-se a metodologia utilizada

O 5º capítulo é composto de uma síntese dos resultados e discussão, conclusão e considerações finais. Também neste, encontram-se as sugestões para trabalhos futuros.

Capítulo 1

1.1) Introdução

Cerca de 80% da população mundial encontra-se distribuída geograficamente nas zonas costeiras (Borges et. al. 2009), essa ocupação quando desordenada, pode acarretar em diversos prejuízos, tanto econômicos quanto ambientais à sociedade. Segundo relatório do IPCC (Intergovernmental Panel on Climate Change, 2014) as variações climáticas já não são mais especulativas, mas sim uma realidade, e as mesmas possuem importante papel no processo de alteração dos ambientes costeiros.

Dessa maneira, torna-se necessário o conhecimento mais detalhado dos processos e agentes que atuam na variabilidade da posição da linha de costa das praias oceânicas a fim de auxiliar na tomada de decisões pelo poder público, no melhor uso das terras pelo homem, visando sempre à conservação ambiental e o desenvolvimento sustentável das zonas litorâneas.

O estado do Rio Grande do Sul ainda é uma das poucas regiões onde a população litorânea não excede a interiorana (Strohaecker, 2016), porém ao longo das últimas décadas esse padrão vem sendo alterado e o aumento da especulação imobiliária nas regiões litorâneas se apresenta em crescimento exponencial.

De acordo com IBGE (2010) o litoral norte do Rio Grande do Sul foi um dos segmentos urbanos que mais cresceu em termos relativos entre os anos 2000 e 2010 chegando a obter uma taxa de crescimento médio anual maior que a região metropolitana de Porto Alegre.

Dentre esses municípios do litoral norte que possuem elevado crescimento populacional está a praia de Cidreira, a qual se constitui área de estudo da presente pesquisa.

O município de Cidreira é a mais antiga praia do litoral norte do Rio Grande do Sul e também uma das mais próximas da capital, distante aproximadamente 120 km de Porto Alegre, pela RS 040.

Sendo assim, a partir do aumento da especulação imobiliária na região costeira, torna-se necessária uma melhor compreensão dos processos

dinâmicos atuantes nesses locais com a finalidade de conhecer as variações da linha de costa em diferentes escalas temporais e espaciais.

1.2) Objetivos

1.2.1) Objetivo Geral: Identificar se há reversão na tendência erosiva da linha de costa da praia de Cidreira, e analisar quais parâmetros podem estar associados a esta variação.

1.2.2) Objetivos específicos:

- Análisar a tendência de variação da linha de costa em uma escala temporal de 10 anos a partir de comparação de imagens aéreas de diferentes anos da região litorânea de Cidreira.

-Analisar os dados de direção, velocidade e frequência do vento para um período de 10 anos buscando identificar alterações significativas.

-Analisar o clima de ondas da região para um período de 10 anos, buscando identificar alterações significativas

-Descrever o comportamento sazonal da praia de Cidreira por meio de medições mensais de perfil praial para avaliação de volume do pacote sedimentar em curta escala temporal (um ano).

1.3) Motivação

A motivação deste trabalho é a abordagem de um tema atual e em constante debate dentro da oceanografia e no âmbito das mudanças climáticas; a variabilidade da linha de costa e suas relações com parâmetros climáticos e oceanográficos.

Parte-se do estudo realizado por Casagrande (2014), que no âmbito do projeto "Identificação da vulnerabilidade da costa do Rio Grande do Sul frente a eventos meteorológicos extremos e definição metodológica de Geoindicadores" (PROPESQ Nº: 799501/2011), apontou uma possível inversão na tendência de da linha de costa, entre os anos de 1999 e 2013 (figura 1).

Figura 1 : Imagem de satélite de Cidreira representando a tendência acresciva/ estável, Casagrande (2014).

Observou-se que, ao contrário do que diferentes autores, (Tomazelli et al., 1998; Esteves et al. 2002; Martinho, 2008 e Toldo Jr. et al. 2006), vinham apontando até então, (erosão em praticamente toda a linha de costa da região de Cidreira) indicadores morfológicos visuais como dunas embrionárias, altura do pacote sedimentar em relação a muros e calçadões (figura 2) assim como dunas vegetadas em frente de obras de contenção de erosão observadas nos últimos anos, indicam uma tendência de reversão deste quadro, com a praia apresentando sinais de estabilidade e até progradação.

Figura 2: Foto mostrando a altura do pacote vertical de sedimentos acumulados junto ao calçadão.

Dessa maneira este trabalho visa contribuir para um melhor entendimento dos processos atuantes na variabilidade da linha de costa a fim de auxiliar os programas de gestão costeira na ocupação e uso das terras.

2.1) Revisão Bibliográfica

2.1.1) Zonas Costeiras

A zona costeira ou faixa litorânea corresponde à zona de transição entre a parcela continental e a parcela marinha. Por ser uma faixa complexa, mutável e sujeita a diferentes processos geológicos, possui diferentes definições e interpretações, isso ocorre principalmente devido ao seu elevado grau de dinamismo.

O termo zonas costeiras, segundo "Bases para a Estratégia de Gestão Integrada da Zona Costeira Nacional (Maotdr, 2007)", é definida como sendo uma porção de território que, em termos biofísicos, é influenciada direta ou indiretamente pelo mar (ondas, marés, ventos, biota ou salinidade). Já para Aliotta et al. (1999), as zonas costeiras são definidas como o ambiente intermediário de áreas emergidas e submergidas onde atuam processos continentais e marinhos.

Para Rodriguez & Winevoxhel (1998) a zona costeira pode ser definida como a unidade territorial que vai desde os limites da Zona Econômica Exclusiva até o limite terrestre de influência climática.

A Zona Costeira brasileira é uma unidade territorial, definida em legislação para efeitos de gestão ambiental. Segundo definições mais recentes, para o Ministério do Meio Ambiente a Zona Costeira do Brasil é uma unidade territorial que se estende, na sua porção terrestre, por mais de 8.500 km, abrangendo quatrocentos municípios distribuídos em 17 estados. Inclui ainda a faixa marítima formada por mar territorial, com largura de 12 milhas náuticas a partir da linha da costa. A Zona Marinha tem início na região costeira e compreende a plataforma continental marinha e a Zona Econômica Exclusiva – ZEE que, no caso brasileiro, alonga-se até 200 milhas da costa. A largura da plataforma continental brasileira varia de 8 a 370 km, com profundidades entre 11 e 4 mil metros.

Figura 3 : Representação dos limites de zona costeira. Retirado de www.mar.mil.br/dhn/dhn/quadros/ass_leplac_amazul.html

É um ambiente com grande variedade de espécies e de ecossistemas. Quanto a uma definição em termos geomorfológicos a porção da zona costeira que se localiza na porção junto ao mar é comumente chamada de litoral e é resultado das modificações em função da disponibilidade de sedimentos, do clima de ondas, da altura do nível relativo do mar assim como em função de variações no regime eólico e ação antrópica.

O litoral é resultado do dinamismo dos fatores que regem a zona costeira (naturais e antrópicos), ocasionando mudanças de forma e posição que podem ter consequências econômicas indesejáveis (Muehe 1995), tornando esta área uma zona de importância estratégica para as nações, visto que nela estão interligados fatores como urbanização, portos, indústrias, exploração de recursos vivos e não vivos.

Como fatores naturais que atuam modelando o litoral podemos citar a ação mecânica das ondas, das correntes, das marés e a ação eólica cujos resultados são formas de erosão ou formas de deposição.

Entre os fatores antrópicos que afetam a dinâmica das zonas costeiras, destacam-se: o agravamento do efeito de estufa; a ocupação excessiva da faixa litorânea; a diminuição de sedimentos que chegam ao litoral pela construção de barragens em grandes rios; desmatamento; expansão urbana e especulação imobiliária; a destruição de defesas naturais, que resulta do pisoteio das dunas e do arranque da cobertura vegetal.

Este complexo cenário demonstra a necessidade de gestão, planejamento e ordenamento destas diferentes atividades e usos identificados na Zona Costeira.

2.1.2) Variabilidade da linha de costa

Segundo Dolan et.al. (1978), a linha de costa pode ser descrita como a linha que representa as bordas de um corpo d'água. Porém tem-se conhecimento de que a dinâmica que rege os sistemas costeiros é singular para diferentes praias e essa singularidade vem acarretando em diferenças na variabilidade da posição da linha de costa de cada região (Oliveira, 2000).

A delimitação da linha de costa pode ser obtida por meio de diferentes técnicas, entre elas a comparação de fotografias aéreas e de imagens de satélite assim como levantamentos topográficos (Gorman et. al. 1998).

Existem também outros indicadores comumente utilizados para o monitoramento da linha de costa entre eles a linha d água, a linha de maré alta, crista da berma, escarpas erosivas, base das dunas, linha de vegetação permanente e terraços de sobrelavagem.

O indicador utilizado para representar o mapeamento da linha de costa deve ser escolhido em função de diferentes fatores segundo (Toldo e Almeida et. al, 2003).

- a) A continuidade da feição ao longo da área a ser mapeada
- b) Se o indicador pode ser facilmente identificável
- c) A consistência do mesmo ao ser monitorado por diferentes métodos
- d) Se este é o mais adequado para uma representação confiável das mudanças da linha de costa.

No presente trabalho será utilizada a LPM (linha de preamar média) como perfil representativo da linha de costa, para isso, devem-se levar em consideração os principais erros decorrentes do levantamento da linha de praia, com base neste indicador, os quais estão associados à amplitude da maré astronômica, da maré meteorológica, "run up" e declividade da face da praia.

O monitoramento das variações da linha de costa é uma importante ferramenta para o planejamento de municípios localizados nessa região, cuja tendência é de criar loteamentos próximos ao mar, sem conhecer a dinâmica local num determinado intervalo de tempo (Krueger et. al 1998). Esta informação se torna útil para as populações e para o governo, na tomada de decisões, nos planos de desenvolvimento, nos programas de usos da terra e na área da educação ambiental.

2.1.3) Erosão e progradação costeiras

A tendência de variação de linha de costa de um determinado local atua em função de basicamente três fatores, quantidade e tipo de suprimento sedimentar atuante, energia de ondas incidente na costa, assim como variações relativas no nível médio do mar (Toldo Jr. *et. al.* 2005), sendo este último fator, relacionado a parâmetros meteorológicos e oceanográficos.

A erosão e deposição costeira são fenômenos tridimensionais que podem ser inferidos com dados de variações em uma dimensão, tais como mudanças na feição de um perfil de praia perpendicular à costa ou a posição da linha d'água (Absalosen et. al. 2007). O monitoramento da praia proporciona uma maneira de entendimento de sua dinâmica e os fatores que influenciam os ganhos e perdas ao longo da costa e podem revelar tendências de estabilidade de praia ou taxas de movimentação desta linha (Morton *et al.*,1993).

A análise do comportamento das praias com o auxílio de perfis perpendiculares, frequentemente utilizados, proporcionou a criação de modelos morfodinâmicos evolutivos, que comparam a morfologia da praia com a ação das ondas incidentes (Wright e Short, 1984; Sunamura, 1988).

Alguns trabalhos analisaram a variação da linha de praia do Rio Grande do Sul e apontaram indícios de erosão em diferentes graus de intensidade, em grande parte dos 620 km de costa deste estado. Em Cidreira, este comportamento erosivo pôde ser observado em diferentes trabalhos que analisaram escalas temporais de curto e longo período (Tomazelli et al., 1998; Esteves et al., 2002; Martinho, 2008 e Toldo Jr. et al. 2006) (figura 4).

Figura 4: Imagem mostrando Cidreira como uma praia com retrogradação acentuada. Fonte: Erosão e progradação do litoral brasileiro, Ministério do Meio Ambiente, 2006.

Ao contrário do que esses autores apontam, nos últimos anos alguns fatores e indicativos observados apontam para uma tendência de reversão deste quadro, com a praia apresentando sinais de estabilidade e até progradação.

A progradação de zonas costeiras sujeitas a regimes de micro-marés ocorre a partir de um saldo positivo de sedimentos acumulados na linha de costa, ou seja, há mais sedimentos sendo depositados do que as forçantes que atuam no balanço de sedimentos conseguem remobilizar. O acúmulo de sedimentos ocorre em formato tridimensional, podendo ser acumulado tanto na região submersa como na porção emersa da praia. Quando a linha de costa tende a migrar mar adentro em função desse acúmulo sedimentar, podemos dizer que a praia possui uma tendência acrescional ou progradante.

Nos últimos anos foi observado na face praial de Cidreira diferentes indicadores morfológicos visuais que apontam para uma praia em estágio estável e/ou progradante de linha de costa.

Dentre estes indicadores podemos citar a formação de dunas vegetadas em frente às residências e às obras de engenharia (figura 5) que deveriam servir para conter o avanço do mar (figura 6). Outro indicador foi o trabalho realizado por Casagrande (2014), o qual a partir de mapeamento por DGPS (Differential Global Positioning System) relatou uma possível reversão na tendência de linha de costa, de erosiva para estável/ progradante.

Figura 5: Estruturas de contenção recobertas por areia e vegetação (2015).

Figura 6 : Estruturas de contenção recobertas por areia e vegetação (2015).

Para que as dunas vegetadas se estabeleçam no ambiente é necessário que a vegetação fixadora tenha tempo suficiente para seu desenvolvimento e que este desenvolvimento se sobressaia em relação aos agentes erosionais do ambiente, como o avanço do mar, por exemplo. Outro fator o qual sugere uma praia com tendência estável e ou progradante são as variações na altura da praia em relação a muros e calçadões, pode-se observar muros quase totalmente cobertos por areia e vegetação, sugerindo um acréscimo no pacote vertical sedimentar do local.

Na figura 7, podemos observar um muro que foi construído no começo da década de 1990 visando proteger a casa dos efeitos da erosão que já havia destruído várias casas nas adjacências. O muro tinha na época de sua construção mais de 1,5m de altura em relação ao nível da praia de então. Além disso, foram colocadas pedras em frente ao muro para protegê-lo do mar. Hoje encontra-se quase ao nível da praia com todas as pedras soterradas e dunas vegetadas sobre o mesmo (dados obtidos por meio de comunicação pessoal do ex proprietário da casa como referência).

Figura 7: Representação do acúmulo sedimentar no pacote vertical. Fonte: proprietário do imóvel

Além dos fatores já citados acima, pode-se observar durante todos os meses do ano uma praia com grande largura de faixa de areia, inclusive nas datas que coincidiam com entradas de frentes e centros de baixa pressão (figura 8).

Figura 8 : Imagem da largura de praia em Cidreira durante passagem de frente (Julho de 2015).

Os estudos sobre progradação não são muito frequentes visto que a maioria dos estudos que abordam variações de linha de costa são voltados para a erosão costeira. Isto se deve ao fato de que a progradação costeira não é vista como um problema (figura 9). Em grande parte os trabalhos publicados sobre progradação costeira estão relacionados à desembocaduras de corpos lagunares e de rios ou em função de obras de engenharia como piers, plataformas e quebra-mares (Lélis, 2003; Dominguez, 2003; Oliveira Lima, 2016). Outros trabalhos abordam a progradação costeira em uma escala geológica, ou seja, uma escala temporal bem mais ampla (Assine, 1998; Tomazelli,1998; Travessas, 2003; Dillenburg et. al., 2005).

Dessa forma, o presente estudo visa discutir a tendência de variação da linha de costa diagnosticada na praia de Cidreira, relacionado-a principalmente com fatores naturais como padrões de ventos, dados de onda, comparação de imagens aéreas e perfis topográficos.

Figura 9 : Imagem de praia de Portugal onde observa-se o enrocamento atuando como barreira à ação das ondas.

Capítulo 3

3.1) Área de estudo

Cidreira é um município do estado do Rio Grande do Sul, localizado no litoral norte do mesmo, sendo a praia mais antiga desse setor. Está situada a latitude de 30° 10' 52" S e longitude 50° 12' 20" W. Possui uma área de 241,94 km² e cerca de 10 km de extensão e orientação NE-SW. Distante 120 km da capital do Rio Grande do Sul, tem como seu limite norte o município de Tramandaí, ao sul Balneário Pinhal, a leste o Oceano Atlântico e oeste Osório e Capivari do Sul.

Atualmente na região não há contribuição de areias modernas continentais e não existem suprimentos fluviais chegando ao local. Os sedimentos presentes são remobilizados da região da praia, antepraia e pós praia e também a partir de transporte eólico e de deriva litorânea (Tomazelli e Willwock,1992).

Figura 10 : Localização da área de estudo. Modificado de Strohaecker, 2007.

3.1.1) Geologia e Sedimentologia

A Planície Costeira do Rio Grande do Sul e a Plataforma Continental, a partir de variações glacio-eustáticas do nível do mar, foram sendo modeladas ao longo do tempo, principalmente pelas variações mais recentes, as do período Quaternário. No Rio Grande do Sul as barreiras são formadas por Sistemas Laguna-Barreiras, onde cada máximo transgressivo originou uma barreira, sendo a Barreira I a mais antiga e a Barreira IV a mais recente. (Tomazelli & Villwock, 1998) (figura 11).

A partir de estudos litológicos e morfológicos e de datações por 14C a região de Cidreira foi definida como de comportamento dominantemente transgressivo. É caracterizada, da base para o topo, por depósitos lagunares, praiais e eólicos, apresenta o registro de uma fase de progradação da barreira e é dominada por depósitos arenosos de dunas transgressivas, que recobrem os depósitos praiais e lagunares.(Almeida Travessas et. al. 2005) (figura 12).

Travessas (2003) indica a possível existência de uma barreira do tipo estacionária no setor costeiro localizado entre Tramandaí e Cidreira, o qual ocorre na transição entre uma projeção e uma reentrância costeira e onde o gradiente da plataforma oscila entre 0,067° e 0,075°.

A principal fonte de sedimentos das praias modernas são as areias pleistocênicas (Martins, 1967). Os minerais da área possuem alta maturidade mineralógica e são oriundos de rochas do complexo ígneo-metamórfico do escudo Sul-Riograndense e de rochas basálticas do planalto (Pomerancblum & Costa, 1972), que foram transportadas e espalhadas sobre a costa pela drenagem pleistocênica.

Figura 11: Perfil esquemático transversal aos sistemas deposicionais da Planície Costeira do Rio Grande do Sul com suas fácies sedimentares associadas. (Retirado de Suguio, 2005).

Figura 12 : Representação da barreira holocênica no trecho de Cidreira. Fonte: Almeida Travessas (2005).

3.1.2) Características Morfodinâmicas

O litoral do Rio Grande do Sul possui diversos estudos em relação as características morfodinâmicas, texturais e mineralógicas da plataforma interna e ambiente praial (Calliari e Klein 1993; Pereira 2005; Weschenfelder, 1997; Abreu et. al. 2005). Já as características da antepraia ainda se apresentam um pouco obscuras devido à carência de estudos nessa região principalmente por ser um local de difícil acesso e alto dinamismo.

A praia de Cidreira é retilínea com orientação NE SW, sem limites geológicos. É composta principalmente de areias finas. O litoral norte do RS é

classificado como intermediário de mais alta energia, ou seja; praias mais planas, pós-praia e zona de surfe alargada e com baixo declive na face da praia. Eventualmente é classificado como reflectivo (Weschenfelder et. al. 1997). Segundo Tabajara et. al. (2005) a praia possui altos índices de mobilidade, o que acarreta em maiores episódios de erosão e progradação possibilitando que haja maior diversidade de formas e disposição do estoque de areia ao longo do ano. A morfodinâmica é dominada principalmente por ondas, ventos e corrente longitudinal.

3.1.3) Climatologia Regional

3.1.3.1)Ventos e Clima

Na praia de Cidreira, o vento se apresenta como um importante agente modelador da paisagem sendo responsável pelo balanço de sedimentos *on shore – offshore*, atuando na magnitude do cordão de dunas (Gruber, 2002) assim como no campo de dunas transgressivas.

O vento é o agente principal para a formação e migração das dunas, também é responsável por gerar ondas locais e correntes marinhas que afetam a deriva de sedimentos e por consequência na configuração das praias.

Os ventos da região movimentam-se em função de dois sistemas de alta pressão: O Aticiclone do Atlântico Sul e o Anticiclone Migratório Polar (Niemer,1977). Esses anticiclones migram conforme as diferentes estações do ano, e como consequência as direções dos ventos predominantes também mudam.

Em publicação, Tomazelli (1993) analisou uma serie de dados de 12 anos (1970- 1982) de ventos para a localidade de Imbé, o vento mais frequente na região provem de NE (41,4 %) o que determina uma deriva resultante de areia com direção SW. Em Junho ocorre uma exceção e o vento predominante é de W (figura 13).

Os ventos do quadrante S,SE,E,SW possuem frequência e direção consideráveis em todos os meses do ano, com maior frequência para o quadrante E.

Figura 13: Rosa dos ventos do município de Imbé, série de dados de 12 anos (1970-1982) retirado de Tomazelli (1993).

	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Média
Ν	2.2	1.4	3.0	4.4	6.0	4.0	4.5	2.4	1.4	0.5	1.0	0.7	2.6
NE	50.9	48.7	40.7	36.8	30.7	29.1	38.5	35.1	46.6	42.2	44.3	53.2	41.4
Е	12.9	12.8	14.3	9.0	7.5	7.0	6.1	7.9	10.1	12.7	11.4	14.4	10.5
SE	9.8	9.6	11.1	7.9	5.7	3.6	2.5	5.7	6.1	7.4	9.6	9.0	7.3
S	7.6	7.2	8.9	6.9	4.5	3.7	4.5	7.0	5.5	8.9	10.8	8.5	7.0
SW	4.5	5.3	6.2	6.3	7.0	7.3	7.6	10.5	9.9	10.7	9.6	5.3	7.5
W	6.4	9.2	11.0	22.2	28.1	32.7	26.1	23.1	14.5	13.5	12.7	7.8	17.3
NW	1.6	1.5	0.8	1.0	2.9	3.4	1.1	1.2	1.0	0.9	0.6	1.0	1.4

Tabela 1: Frequência percentual dos ventos superficiais em Imbé (1970-1982) retirado de Tomazelli (1993).

Por ser uma região pouco estudada, em Cidreira não existem registros históricos de vento para a região apenas para praias adjacentes, como Imbé estudada por Tomazelli.

Segundo Niedora et. al. (1984) o vento atua no oceano próximo à costa de três maneiras: a energia é transferida diretamente para as correntes superficiais por meio da interface ar – água; as correntes induzidas por ventos tendem a convergir para a costa e produzir um empilhamento de água no nível principal da água junto à praia; ao contrário, correntes superficiais com uma componente dirigindo-se para o mar, produz um rebaixamento da superfície principal do mar.

Devido a posição do Estado junto à América do Sul, o mesmo fica controlado por massas de ar de origem tropical marítima (mT) e polar marítima (mP). Segundo a classificação de Koppen, o clima do litoral gaúcho é do tipo Subtropical Úmido. As temperaturas médias do mês mais quente superam os 22° C e as do mês mais frio situam-se entre –3° C e 18° C. (Strahler e Strahler 1994). Em Cidreira o clima é subtropical com as quatro estações bem definidas e as temperaturas variam entre 22° C e 35° C e 3° C e 18° C no verão e inverno respectivamente (Therra, 2007).

3.1.3.2) Ondas, Maré e Correntes Litorâneas

<u>Ondas</u>

Na costa do Rio Grande do Sul, os processos de refração e de dissipação diferenciada na plataforma continental determinaram a existência de diferentes níveis de energia de onda. Segundo Nicolodi (1999) o litoral norte é dominado por ondas de moderada e alta energia, além das ondas de tempestade. Essas ondas possuem duas direções predominantes NE e SE, vagas e de tempestade respectivamente. As de NE possuem período de ate 9s com alturas que chegam a 1,5m em profundidades acima de 15m, enquanto as de SE possuem maior energia e maior capacidade de transporte com altura máxima de 3,5m e não ultrapassam 15s.(Alvarez et. al. 1983).

Existem dois tipos de rebentação na costa do Rio Grande do sul, a deslizante e a mergulhante. Na deslizante, as ondas quebram longe da praia e possuem menor capacidade de transporte sedimentar. Já o tipo mergulhante é caracterizada pela crista da onda que curva-se sobre si mesma, na forma de uma espiral, comumente conhecida como tubo. Este tipo de quebra é bem mais competente na remobilização de material sedimentar.

<u>Marés</u>

As marés são um importante fator modelador de áreas costeiras e correspondem à subida e descida do nível do mar em função das forças de atração gravitacional do Sol e da Lua sobre a Terra (Strahler & Strahler, 1994).

Em Cidreira a costa é dominada por um regime semi-diurno de micromarés (amplitude inferior a 2m). No Rio Grande do Sul os marégrafos registram uma amplitude média de maré inferior aos 50cm. As principais variações do nível do mar estão relacionadas às marés meteorológicas, que podem chegar a 1,20m também chamadas de ressacas (Villwock & Tomazelli, 1995). As marés meteorológicas são associadas a passagens de frentes de baixa pressão, provocando elevações de nível do mar que chegam a cinco vezes o valor normal para a região.

Correntes Litorâneas

A deriva litorânea é o resultado dos processos referentes ao clima de ondas e correntes associados à geomorfologia local, sendo um dos mais importantes fatores responsáveis pela configuração das praias. A deriva é função da incidência obliqua das ondas sobre a costa e o movimento de *backwash.*

Em Cidreira o transporte litorâneo é bidirecional, atuando tanto na direção SW-NE como na direção NE-SW. As correntes litorâneas de SW-NE, apesar de menos frequentes, possuem maior competência para transportar sedimento, devido à maior energia de ondas provenientes do quadrante sul. Portanto, o transporte líquido é para NE (Tomazelli, 1990; Tomazelli & Villwock, 1992).

Segundo trabalho recente realizado por Da Motta (2015), a direção da corrente longitudinal em sentido nordeste é dominante, mas o sentido inverso predomina da região sul da área de estudo. Em 2001, uma reversão ocorreu ao longo de todo o trecho analisado (figura 14).

Figura 14: Representação da direção da deriva litorânea no RS para os anos de 1998,2000,2001,2004,2008. Fonte Da Motta (2015).
Capítulo 4

4.1 Metodologia

Diferentes metodologias foram adotadas para uma melhor compreensão da tendência de variação da linha de costa da praia de Cidreira, as mesmas encontram-se descritas abaixo.

4.1.1 Obtenção de perfis praias

Para o estudo do comportamento do perfil sedimentar da praia de Cidreira (pequena escala temporal), foi realizada a estimativa da diferença de comprimento da largura de praia e altura do pacote sedimentar, no período de novembro de 2014 a agosto de 2015.

As perfilagens foram feitas em três pontos distintos transversais a linha de costa: O primeiro ao sul da plataforma de Cidreira, menos urbanizado, o segundo em frente ao calçadão (região com obras de engenharia), e o terceiro em frente ao seminário dos padres (cordão extenso de dunas preservado) (figura 15).

Figura 15: Imagem representando os três pontos de amostragem dos perfis praiais. Fonte: Google Earth Pro (2016).

Para as medições foi utilizada uma estação total Nikon DTM-330 e um prisma óptico, os perfis devem seguir o mesmo alinhamento onde a estação será ancorada, em um marco de referência (RN: Referência de Nível) instalado sobre as dunas frontais (figura 16).

Os perfis possuem a finalidade de avaliar o comportamento anual do perfil praial de Cidreira e seus eventos acrescivos e erosivos ao longo de um ano. Juntamente com a aquisição dos dados de perfil, foram feitos acompanhamentos de tabuas de maré e elementos climatológicos atuantes na região, uma semana antes e três dias após a medição.

Os dados de batimetria obtidos serão tratados e analisados por meio de software padrão para a interpolação dos dados de perfil de praia.

Figura 16 : Estação total Nikon sendo instalada no ponto 3 (seminário).

4.1.2) Comparação das imagens de satélite

A utilização do sensoriamento remoto, em diferentes escalas e datas, é uma ferramenta muito utilizada no reconhecimento das principais feições

morfológicas capazes de indicar a dinâmica dos sistemas deposicionais costeiros, a variabilidade da linha de costa e sua evolução no tempo. Dessa forma, utilizar a aerofotointerpretação para avaliar a tendência da linha de costa ajuda a melhorar a compreensão dessa variação (Bentz, 2003).

Foram comparadas fotos de diferentes anos (2004, 2009, 2012 e 2015) as imagens de satélite de alta resolução foram obtidas pelo Google Earth Pro. A escolha das datas baseou-se na análise previa das condições meteorológicas 7 dias antes e 7 dias após a obtenção das imagens, com a finalidade de não super estimar ou subestimar a vetorização das linhas de costa em cada imagem visto que passagens de frentes podem resultar em grandes empilhamentos de água na costa ou no oceano.

Foram observados principalmente dados de direção e intensidade dos ventos assim como de pressão atmosférica visto que baixas pressões atmosféricas tendem a elevar o nível médio do mar e os ventos quando constantes (período de vários dias) em uma única direção podem também empilhar ou retirar água da costa em função da espiral de Eckman.

Para cada ano utilizaram-se 5 imagens obtidas em escala de 1:5000, essas imagens foram georreferenciadas no sistema de coordenadas UTM , datum WGS 84 22S. Para o georreferenciamento foram escolhidos 100 pontos de controle para cada data, todos bem próximos à linha de *swash*, as feições utilizadas para georreferenciamento das imagens foram obras de engenharia fixas como casas, quadras ou ruas (figura 17).

Figura 17: Representação dos pontos utilizados para georreferenciamento das imagens.

Após o georreferenciamento foram gerados mosaicos fotográficos (figura 18) para cada data em questão, a fim de analisar a evolução da linha de costa para o referido período, para tal utilizou-se o software ENVI®.

Figura 18: Representação do mosaico fotográfico gerado no programa ENVI.

Após a confecção dos mosaicos fotográficos, foi aplicada a técnica de vetorização da linha de costa para os anos aqui analisados. Baseando-se no trabalho de Toldo et. al. (1999), optou-se pela a utilização da linha de preamar média como sendo a representativa da linha de costa, para tal finalidade utilizou-se o software ArcGis®. Ainda neste software foi gerada uma linha de base comum para todas as datas seguidas da geração de polígonos. Com os polígonos prontos utilizou-se o software Erdas Imagine® com a ferramenta *Modeler*, que a partir do Método do Polígono da Mudança , proposto por Smith & Cromley (2012) forneceu as taxas em erosão e acresção em cada polígono na unidade de m².

No Método do Polígono da Mudança, a partir de duas linhas de costa distintas previamente vetorizadas, é possível extrair as áreas erodidas e/ou acrescidas, através da geração e subtração de polígonos. Assim, do cruzamento de duas linhas de costa, uma série de polígonos é criada de forma que estes representem as regiões que estão sofrendo processo de acresção e/ou erosão. Dessa forma, áreas de mudança, tanto acrescivas quanto erosivas, podem ser calculadas a partir da decomposição desse polígono complexo em uma série de sub polígonos simples.

4.1.3) Análise de ondas

A morfologia costeira, ou morfologia praial, é função da interação entre a dinâmica local e o substrato de fundo. Neste contexto as ondas de gravidade, possuem um papel fundamental na remobilização do material de fundo e consequentemente no transporte de sedimento.

Atualmente, encontra-se disponível no *website* da NOAA (*National Oceanic and Atmospheric Administration*) (<u>ftp://nopp.ncep.noaa.gov</u>), uma base de dados contendo parâmetros de onda (Hs, Tp e Dp), vento direção (dir.) e intensidade (vel.) correspondente a 30 anos (1979-2009). Esses dados são produzidos pelo modelo de águas profundas NWW3 (WaveWatch III), utilizando, os dados de vento de Reanálise do NCEP/CFSR, (*National Center*

for Environmental Prediction/Climate Forecast System Reanalysis) como entrada para o modelo de ondas.

Quanto a confiabilidade no uso desses dados, pode-se citar o trabalho realizado por Aguiar et.al. (2014), onde os autores realizaram uma comparação entre os dados sintéticos do NWW3 com medições de campo realizadas pela boia Minuano-PNBOIA para a região *offshore* de Rio Grande. Ressalta-se que a boia "Minuano" é uma boia oceanográfica do tipo Argus que fez parte do Programa Nacional de Boias (PNBOIA) e que ficou fundeada ao largo do litoral sul do Brasil durante os períodos de Maio/2001 à Junho/2002 e de Setembro/2002 à Janeiro/2004. Essa boia não dispunha de sensores que possibilitassem a medição do espectro direcional de ondas e fazia medições horárias apenas da altura significativa (Hs) e do período de pico (Tp) do campo de ondas, ou seja, a direção das ondas não foi medida pelo aparelho.

Para a quantificação da qualidade do ajuste entre os dados medidos (bóia Minuano) e os dados modelados (NWW3), o trabalho op.cit seguiu os moldes de estudos similares feitos por Melo F^o et al (2010) para Rio Grande e Melo F^o et al (2008) para Santa Catarina a partir de dados de Reanálise. Os resultados encontrados entre as análises feitas dos dados modelados com os dados da boia, mostraram uma tendência do modelo NWW3 em subestimar os dados de H_s para a região de estudo, o que já era esperado, uma vez que todo o oceano Atlântico Sul possui essa tendência.

Porém, os autores chegam à conclusão através das comparações entre modelo x medições que apesar da subestimação das medições, de maneira geral o modelo (NWW3) apresentava um bom desempenho, afirmação esta confirmada através das análises estatísticas impostas. Sendo assim, neste trabalho será utilizada a série temporal disponível em águas profundas advindas do modelo NWW3.

Visando obter uma serie temporal de ondas que compreendesse todo o período das imagens aéreas (2004-2015), optou-se por adquirir um banco de dados secundário também feito com o modelo WW3 e disponibilizado pela NOAA, porém com menos homogeneidade.

Os dados correspondem a latitude de 30° S 49° W, +/- 100 metros de profundidade.

Após a aquisição, os dados são processados no programa Matlab, onde foi gerada uma rotina que possibilita a criação de gráficos que agregam dados de direção e período, e direção e altura de onda. Foram geradas dez rosas de ondas refrentes ao intervalo (2003-2014), para as quatro estações do ano (primavera, verão, outono e inverno) sendo duas das rosas altura e período para todo o tempo de estudo.

4.1.4 Análise dos ventos

Os ventos vêm sido reconhecidos ao longo dos anos, por diferentes pesquisadores, juntamente com as variações do nível médio do mar como o agente responsável pelos mais significativos processos geomorfológicos que atuam na Planície Costeira do Rio Grande do Sul (Tomazzeli, 1993).

- Escolha da serie temporal de dados.

A escolha da serie temporal foi realizada entre os dois bancos de dados mais próximos à região da área de estudo, Tramandaí e Torres, visto que em Cidreira não há estação meteorológica própria.

A série de Tramandaí corresponde a um período de 11 anos e meio (2003 a 2014) e as medições foram até agosto/2014.

Já a série de Torres compreende uma serie temporal mais extensa, 34 anos de dados, entre os anos 1979 e 2014. As medições foram realizadas até janeiro de 2014.

O objetivo principal da escolha da serie temporal é a possibilidade da utilização dos dados de Torres para este trabalho, uma vez que esta serie temporal é bem mais extensa. Importante ressaltar que os dados de Tramandaí localizam-se mais próximos ao local de estudo.

- Análise de dados

Foram analisados os dados que compreendem os anos de 2008 a 2014 para Torres e Tramandaí, ou seja, as series possuem mesma escala temporal no que diz respeito ao período de amostragem (figura 19).

Figura 19: Imagem representando os três pontos possíveis para utilização dos dados.

A aquisição dos dados é feita de hora em hora e são obtidos dados de direção (ângulo de incidência) na unidade de graus e velocidade do vento na unidade de m/s; Todos os dados foram obtidos na localidade de 30° 00'S e 50° 08"W, normalizados e padronizados a 40m de altura.

Após a obtenção dos dados pelo portal do INMET, estes foram processados e convertidos em gráficos de rosas dos ventos para facilitar a compreensão e interpretação dos dados.

Os gráficos foram elaborados no software Matlab a partir de uma rotina pré estabelecida.

Capítulo 5

5.1) Síntese dos resultados e Discussão

5.1.1) Perfis Praiais: Tendência erosiva e progradante dos perfis de praia

Foram monitorados três pontos ao longo da praia de Cidreira os quais indicaram se as regiões dos pontos são mais estáveis e mais variáveis em termo de sazonalidade, tendo como fonte uma série de nove perfis de praia obtidos ao longo de 12 meses (novembro de 2014 a agosto de 2015) (figura 21).

Apesar dos três pontos estarem localizados na mesma praia, estes apresentaram diferenças quanto ao seu nível de urbanização e largura de praia. O ponto plataforma possui a maior largura de faixa de areia e também possui uma plataforma de pesca fixada próxima ao local.

Ponto Plataforma (1).

Figura 20: Gráfico da variação no perfil praial no ponto 1, plataforma.

O ponto plataforma apresentou as maiores larguras de praia, com exceção das saídas de campo realizadas nos meses de junho e julho, em todos os meses de coletas de dados a largura de praia não foi inferior à 90m de extensão, chegando ao seu máximo no mês de novembro de 2015 com 130 m. Esse ponto localiza-se próximo a plataforma de pesca que possui

aproximadamente 400m de comprimento oceano adentro. A região possui elevado nível de urbanização, porém o cordão de dunas frontal permanece preservado (figura 22) e as construções começam apenas atrás das mesmas na região do pós praia.

Figura 21: Fotografia cordão de dunas frontais do ponto 1, plataforma de Cidreira.

O ponto plataforma se manteve com extensa largura de praia, e elevado grau de recuperação do perfil praial, já que a areia não tem sua migração no sentido *crosshore* bloqueada, permitindo uma maior remobilização sedimentar neste trecho. As variações de volume no pacote vertical ocorreram principalmente na faixa da face praial e no perfil submerso (antepraia), e coincidem os perfis erosionais com entradas de frentes frias provindas do quadrante sul, e a recomposição dos perfis ocorrem principalmente na primavera e no verão quando as tempestades se tornam menos e intensas e frequentes.

Quando há entradas de centros de baixa pressão atmosférica os níveis do oceano aumentam, fazendo com que a linha de costa recue em direção ao continente, após a passagem desses centros, o nível do mar tende a baixar novamente e a linha de costa migrar em direção ao oceano. A entrada desses centros de baixa pressão são mais frequentes nos meses de inverno quando o Anti-Ciclone Migratório Polar ganha força no estado e sua intensidade é diretamente proporcional a energia de ondas incidentes na costa, ou seja, quanto mais intensa a frente mais enérgicas serão as ondas.

Ponto Calçadão (2)

Figura 22: Gráfico da variação no perfil praial no ponto 2, calçadão.

O ponto calçadão apresentou as maiores taxas de variação sedimentar de todos os perfis analisados, isso em decorrência de um muro construído sobre o cordão de dunas que deu origem ao calçadão.

O ponto calçadão apresenta a menor largura de praia, o maior nível de urbanização e um muro construído próximo à faixa de areia (figura 24).

Figura 23: Imagem representando o ponto calçadão. Fonte do próprio autor.

Os processos erosivos estão associados a um balanço negativo de sedimentos, e geralmente coincidem com entradas de frentes e tempestade. Estes processos podem ser intensificados nas regiões onde as dunas frontais são removidas ou substituídas por construções que aumentem os processos de reflexão da onda (Menezes & Klein, 2001), como pode ser observado no perfil calçadão.

Figura 24: A esquerda calçadão de Cidreira em 1999 ,após maré meteorologica, no centro 2009, a direita em 2015.

As ondas ao incidirem na face praial tendem a remobilizar o sedimento tanto no sentido *longshore* quanto *crosshore*, porém quando encontram uma barreira física atuam de maneira diferente já que a barreira reflete a energia de onda causando uma erosão do perfil.

Além de refletir a energia de onda incidente o muro construído como calçadão destruiu o cordão de dunas que funcionava como uma barreira natural da praia contra as ressacas e tempestades (figura 25).

As obras de engenharia quando mal executadas acarretam em problemas permanentes na morfodinâmica das praias sendo muitas vezes impossível reverter os danos ao ambiente.

A largura de praia em Cidreira foi claramente afetada nesse ponto. Quando comparada aos demais pontos se apresenta como o trecho mais estreito entre os 10 km de praia, recebendo algumas vezes caminhões de areia cedidos pela prefeitura para minimizar os danos causados à morfodinâmica local (figura 26).

Figura 25 : Ponto calçadão após receber caminhões com areia. Fonte João Luiz Nicolodi outubro de 2014.

Engordamentos de praia quando realizados sem estudo prévio podem tornar-se inúteis na medida em que a ação da hidrodinâmica local tende a retirar novamente os sedimentos depositados artificialmente.

Pode-se observar que na maior parte do ano o perfil encontra-se estreito e com uma pendente mais inclinada, nos períodos de primavera e verão o perfil apresenta-se mais acrescivo e com uma pendente mais suave, isso principalmente em função dos ventos de NE e diminuição das tempestades e eventos erosivos associados a frentes frias vindas do quadrante sul.

O vento nordeste além de acumular areia nas dunas, tem a função de empilhar água no oceano, fazendo com que a largura da faixa praial aumente em função de um recuo da linha de *swash*. Ao analisarmos registros fotográficos neste mesmo ponto, podemos observar a grande variação sedimentar que o perfil sofre quando submetido a diferentes condições meteorológicas e oceanográficas assim como da ação antrópica para mitigar os efeitos da contrução do calçadão.

Ponto Seminário (3)

Figura 26: Gráfico da variação no perfil praial no ponto 3, seminário dos padres.

No ponto seminários a largura de praia media não foi inferior a 60m, atingindo seu máximo em 125m no mês de novembro de 2014. A parte subaquosa foi onde ocorreram as maiores variações no pacote sedimentar, seguidas pela face praial.

A região das dunas frontais apresentou ao longo do ano certa constância havendo variação apenas entre os meses de novembro e dezembro quando uma via de acesso à praia foi aberta no local de realização dos perfis, causando um aplainamento na face da duna.

Na figura 28 podemos observar fotografias dos anos de 2008, 2014 e 2015 no ponto dos seminários mostrando um aumento significativo da vegetação costeira fixadora das dunas assim como uma acresção no pacote de areia no sopé da duna, também evidenciado nos perfis praiais.

Ao analisarmos registros fotográficos do ponto 3 podemos observar uma maior acumulação de areia em direção a praia no ano de 2015 quando comparado aos anos anteriores, 2008 e 2014, reforçando os resultados de aumento na frequência dos ventos provindos do continente.

Figura 27: Fotografias comparativas do ponto 3 (seminário), 2008 2014, 2015. Fonte: Pescador e próprio autor.

Os perfis mais acrescivos coincidem com períodos sem entradas de frentes e ondulações de grande energia provindas do quadrante sul, enquanto os perfis erosionais coincidem com entradas de frente e *swells* de grande período de onda. Nesse ponto observa-se pouca urbanização e uma parcela do cordão de dunas trangressivas encontra-se preservado, sendo uma região de alta dinâmica eólica.

Assim como no ponto plataforma, onde há pouca urbanização e conservação do cordão de dunas frontais, observa-se maior altura do cordão de dunas.

O terceiro ponto, seminário dos padres, é o ponto onde há menor urbanização, sem nenhuma obra de engenharia e também apresenta uma extensa largura de praia e cordão de dunas preservado (figuras 29 e 30).

Figura 28: Imagem representando o ponto seminário. Fonte do próprio autor.

Figura 29: Imagem do ponto Seminário dos padres (3).

Para os pontos estudados neste trabalho, plataforma, calçadão e seminário foram observadas variações sazonais, ou seja, perfis mais erosivos

nos meses de outono e inverno e perfis acrecionais nos meses de primavera e verão.

5.1.2) Ventos

-Resultados obtidos

A tabela 2 mostra a comparação estatística entre os dados de velocidade dos ventos para as regiões de Torres e Tramandaí. Uma análise geral dos parâmetros da tabela indica uma tendência de subestimação dos dados de Torres em relação aos dados de Tramandaí. Isso significa, que, em média, os dados coletados de Torres são menos intensos dos que os dados coletados em Tramandaí.

O parâmetro SS mostra valores muito próximos à zero, indicando um péssimo ajuste entre os dados de Torres e Tramandaí. O gráfico abaixo (tabela 2) corresponde ao diagrama de dispersão ("scatter plots") entre dados de velocidade do vento em Tramandaí (eixo-x) e dados de velocidade do vento em Torres (eixo-y). Cada ponto nesses diagramas corresponde ao par [(Parâmetro) observado, (Parâmetro) modelado] (figura20). A reta a 45° (tracejada) marca o que seria um ajuste "perfeito". A reta continua foi traçada com a inclinação quadrática média (SS) passando pela origem.

Velocidade	Vel. _{Min}	Vel. _{Max}	Vel. _{Med}	Des.Padrao	Vies	RMSE	SS
Torres	0.2	14	3.06	1.76	-10 76	14 03	0.21
Tramandai	5	36	13.83	8.66	10.70	1.05	0.21

Tabela 2: Parâmetros estatísticos

Figura 30: Diagrama de dispersão da velocidade do vento.

Conclui-se dessa forma, a inviabilidade da serie temporal de Torres para o estudo da região de Cidreira, sendo assim optou-se pela utilização dos dados da estação de Tramandaí.

Dessa maneira, no presente trabalho foram analisados os parâmetros de frequência, intensidade e direção de vento para a praia de Cidreira. Os dados foram obtidos junto à estação de Tramandaí, para o um período de 11 anos. Todos os dados foram obtidos a partir do INMET (Instituto Nacional de Meteorologia) e foram convertidos em gráficos (rosa de ventos) para uma melhor interpretação dos dados.

Os ventos são um dos mais importantes agentes modeladores da linha de costa no litoral norte do Rio Grande do Sul. Possui um importante papel no transporte de sedimentos, principalmente porque a região possui grandes quantidades de sedimento estocadas em um extenso cordão de dunas transgressivas.

Os ventos são movimentos originados a partir do deslocamento de ar dos sistemas de alta pressão para os sistemas de baixa pressão atmosférica, o litoral norte do Rio Grande do Sul sofre influência de dois principais centros de alta pressão. Mais ao norte está o Anti-Ciclone fixo do Atlantico Sul, mais ao sul o Anti-Ciclone Migratório Polar, a migração desses anti-cilones controla os ventos incidentes no litoral do estado.

Segundo pesquisa feita por Tomazelli (1993) o qual analisou 12 anos de dados consecutivos de velocidade e direção de vento, as quatro direções mais frequentes para a localidade de Imbé no litoral norte são, NE, W seguidos pela direção E e SW.

No atual trabalho observou-se uma variação nas direções mais frequentes, mantiveram-se as quatro primeiras direções havendo uma substituição dos ventos de SE pelos ventos de N. As maiores variações observadas foram o aumento dos ventos da direção norte, um acréscimo de 5,9%. Outra mudança foi um aumento considerável dos ventos provindo da direção noroeste, pouco documentado por Tomazelli.

Fanning (2014) em seu trabalho sobre impactos das mudanças do clima na laguna de La Rocha no Uruguai, também documentou mudanças nos padrões de ventos da região e atribuiu estas mudanças às variações climáticas.

As variações climáticas deixaram de ser apenas especulativas e tornaram-se uma realidade, documentada por diversos pesquisadores ao redor do mundo. Atualmente grandes emissões de gases estufa vem modificando a temperatura do planeta e consequentemente o regime de circulação atmosférica. Ao se aquecer desigualmente, a atmosfera gera os centos de alta e baixa pressão e seus padrões de circulação.

Essa mudança na frequência das direções, documentadas em Tramandaí, com um aumento dos ventos provindos de norte e noroeste, que são ventos que chegam com direção provinda do continente, podem estar transportando sedimentos em direção à região da face praial, visto que há um grande estoque sedimentar continental neste local, um campo de dunas trangressivas de aproximadamente 42km de extensão. Além desse campo de dunas também pode haver transporte de areia provinda dos cordões de dunas frontais de praias adjacentes localizadas ao norte de Cidreira. A areia pode estar sendo remobilizada para a região de face praial e antepraia (perfil subaquoso). O aumento na frequência nos ventos continentais pode acarretar também na alteração da velocidade da corrente longitudinal, podendo gerar acréscimo ou decréscimo em sua velocidade, dependendo do sentido da mesma em relação ao vento. Segundo (Tomazelli e Willwock 1992) as correntes longitudinais geradas na zona de surfe pelos ventos e incidência obliqua das ondas na costa, são o principal agente de transporte lateral de sedimentos e são importantes para as transformações morfológicas das praias.

Sabe-se que na costa do Rio Grande do Sul o transporte sedimentar costeiro ocorre em grande parte por correntes longitudinais e deriva litorânea isso se deve ao fato de que a plataforma continental é extensa larga e plana, o que favorece a ocorrência dessas correntes juntamente com a ação dos ventos de NE e SW.

Os ventos também atuam na variação do nível do mar, devido ao transporte de Eckman que possui uma resultante 90° à esquerda da direção predominante do vento no hemisfério sul. Os ventos de sul empilham água na costa os ventos de nordeste empilham água longe da costa fazendo com que a parte subaérea da praia fique menos ou mais exposta respectivamente.

A orientação da linha de costa em relação ao vento predominante vindo de NE favorece a migração dos sedimentos para dentro do continente, já os ventos provindos de NW e N fazem o trabalho inverso, mantendo os sedimentos em direção ao oceano.

Segundo Calliari et. al. (2005), a orientação da costa em relação ao vento predominante é o fator mais relevante para diferenciação na altura das dunas frontais, sendo que as condições mais propícias para o desenvolvimento de dunas frontais resultam da associação entre a orientação da linha de costa com a maior frequência e potencial de deriva de sedimentos, situação essa ocorrente entre Cidreira e Dunas Altas.

Ainda sobre o autor, o mesmo aponta com caráter especulativo uma possível relação entre maior largura de praia com ventos em direção ao oceano, essa especulação encontra apoio nos resultados obtidos no atual trabalho, uma vez que houve um aumento dos ventos provindos do continente assim como um aumento da faixa de areia no local.

Abaixo os resultados em forma de tabela, comparando o atual trabalho com o de Tomazelli (1993), e tem como base os dados da estação meteorológica de Tramandaí.

Direção	Frequência média 1970 -1982 (Tomazelli)	Frequência média 2003 – 2014 (INMET)
NE	41.4%	37,8%
E	10.5%	12,07%
SE	7.3%	7,1%
W	17.3%	14,71%
S	7.0%	6,35%
SW	7.5%	10,04%
NW	1.4%	3,49%
Ν	2.6%	8,5%

Tabela 3: Análise comparativa entre os dados de direção e frequência do vento.

Figura 31: Rosa dos ventos representando direção intensidade e frequência para todo o período de estudo (2003 a 2014).

Os dados obtidos através do INMET possuem 16 direções predominantes, porém como os dados serão posteriormente comparados com os elaborados por Tomazelli em 1993, e estes possuem apenas 8 direções predominantes, os dados apresentados na tabela 3 foram analisados por estação do ano, e foram agrupados em 8 direções predominantes.

Velocidade m/s	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	wsw	w	WNW	NW	NNW	Total	Porc.(%)	Dir.
0.0-1.0	409	259	189	138	123	124	120	150	155	203	271	351	497	406	388	330	4113	4.679	300
1.0-2.0	856	814	544	372	321	286	352	363	259	295	488	1065	1422	770	533	627	9367	10.657	302
2.0-3.0	604	1378	1373	719	616	465	544	637	451	455	854	1620	1570	355	215	436	12292	13.985	314
3.0-4.0	410	1747	2295	1035	661	564	658	650	515	494	922	1386	1254	226	95	273	13185	15.001	55
4.0-5.0	265	1780	2957	1109	687	543	554	522	516	408	755	978	986	132	54	209	12455	14.17	57
5.0-6.0	226	1609	3236	1224	778	497	363	350	398	312	551	636	734	104	28	114	11160	12.697	55
6.0-7.0	146	1202	2871	1265	611	373	230	153	288	189	345	447	525	49	28	77	8799	10.011	54
7.0-8.0	136	879	2463	1173	465	261	143	53	198	93	154	262	313	32	17	37	6679	7.599	53
8.0-9.0	100	559	1848	809	352	155	73	33	92	40	73	131	184	26	12	23	4510	5.131	52
9.0-10.0	37	258	1286	581	238	95	38	16	35	17	31	55	106	14	5	4	2816	3.204	54
10.0-11.0	14	96	752	326	123	45	25	7	16	4	12	18	44	13	4	1	1500	1.707	55
11.0-12.0	1	33	334	150	52	35	11	6	10	5	4	7	26	6	13	1	694	0.79	56
12.0-13.0	0	19	104	42	14	11	8	4	2	1	2	1	10	2	3	3	226	0.257	56
13.0-14.0	0	3	20	8	4	8	4	3	2	0	1	0	4	3	0	0	60	0.068	73
14.0-15.0	0	1	2	5	4	2	2	1	1	1	0	0	5	0	0	2	26	0.03	83
15.0-16.0	0	1	1	3	1	0	0	0	1	0	0	0	1	0	0	1	9	0.01	47
16.0-17.0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	2	0.002	81
17.0-18.0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0.001	145
18.0-19.0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0.001	136
19.0-20.0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0.001	62
20.0-21.0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0.001	61
Total	3204	10638	20275	8962	5051	3464	3127	2948	2939	2517	4463	6957	7681	2138	1395	2138	87897		
Porc.(%)	3.65	12.10	23.07	10.20	5.75	3.94	3.56	3.35	3.34	2.86	5.08	7.91	8.74	2.43	1.59	2.43			
Vel.Média	3.1	4.7	5.9	5.8	5.2	4.7	4.0	3.6	4.3	3.7	3.8	3.6	3.6	2.4	2.0	2.6			
Vel. Max	11.1	15.0	15.9	20.0	16.4	14.7	18.8	14.6	15.6	14.2	13.1	12.1	15.9	13.7	12.9	15.0			

Tabela 4: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para o período de junho/2003 a agosto/2014 (16 direções predominantes). A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 min.

Velocidade	Ν	NE	E	SE	S	SW	W	NW	Total	Porc	Dir.
(m/s)										(%)	
0.0- 1.0	728	379	241	271	310	548	906	730	4113	4,679	300
1.0- 2.0	1626	1129	616	700	546	1084	2533	1133	9367	10,657	302
2.0- 3.0	1368	2587	1202	1075	987	1811	2720	542	12292	13,985	314
3.0- 4.0	1100	4130	1369	1255	1073	1819	2177	262	13185	15,001	55
4.0- 5.0	834	4982	1413	1074	983	1403	1609	157	12455	14,17	57
5.0- 6.0	609	5242	1570	776	731	1014	1125	93	11160	12,697	55
6.0- 7.0	387	4616	1345	509	452	614	821	55	8799	10,011	54
7.0- 8.0	331	3857	1093	305	272	308	478	35	6679	7,599	53
8.0- 9.0	221	2814	736	169	129	141	277	23	4510	5,131	52
9.0-10.0	86	1837	535	87	52	53	156	10	2816	3,204	54
10.0-11.0	39	1004	298	44	22	19	67	7	1500	1,707	55
11.0-12.0	4	463	130	22	18	7	34	16	694	0,79	56
12.0-13.0	1	141	43	15	5	2	13	6	226	0,257	56
13.0-14.0	1	29	11	9	2	1	7	0	60	0,068	73
14.0-15.0	0	6	6	5	2	0	5	2	26	0,03	83
15.0-16.0	1	4	1	0	1	0	1	1	9	0,01	47
16.0-17.0	0	1	1	0	0	0	0	0	2	0,002	81
17.0-18.0	0	0	0	1	0	0	0	0	1	0,001	145
18.0-19.0	0	0	0	1	0	0	0	0	1	0,001	136
19.0-20.0	0	1	0	0	0	0	0	0	1	0,001	62
20.0-21.0	0	1	0	0	0	0	0	0	1	0,001	61
Total	7336	33223	10610	6318	5585	8824	12929	3072	87897		
Porc.(%)	8,35	37,8	12,07	7,19	6,35	10,04	14,71	3,49			
Vel Méd	3,3	5,6	5,2	4	3,9	3,6	3,5	2,1			
Vel max	15	20	16,4	18,8	15,6	13,1	15,9	15			

Tabela 5: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para o período de junho/2003 a agosto/2014 (8 direções predominantes). A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 min.

- Resultados por estação do ano.

Primavera

Figura 32: Rosa dos ventos para todo o período de primavera (2003-2014).

Direção	Tomazelli (70-82) Primavera %(frequência)	Atual trabalho (03-14) Primavera%(frequência)
NE	46,56%	42,95%
E	12,83%	13,43%
SE	8,66%	8,15%
W	11,33%	9,89%
S	9,4%	8,03%
SW	8,53%	9,98%
NW	0,83%	3,0%
Ν	0,73%	5,57%

Tabela 6: Comparação dos dados de frequência dos ventos na primavera obtidos por Tomazelli (1970-1982) e os do atual trabalho (2003-2014). Nos meses de primavera a variação mais significativa foi o aumento dos ventos de N, 4,84% de acréscimo, e o aumento dos ventos de NW em 2,17%. Os ventos de NE tiveram uma diminuição de 3,16%. Os ventos mais frequentes na primavera são os da direção nordeste com 42,95% seguidos de; E 13,43%; SE 8,15%; W 9,89%; S 8,03%; SW 9,98%; NW 3%; N 5,57%.

As velocidades medias e as máximas velocidades para as 8 direções estão descritas abaixo.

N 3,8m/s-15m/s; NE 6,4m/s-15,9m/s; E 5,6m/s-14,3m/s; SE 3,9m/s-14,6m/s; S 4,3m/s-15,6m/s; SW 4m/s-11m/s, 3m/s; W 3,7m/s-15,9m/s; NW 3m/s-15m/s.

Quanto à velocidade do vento, estão descritas a seguir as velocidades mais frequentes para as de menor frequência. Entre 4m/s-5m/s (13,456%); 5m/s-6m/s (13,076%); 3m/s-4m/s (12,925%); 6m/s-7m/s (11,66%); 2m/s-3m/s (10,244%); 7m/s-8m/s (9,674%); 1m/s-2m/s (7,572%); 8m/s-9m/s (7,368%); 9m/s-10m/s (5,173%); 0m/s-1m/s (3,246%); 10m/s-11m/s (3,119%); 11m/s-12m/s (1,562%); 12m/s-13m/s (0,555%); 13m/s-14m/s (0,177%); 14m/s-15m/s (0,049%); 15m/s-16m/s (0,024%). Conclui que na primavera também há um aumento na frequência dos ventos provindos do continente, o que auxilia no transporte sedimentar em direção a praia.

Verão

Figura 33: Rosa dos ventos para todo o período de verão (2003-2014).

Direção	Tomazelli (70-82) Verão %(frequência)	Atual trabalho (03-14) Verão%(frequência)
NE	46,76%	44,25%
E	13,33%	16,46%
SE	10,16%	9,75%
W	8,8%	6,48%
S	7,9%	6,84%
SW	5,3%	5,78%
NW	1,3%	2,36%
Ν	2,2%	8,07%

Tabela 7: Comparação dos dados de frequência dos ventos no verão obtidos por Tomazelli (1970-1982) e os do atual trabalho (2003-2014).

Os ventos mais frequentes no verão são os da direção nordeste com 44,25% seguidos de; E 16,46%; SE 9,75%; ; N 8,07%; S 6,84%; W 6,48%; SW 5,78%; NW 2,36%.

As velocidades medias e as máximas velocidades para as 8 direções estão descritas abaixo.

N 3,8m/s-10,8m/s; NE 5,7m/s-20,0m/s; E 5,2m/s-16,4m/s; SE 4,3m/s-14,7m/s; S 4,1m/s-13,7m/s; SW 3,6m/s-13,1m/s; W 2,9m/s-11,2m/s; NW 2,3m/s-8,9m/s.

Quanto à velocidade do vento, estão descritas a seguir as velocidades mais frequentes para as de menor frequência. Entre 4m/s-5m/s (15,645%); 3m/s-4m/s (14,051%); 5m/s-6m/s (13,916%); 2m/s-3m/s (11,654%); 6m/s-7m/s (10.977%); 7m/s-8m/s (8,659%); 1m/s-2m/s (8,173%); 8m/s-9m/s (6,014%); 9m/s-10m/s (4,061%); 0m/s-1m/s (3,542%); 10m/s-11m/s (2,14%); 11m/s-12m/s (0,86%); 12m/s-13m/s (0,224%); 13m/s-14m/s (0,051%); 14m/s-15m/s (0,009%); 19m/s-20m/s (0,005%); 20m/s-21m/s (0,005%);15m/s-16m/s (0%)

16m/s-17m/s (0%); 17m/s-18m/s (0%); 18m/s-19m/s (0%); Conclui-se que no verão a variação mais significativa também possui relação com o aumento dos ventos provindos do continente, principalmente os de N.

Outono

Figura 34: Rosa dos ventos para todo o período de outono (2003-2014).

Direção	Tomazelli (70-82) Outono %(frequência)	Atual trabalho (03- 14) Outono%(frequência)
NE	32,2%	31,61%
E	7,83%	11,77%
SE	5,73%	7,04%
W	27,66%	18,83%
S	5,03%	5,95%
SW	6,86%	10.91%
NW	2,43%	4,22%
Ν	4,8%	9,68%

Tabela 8: Comparação dos dados de frequência dos ventos no outono obtidos por Tomazelli (1970-1982) e os do atual trabalho (2003-2014). Os ventos mais frequentes no outono são os da direção nordeste com 31,61% seguidos de; W 18,83%; E 11,77%; SW 10,91%; N 9,68%; SE 7,04%; S 5,95%; NW 4,22%.

As velocidades medias e as máximas velocidades para as 8 direções estão descritas abaixo.

N 3,2m/s-10,9m/s; NE 5,3m/s-16,3m/s; E 5,5m/s-15,6m/s; SE 4,0m/s-18,8m/s; S 3,8m/s-14,0m/s; SW 3,3m/s-12,4m/s; W 3,3m/s-12,0m/s; NW 1,8m/s-10,0m/s.

Quanto à velocidade do vento, estão descritas a seguir as velocidades mais frequentes para as de menor frequência. Entre 3m/s-4m/s (15,96%); 2m/s-3m/s (15,887%); 4m/s-5m/s (13,851%); 1m/s-2m/s (12,628%); 5m/s-6m/s (12,452%); 6m/s-7m/s (9,509%); 7m/s-8m/s (6,665%); 0m/s-1m/s (5,197%); 8m/s-9m/s (4,034%); 9m/s-10m/s (2,092%);10m/s-11m/s (0,898%); 11m/s-12m/s (0,518%); 12m/s-13m/s (0,167%); 13m/s-14m/s (0,073%); 14m/s-15m/s (0,038%); 15m/s-16m/s (0,017%) 16m/s-17m/s (0,004%); 17m/s-18m/s (0,004%); 18m/s-19m/s (0,004%);

Inverno

Figura 35: Rosa dos ventos para todo o período de inverno (2003-2014).

Direção	Tomazelli (70-82) Inverno%(frequência)	Atual trabalho (03-14) Inverno%(frequência)
NE	40,06%	33,4%
E	8,03%	6,98%
SE	4,76%	4,05%
W	21,23%	22,64%
S	5,66%	4,79%
SW	9,33%	13,23%
NW	1,1%	5,17%
Ν	2,76%	9,76%

Tabela 9: Comparação dos dados de frequência dos ventos no inverno obtidos por Tomazelli (1970-1982) e os do atual trabalho (2003-2014).

Os ventos mais frequentes no inverno são os da direção NE com 33,4% seguidos de; W 22,64%; SW 13,23%; N 9,76%; E 6,98%; NW 5,17%; S 4,79%; SE 4,05%;

As velocidades medias e as máximas velocidades para as 8 direções estão descritas abaixo.

N 2,8m/s-11,1m/s; NE 4,9m/s-14,4m/s; E 4,3m/s-14,1m/s; SE 3,5m/s-12,1m/s; S 3,4m/s-12,2m/s; SW 3,6m/s-12,5m/s; W 3,7m/s-14,7m/s; NW 1,9m/s-11,6m/s.

Quanto à velocidade do vento, estão descritas a seguir as velocidades mais frequentes para as de menor frequência. Entre 2m/s-3m/s (17,629%);3m/s-4m/s (16,796%); 1m/s-2m/s (13,779%); 4m/s-5m/s (13,743%); 5m/s-6m/s (11,448%); 6m/s-7m/s (8,112%); 0m/s-1m/s (6,362%); 7m/s-8m/s (5,671%); 8m/s-9m/s (3,394%); 9m/s-10m/s (1,75%); 10m/s-11m/s (0,846%); 11m/s-12m/s (0,301%); 12m/s-13m/s (0,111%); 13m/s-14m/s (0,035%); 14m/s-15m/s (0,022%);

Analise por estação

Verão (2003-2014)																			
Vel. m/s	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.(%)	Dir.
0.0-1.0	79	50	52	40	35	31	38	40	39	35	41	42	61	61	62	52	758	3.542	330
1.0-2.0	148	157	143	114	85	79	99	89	62	67	87	178	192	84	83	82	1749	8.173	335
2.0-3.0	153	276	388	221	187	129	144	167	95	76	106	212	171	47	35	87	2494	11.654	63
3.0-4.0	125	349	668	340	221	203	213	170	124	101	94	140	132	34	33	60	3007	14.051	69
4.0-5.0	80	434	959	412	244	207	210	176	127	93	100	123	96	26	16	47	3350	15.654	66
5.0-6.0	60	408	894	467	232	207	144	139	100	82	65	70	57	16	6	31	2978	13.916	65
6.0-7.0	59	346	699	448	230	147	96	50	80	55	50	35	20	6	5	23	2349	10.977	62
7.0-8.0	52	265	673	362	179	98	56	20	52	29	15	24	17	3	2	6	1853	8.659	58
8.0-9.0	35	200	507	276	108	46	27	8	28	11	15	8	9	4	3	2	1287	6.014	54
9.0-10.0	15	93	408	201	72	19	17	4	12	6	10	5	7	0	0	0	869	4.061	55
10.0-11.0	4	23	256	103	36	7	9	4	8	2	4	1	1	0	0	0	458	2.14	57
11.0-12.0	0	3	108	30	15	12	4	1	4	3	3	0	1	0	0	0	184	0.86	61
12.0-13.0	0	0	31	5	1	4	5	1	1	0	0	0	0	0	0	0	48	0.224	67
13.0-14.0	0	0	4	0	1	3	1	0	1	0	1	0	0	0	0	0	11	0.051	101
14.0-15.0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2	0.009	117
15.0-16.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16.0-17.0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0.005	98
17.0-18.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.0-19.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.0-20.0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0.005	62
20.0-21.0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0.005	61
Total	810	2604	5790	3021	1647	1194	1063	869	733	560	591	838	764	281	245	390	21400		
Porc.(%)	3.79	12.17	27.06	14.12	7.70	5.58	4.97	4.06	3.43	2.62	2.76	3.92	3.57	1.31	1.14	1.82			
Vel.Média	3.7	5.1	5.9	5.8	5.2	4.8	4.3	3.8	4.4	4.1	3.8	3.2	3.0	2.4	2.1	2.9			
Vel. Max	10.5	11.5	13.7	20.0	16.4	14.7	13.4	12.3	13.7	11.2	13.1	10.2	11.2	8.3	8.9	8.5			

Tabela 10: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para os meses de verão, período de junho/2003 a agosto/2014. A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 minutos.

(16 direções predominantes).

	Verão (2003-2014)													
Vel. m/s	Ν	NE	E	SE	S	SW	w	NW	Total	Porc.(%)	Dir.			
0.0-1.0	127	106	60	83	73	75	122	112	758	3.542	330			
1.0-2.0	273	285	176	185	134	203	339	154	1749	8.173	335			
2.0-3.0	313	652	368	288	227	235	318	93	2494	11.654	63			
3.0-4.0	278	1106	472	384	262	209	235	61	3007	14.051	69			
4.0-5.0	227	1526	517	397	261	202	180	40	3350	15.654	66			
5.0-6.0	155	1505	533	304	223	140	98	20	2978	13.916	65			
6.0-7.0	127	1233	512	201	131	89	43	13	2349	10.977	62			
7.0-8.0	103	1089	391	121	77	34	31	7	1853	8.659	58			
8.0-9.0	76	841	230	60	36	27	11	6	1287	6.014	54			
9.0-10.0	34	614	150	31	18	14	8	0	869	4.061	55			
10.0-11.0	14	339	75	12	12	5	1	0	458	2.14	57			
11.0-12.0	0	134	31	7	8	3	1	0	184	0.86	61			
12.0-13.0	0	34	4	9	1	0	0	0	48	0.224	67			
13.0-14.0	0	4	3	2	1	1	0	0	11	0.051	101			
14.0-15.0	0	0	0	2	0	0	0	0	2	0.009	117			
15.0-16.0	0	0	0	0	0	0	0	0	0	0	0			
16.0-17.0	0	0	1	0	0	0	0	0	1	0.005	98			
17.0-18.0	0	0	0	0	0	0	0	0	0	0	0			
18.0-19.0	0	0	0	0	0	0	0	0	0	0	0			
19.0-20.0	0	1	0	0	0	0	0	0	1	0.005	62			
20.0-21.0	0	1	0	0	0	0	0	0	1	0.005	61			
Total	1727	9470	3523	2086	1464	1237	1387	506	21400					
Porc.(%)	8.07	44.25	16.46	9.75	6.84	5.78	6.48	2.36						
Vel.Média	3.8	5.7	5.2	4.3	4.1	3.6	2.9	2.3						
Vel. Max	10.8	20.0	16.4	14.7	13.7	13.1	11.2	8.9						

Tabela 11: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para os meses de verão, período de junho/2003 a agosto/2014. A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 minutos.

(8 direções predominantes).

	Inverno (2003-2014)																		
Vel. m/s	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	Total	Porc.(%)	Dir.
0.0-1.0	164	91	68	51	47	29	39	43	49	64	83	112	178	154	142	122	1436	6.362	306
1.0-2.0	301	298	214	120	88	72	73	89	74	91	143	313	477	305	208	244	3110	13.779	312
2.0-3.0	191	485	501	188	157	106	97	137	126	131	280	578	597	138	88	179	3979	17.629	309
3.0-4.0	103	590	672	213	110	64	82	79	88	121	339	587	534	65	33	111	3791	16.796	329
4.0-5.0	70	481	672	192	110	66	43	50	95	82	254	421	414	45	12	95	3102	13.743	357
5.0-6.0	37	372	757	188	75	59	45	25	58	59	183	259	365	49	8	45	2584	11.448	18
6.0-7.0	20	258	594	156	50	47	30	7	41	40	102	194	235	22	5	30	1831	8.112	25
7.0-8.0	18	172	476	133	39	32	22	7	25	18	50	104	143	11	3	27	1280	5.671	34
8.0-9.0	16	98	315	64	40	16	16	4	9	9	24	46	78	11	0	20	766	3.394	37
9.0-10.0	4	32	165	40	20	18	5	2	5	5	5	25	58	7	0	4	395	1.75	38
10.0-11.0	5	12	82	20	13	7	5	0	0	1	3	12	25	4	1	1	191	0.846	41
11.0-12.0	1	1	24	7	4	7	1	0	4	1	1	2	12	1	1	1	68	0.301	51
12.0-13.0	0	2	6	5	1	2	1	0	1	0	1	0	5	1	0	0	25	0.111	56
13.0-14.0	0	0	1	1	0	2	0	0	0	0	0	0	3	1	0	0	8	0.035	346
14.0-15.0	0	0	1	0	1	0	0	0	0	0	0	0	3	0	0	0	5	0.022	311
Total	930	2892	4548	1378	755	527	459	443	575	622	1468	2653	3127	814	501	879	22571		
Porc.(%)	4.12	12.81	20.15	6.11	3.35	2.33	2.03	1.96	2.55	2.76	6.50	11.75	13.85	3.61	2.22	3.89			
Vel.Média	2.5	4.2	5.2	4.7	4.1	4.3	3.6	2.9	3.7	3.4	3.8	3.8	3.9	2.4	1.7	2.8			
Vel. Max	11.1	12.8	14.4	13.5	14.1	13.5	12.1	9.2	12.2	11.4	12.5	11.4	14.7	13.1	11.3	11.6			

Tabela 12: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para os meses de inverno, período de junho/2003 a agosto/2014. A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 minutos.

(16 direções predominantes).

	Inverno (2003-2014)													
Vel. m/s	Ν	NE	E	SE	S	SW	W	NW	Total	Porc.(%)	Dir.			
0.0-1.0	281	132	90	79	87	178	307	282	1436	6.362	306			
1.0-2.0	583	427	175	156	154	310	852	453	3110	13.779	312			
2.0-3.0	450	941	289	196	270	625	996	212	3979	17.629	309			
3.0-4.0	321	1249	222	148	177	678	895	101	3791	16.796	329			
4.0-5.0	233	1193	201	94	168	494	670	49	3102	13.743	357			
5.0-6.0	128	1190	175	91	93	341	535	31	2584	11.448	18			
6.0-7.0	77	913	140	51	67	192	374	17	1831	8.112	25			
7.0-8.0	61	707	108	43	37	102	213	9	1280	5.671	34			
8.0-9.0	43	443	72	28	14	44	118	4	766	3.394	37			
9.0-10.0	13	210	51	13	8	14	82	4	395	1.75	38			
10.0-11.0	11	92	32	9	0	6	39	2	191	0.846	41			
11.0-12.0	1	29	11	4	5	1	15	2	68	0.301	51			
12.0-13.0	0	9	7	1	1	1	6	0	25	0.111	56			
13.0-14.0	0	2	2	0	0	0	4	0	8	0.035	346			
14.0-15.0	0	1	1	0	0	0	3	0	5	0.022	311			
Total	2202	7538	1576	913	1081	2986	5109	1166	22571					
Porc.(%)	9.76	33.40	6.98	4.05	4.79	13.23	22.64	5.17						
Vel.Média	2.8	4.9	4.3	3.5	3.4	3.6	3.7	1.9						
Vel. Max	11.1	14.4	14.1	12.1	12.2	12.5	14.7	11.6						

Tabela 13: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para os meses de inverno, período de junho/2003 a agosto/2014. A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 minutos.

(8 direções predominantes).

Outono (2003-2014)																			
Vel. m/s	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	Total	Porc.(%)	Dir.
0.0-1.0	121	79	34	24	23	22	21	27	40	79	90	106	158	139	137	115	1215	5.197	298
1.0-2.0	285	245	98	58	78	58	93	92	53	88	167	398	558	282	190	209	2952	12.628	292
2.0-3.0	188	407	300	165	166	128	170	181	117	124	276	568	597	131	71	125	3714	15.887	277
3.0-4.0	116	519	556	270	166	156	176	195	144	134	263	429	425	92	23	67	3731	15.96	41
4.0-5.0	76	495	697	270	165	117	128	132	127	105	211	279	335	42	10	49	3238	13.851	48
5.0-6.0	88	429	824	301	211	120	90	98	94	59	144	177	213	33	2	28	2911	12.452	52
6.0-7.0	48	281	729	329	132	93	65	53	58	23	82	119	174	13	7	17	2223	9.509	52
7.0-8.0	45	197	520	290	114	73	34	18	36	18	29	75	96	4	6	3	1558	6.665	53
8.0-9.0	41	105	294	182	106	54	15	14	16	4	16	33	56	2	5	0	943	4.034	56
9.0-10.0	15	36	176	117	72	23	9	4	7	0	1	8	20	1	0	0	489	2.092	60
10.0-11.0	3	5	70	58	37	12	7	1	2	1	1	1	9	3	0	0	210	0.898	67
11.0-12.0	0	0	25	44	21	12	4	4	2	0	0	1	8	0	0	0	121	0.518	76
12.0-13.0	0	0	4	16	10	3	2	2	0	0	1	0	1	0	0	0	39	0.167	84
13.0-14.0	0	0	2	4	3	2	3	3	0	0	0	0	0	0	0	0	17	0.073	99
14.0-15.0	0	0	0	5	2	0	1	0	1	0	0	0	0	0	0	0	9	0.038	88
15.0-16.0	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0	4	0.017	69
16.0-17.0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0.004	64
17.0-18.0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0.004	145
18.0-19.0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0.004	136
Total	1026	2798	4329	2137	1307	873	820	824	697	635	1281	2194	2650	742	451	613	23377		
Porc.(%)	4.39	11.97	18.52	9.14	5.59	3.73	3.51	3.52	2.98	2.72	5.48	9.39	11.34	3.17	1.93	2.62			
Vel.Média	3.2	4.4	5.6	5.9	5.4	4.9	4.1	3.8	4.1	3.2	3.5	3.4	3.4	2.2	1.7	2.3			
Vel. Max	10.4	10.9	13.1	16.3	15.6	13.1	18.8	13.8	14.0	10.3	12.4	11.1	12.0	10.9	8.7	7.1			

Tabela 14: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para os meses de outono, período de junho/2003 a agosto/2014. A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 minutos.

(16 direções predominantes).

Outono (2003-2014)												
Vel. m/s	Ν	NE	E	SE	S	SW	W	NW	Total	Porc.(%)	Dir.	
0.0-1.0	121	34	23	21	40	90	158	137	1215	5.197	298	
1.0-2.0	285	98	78	93	53	167	558	190	2952	12.628	292	
2.0-3.0	188	300	166	170	117	276	597	71	3714	15.887	277	
3.0-4.0	116	556	166	176	144	263	425	23	3731	15.96	41	
4.0-5.0	76	697	165	128	127	211	335	10	3238	13.851	48	
5.0-6.0	88	824	211	90	94	144	213	2	2911	12.452	52	
6.0-7.0	48	729	132	65	58	82	174	7	2223	9.509	52	
7.0-8.0	45	520	114	34	36	29	96	6	1558	6.665	53	
8.0-9.0	41	294	106	15	16	16	56	5	943	4.034	56	
9.0-10.0	15	176	72	9	7	1	20	0	489	2.092	60	
10.0-11.0	3	70	37	7	2	1	9	0	210	0.898	67	
11.0-12.0	0	25	21	4	2	0	8	0	121	0.518	76	
12.0-13.0	0	4	10	2	0	1	1	0	39	0.167	84	
13.0-14.0	0	2	3	3	0	0	0	0	17	0.073	99	
14.0-15.0	0	0	2	1	1	0	0	0	9	0.038	88	
15.0-16.0	0	0	1	0	0	0	0	0	4	0.017	69	
16.0-17.0	0	0	0	0	0	0	0	0	1	0.004	64	
17.0-18.0	0	0	0	1	0	0	0	0	1	0.004	145	
18.0-19.0	0	0	0	1	0	0	0	0	1	0.004	136	
Total	2262	7390	2752	1645	1390	2551	4401	986	23377			
Porc.(%)	9.68	31.61	11.77	7.04	5.95	10.91	18.83	4.22				
Vel.Média	3.2	5.3	5.5	4.0	3.8	3.3	3.3	1.8				
Vel. Max	10.9	16.3	15.6	18.8	14.0	12.4	12.0	10.0				

Tabela 15: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para os meses de outono, período de junho/2003 a agosto/2014. A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 minutos.

(8 direções predominantes).
								Prima	avera	(2003	-2014))							
Vel. m/s	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	Total	Porc.(%)	Dir.
0.0-1.0	45	39	35	23	18	42	22	40	27	25	57	91	100	52	47	41	704	3.426	270
1.0-2.0	122	114	89	80	70	77	87	93	70	49	91	176	195	99	52	92	1556	7.572	287
2.0-3.0	72	210	184	145	106	102	133	152	113	124	192	262	205	39	21	45	2105	10.244	177
3.0-4.0	66	289	399	212	164	141	187	206	159	138	226	230	163	35	6	35	2656	12.925	109
4.0-5.0	39	370	629	235	168	153	173	164	167	128	190	155	141	19	16	18	2765	13.456	79
5.0-6.0	41	400	761	268	260	111	84	88	146	112	159	130	99	6	12	10	2687	13.076	65
6.0-7.0	19	317	849	332	199	86	39	43	109	71	111	99	96	8	11	7	2396	11.66	57
7.0-8.0	21	245	794	388	133	58	31	8	85	28	60	59	57	14	6	1	1988	9.674	54
8.0-9.0	8	156	732	287	98	39	15	7	39	16	18	44	41	9	4	1	1514	7.368	52
9.0-10.0	3	97	537	223	74	35	7	6	11	6	15	17	21	6	5	0	1063	5.173	54
10.0-11.0	2	56	344	145	37	19	4	2	6	0	4	4	9	6	3	0	641	3.119	53
11.0-12.0	0	29	177	69	12	4	2	1	0	1	0	4	5	5	12	0	321	1.562	47
12.0-13.0	0	17	63	16	2	2	0	1	0	1	0	1	4	1	3	3	114	0.555	42
13.0-14.0	0	3	13	3	0	1	0	0	1	0	0	0	1	2	0	0	24	0.117	44
14.0-15.0	0	1	1	0	1	0	1	1	0	1	0	0	2	0	0	2	10	0.049	22
15.0-16.0	0	1	1	0	0	0	0	0	1	0	0	0	1	0	0	1	5	0.024	340
Total	438	2344	5608	2426	1342	870	785	812	934	700	1123	1272	1140	301	198	256	20549		
Porc.(%)	2.13	11.41	27.29	11.81	6.53	4.23	3.82	3.95	4.55	3.41	5.46	6.19	5.55	1.46	0.96	1.25			
Vel.Média	3.2	5.4	6.8	6.5	5.5	4.7	3.9	3.6	4.6	4.2	4.1	3.8	3.9	3.1	3.6	2.5			
Vel. Max	10.9	15.0	15.9	13.8	14.3	13.6	14.2	14.6	15.6	14.2	10.9	12.1	15.9	13.7	12.9	15.0			

Tabela 16: Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para os meses de primavera, período de junho/2003 a agosto/2014. A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 minutos.

(16 direções predominantes).

				Р	rimavera	(2003-2014	•)				
Vel. m/s	Ν	NE	E	SE	S	SW	W	NW	Total	Porc.(%)	Dir.
0.0-1.0	85	67	49	65	60	106	177	95	704	3.426	270
1.0-2.0	220	199	134	182	133	186	369	133	1556	7.572	287
2.0-3.0	184	373	241	256	245	377	379	50	2105	10.244	177
3.0-4.0	168	721	325	366	324	405	319	28	2656	12.925	109
4.0-5.0	141	1054	338	343	301	328	235	25	2765	13.456	79
5.0-6.0	128	1228	437	193	238	279	168	16	2687	13.076	65
6.0-7.0	73	1314	375	119	158	194	150	13	2396	11.66	57
7.0-8.0	72	1238	300	66	106	103	90	13	1988	9.674	54
8.0-9.0	41	1047	216	38	54	42	68	8	1514	7.368	52
9.0-10.0	18	752	183	26	17	21	40	6	1063	5.173	54
10.0-11.0	9	471	115	13	7	7	15	4	641	3.119	53
11.0-12.0	3	253	34	3	2	2	10	14	321	1.562	47
12.0-13.0	1	88	9	2	2	0	6	6	114	0.555	42
13.0-14.0	1	17	2	0	1	0	3	0	24	0.117	44
14.0-15.0	0	2	1	2	1	0	2	2	10	0.049	22
15.0-16.0	1	1	0	0	1	0	1	1	5	0.024	340
Total	1145	8825	2759	1674	1650	2050	2032	414	20549		
Porc.(%)	5.57	42.95	13.43	8.15	8.03	9.98	9.89	2.01			
Vel.Média	3.8	6.4	5.6	3.9	4.3	4.0	3.7	3.0			
Vel. Max	15.0	15.9	14.3	14.6	15.6	11.3	15.9	15.0			

Tabela 17 : Ocorrência conjunta de intensidade (m/s) e direção (graus) do vento, para os meses de primavera, período de junho/2003 a agosto/2014. A direção é medida em graus a partir do norte geográfico e segue a convenção meteorológica. O intervalo de amostragem é de 30 minutos.

(8 direções predominantes).

5.1.3 Imagens de Satélite

As imagens foram obtidas em alta resolução no programa Google Earth Pro, para as datas de 2004, 2009, 2012 e 2015.

O indicador de linha de costa escolhido foi a LPM ou máximo espraiamento de onda. As datas foram escolhidas a partir de análise de condições meteorológicas uma semana antes e uma semana depois da obtenção das imagens, para que a vetorização das linhas de costa não fosse subestimada ou superestimada.

Os principais erros relacionados à linha d'água como indicador da linha de praia estão associados à declividade da praia, ao *run up* de onda e amplitudes de maré astronômica e meteorológica.

Variações para mais ou para menos nesses fatores podem gerar um erro de até 30m no plano horizontal, por isso todas as condições meteorológicas nas datas escolhidas foram monitoradas para não se afastarem das médias para a região, e variações de até 30m no plano horizontal foram descartadas. Depois de gerados os mosaicos georreferenciados e vetorizadas as linhas de costa (figura 36 e 37), foram obtidos os taxas de variação da linha de costa e seus respectivas áreas (figuras 38 e 39).

Figura 36: Mosaico das imagens e linha de costa vetorizada para os anos de 2004, 2009, 2012 e 2015.

Figura 37: Linhas de costa de 2015 (A), e 2012 (B); e seus respectivos polígonos (C) e (D).

Figura 38: Polígonos sobrepostos

Figura 39: Programa Multispec que calcula as áreas de erosão e progradação a partir dos polígonos.

2004_2009 - Bloco de nota:		1000	2	3.8.4		-	-		
Arquivo Editar Formatar	Exibir Ajuda								
erosão progradacao nao_mudanca	1 2 3	100.0 100.0 100.0	18769 2511 8236	18769 0 0		2511 0		0 0 8236	
	TOTAL		295	516	18769		2511		8236
R	eliability /	Accuracy (%)*			100.0		100.0		100.0
OVERALL CLASS Kappa Statist	PERFORMANCE	E (29516 / 295 100.0%. карра	16) = 100.0% variance = 0.0000	000.					
+ (100 - perc) * (100 - perc)	ent omission ent commiss	n error); also ion error); al	called producer's a	s accuracy. accuracy.					
Area classificat Classification of Lines 1 to a	ion not save f Selected) 802 by 1. (ed to disk. Area Columns 1 to 2	4855 by 1						
CLASS DISTRIBUTIO	ON FOR SELEC	CTED AREA							
Class 1 erosão 2 progradacao	Numb Samp 3.615. 1.159.	er 1es 652 556	Area (Hectare 180.565 58.956	es)	1.805.65 <mark>0</mark> m² 589.560 m²				
Total number of eq	ual distance	es to classes:	0.						
End maximum likeli	nood classi	fication							
2 CPU seconds for	lassificat	ion. 03-02-20	16 15:21:02						
4									

Tabela 18: Dados de área em m² e hectares, de erosão e progradação calculadas pelo programa Multispec para o intervalo de 2004 e 2009.

Do ano de 2004 ate 2009 foram observados 1.805.650 m² de erosão, e 589.560 m² de progradação, havendo um saldo negativo.

2009_2	012 - Bloco	o de nota	s	_		Terms.			-	-			
rquivo	Editar Fe	ormatar	Exibir	Ajuda	1000000	1.11.12.2		4					
pro ero sem	gradaca sao _mudanc	a		1 2 3	100.0 100.0 100.0	676 154 108	670	5	154 0		0 0 108		
			TOTA	L			938	676		154		108	
		R	eliab	ility a	Accuracy (%)*			100.0		100.0		100.0	
8	OVERALL Kappa S	CLASS	PERF	ORMANCI 100) =	(938 / 938) 100.0%. карра	= 100.0% Variance = 0.000	0000.						
8	+ (100 * (100	- perc	ent o	mission ommiss	n error); also ion error); als	called producer o called user's	s accuracy. accuracy.						
Are cla	a class ssifica Lines	ificat tion o 1 to	ion n f Sel 816 b	ot save ected y 1.	ed to disk. Area Columns 1 to 24	851 by 1							
CLA	SS DIST	RIBUTI	ON FO	R SELE	TED AREA								
12	cla progra erosao	dacao		Numb Samp 1.040. 47.	er les 748 191	Are	(Hectares) 50.075 2.719	500.750 27.190	m² m²				
Total	number	of eq	ual d	istance	es to classes:	215.							
End m	aximum	likeli	hood	classi	fication								
2 CPU	second	s for	class	ificat	ion. 03-03-201	6 13:44:32							

Tabela 19: Dados de área em m² e hectares, de erosão e progradação calculadaspelo programa Multispec para o intervalo de 2009 e 2012.

Do ano de 2009 ate 2012 foram observados 500.750 m² de progradação e 27.190 m² de erosão.

2012_2015 -	Bloco de nota	IS			0	1000	-		-				
Arquivo Edita	r Formatar	Exibir A	juda										
erosao prograc sem_muc	lacao lanca		1 2 3	100.0 100.0 100.0	1036 4606 6466		1036 0		4606 0		0 0 6466		
		TOTAL				12108		1036		4606		6466	
	F	eliabil	ity A	ccuracy (%)*				100.0		100.0		100.0	
OVER Kapp	ALL CLASS	PERFOR	MANCE 0) = 1	(12108 / 121 100.0%. карра	08) = 100.0% Variance = 0	.000000.							
+ (1	00 - perc	ent omi	ssion	error); also on error); al	called produ so called use	cer's accur r's accur	curacy. racy.						
Area cl classif Li	assificat ication ones 1 to	ion not f Selec 816 by	saved ted An 1. Co	d to disk. rea olumns 1 to 2	4859 by 1								
CLASS D	ISTRIBUTI	ON FOR	SELECT	TED AREA									
1 ero 2 pro	Class Isao Igradacao	4.	Number Sample 281.6 327.70	r es 36 07	Area (He 14.16 215.7	ctares) 54 171		141.640 2.157.7) m² 71 m²				1
Total num	ber of eq	ual dis	tance	s to classes:	0.								н
End maxim	um likeli	hood c1	assif	ication									
2 CPU sec	onds for	classif	icatio	on. 03-03-20	16 13:50:42								
1.1			_										

Tabela 20: Dados de área em m² e hectares, de erosão e progradação calculadaspelo programa Multispec para o intervalo entre 2012 e 2015.

Do ano de 2012 ate 2015 foram observados 14.164 m² de erosão e 2.157.771 m² de progradação.

MultiSpec Windows App	plication - [200	4_2015_corret	b]				
File Edit View Pr	oject Process	or Options	Window He	elp			_ 8 <mark>Fe</mark>
	3 💡 🖂 🖌	1 AA 0.					
Class Name	Class Number	Accuracy+ (%)	Number Samples	1 progradacao	2 erosao	3 sem_mudanca	^
progradacao erosao sen_mudanca	1 2 3	100.0 100.0 100.0	689 377 8239	689 0 0	377 0	0 8239	
	TOTAL		9305	689	377	8239	
	Reliabili	ty Accurac	cy (%)*	100.0	100.0	100.0	
OVERALL CLA Kappa Stati	SS PERFORM stic (X100	ANCE (9309)) = 100.07	5 / 9305) K. Kappa V	= 100.0% ariance = 0.0	00000.		
+ (100 - pe * (100 - pe	rcent omis rcent comm	sion erron ission err	r); also c ror); also	alled produce called user'	r's accur s accurad	racy. Dy.	
Area classific Classification Lines 1 t	ation not of Select 5 802 by 1	saved to d ed Area . Columns	lisk. s 1 to 248	56 by 1			
CLASS DISTRIBU	TION FOR S	ELECTED AN	REA				
Class 1 progradacao 2 erosao	Number Sample 584.61 350.39	5 5 15	Area (H 29.46 17.04	ectares) 52 40	294.620 m² 170.040 m²		
Total number of	equal dist	ances to d	classes: 0	l.			E
End maximum like	lihood cla	ssificatio	on				
2 CPU seconds fo	r classifi	cation. (03-07-2016	18:59:05			-

Tabela 21: Dados de área em m² e hectares, de erosão e progradação calculadas pelo programa Multispec para o intervalo entre 2004 e 2015.

Do ano de 2004 ate 2015 foram observados 294.620 m² de progradação e 170.040 m² de erosão.

A partir das imagens aéreas de alta resolução, foi detectada uma tendência de linha de costa progradante e ou estável, havendo ao longo dos anos de observação, um saldo positivo sedimentar na praia de Cidreira (tabela 22). Esse acréscimo no pacote sedimentar corrobora com os dados de vento, que apontam um acréscimo dos ventos continentais provindos de N e NW, os

quais são responsáveis por trazer para a praia sedimento estocado no cordão de dunas transgressivas mais interiorizado assim como areia das dunas frontais adjacentes a linha de praia.

Intervalo	Erosão (m²)	Progradação (m ²)	Saldo sedimentar
2004-2009	1.805.650 m ²	589.560 m ²	negativo
2009-2012	27.190 m ²	500.750 m ²	positivo
2012-2015	14.164 m ²	2.157.771 m ²	positivo
2004-2015	170.040 m ²	294.620 m ²	positivo

Tabela 22 : Dados de erosão e progradação gerados no Multispec.

Outro fator que auxilia nessa progradação costeira são as correntes de deriva litorânea. Essas correntes tem grande potencial como transportadoras de sedimentos.

Estudos mostram que o transporte litorâneo é bidirecional, atuando tanto na direção SW-NE como na direção NE-SW. Porém, mesmo sendo menos frequentes, as correntes litorâneas de SW-NE possuem maior competência para transportar sedimento, devido à maior energia de ondas provenientes do quadrante sul; portanto, há um transporte líquido para NE (Tomazelli, 1990). Ainda segundo o autor pode-se afirmar também que essa bidirecionalidade tem componente sazonal, devido à variações dos parâmetros climáticos. Nos meses de Outubro à Março é marcante o predomínio de correntes para SW, e em Maio e Agosto esse domínio é para NE, sendo seu saldo líquido na direção NE. Segundo Toldo et. al (2005), as correntes litorâneas geradas pelas ondulações incidentes do quadrante S exibem comportamentos episódicos de elevada energia e são responsáveis por mais que 30% do transporte de sedimento. Outros autores como Tomazelli e Villwock (1992) afirmam que a deriva litorânea com direção resultante para NE é evidente em muitos dos depósitos costeiros presentes ao longo do litoral do Rio Grande do Sul, em particular nas desembocaduras dos sistemas lagunares.

Da Motta (2015) descreveu entre o período de 1998 e 2008 para a região de Cidreira, deriva litorânea resultante com sentido para NE para todos os anos, apontando que a região está recebendo grande aporte sedimentar provindo de SW por meio destas.

As correntes de deriva transportam para praia de Cidreira sedimentos vindos de praias adjacentes assim como remobilizam sedimentos do perfil subaquoso ou da antepraia. Toldo et al (2005) descreve que em função do grande volume de sedimentos transportados pela deriva litorânea com direção resultante para NE, ocorre um engarrafamento de parte desse volume junto às inflexões da linha de costa (Mostardas e Dunas Altas) podendo esta acumulação de areia ter se estendido ao longo do tempo para a antepraia de Cidreira.

Essa acumulação de areia torna-se uma importante fonte de sedimentos para o alargamento da praia e da antepraia assim como para uma tendência de variação de linha de costa progradante.

5.1.4) Ondas

Figura 40: Rosa de ondas representando altura de onda Hs(m), para todo período de estudo (2003-2014).

Figura 41: Rosa de ondas representando período de onda Tp(s), para todo período de estudo (2003-2014).

- Primavera

Figura 42: Rosa de ondas representando altura de onda Hs(m), para a primavera, período de estudo (2003-2014).

Figura 43: Rosa de ondas representando período de onda Tp(s), para a primavera, período de estudo (2003-2014).

Figura 44: Rosa de ondas representando altura de onda Hs(m), para o verão, período de estudo (2003-2014).

Figura 45: Rosa de ondas representando período de onda Tp(s), para o verão, período de estudo (2003-2014).

- Outono

Figura 46: Rosa de ondas representando altura de onda Hs(m), para o outono, período de estudo (2003-2014).

Figura 47: Rosa de ondas representando período de onda Tp(s), para o outono, período de estudo (2003-2014).

- Inverno

Figura 48: Rosa de ondas representando altura de onda Hs(m), para o inverno, período de estudo (2003-2014).

Figura 49: Rosa de ondas representando período de onda Tp(s), para o inverno, período de estudo (2003-2014).

																			Dir.
Hs	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.%	méd
0.0-0.5	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3	0.009	182
0.5-1.0	0	7	52	249	122	76	72	75	124	37	8	5	0	0	0	0	827	2.568	109
1.0-1.5	0	41	589	1527	901	712	461	530	960	262	44	12	10	18	2	2	6071	18.849	109
1.5-2.0	3	113	1090	1533	1135	1081	871	888	2004	563	132	70	22	14	5	3	9527	29.580	122
2.0-2.5	3	66	995	823	616	705	675	657	1998	631	123	56	6	10	2	5	7371	22.886	134
2.5-3.0	0	33	636	430	274	292	331	363	1438	521	102	52	6	2	3	3	4486	13.928	146
3.0-3.5	0	23	224	140	103	164	143	180	782	327	79	39	9	1	1	0	2215	6.877	159
3.5-4.0	0	0	48	40	47	60	66	78	406	169	51	17	4	0	0	0	986	3.061	171
4.0-4.5	0	0	6	19	24	29	16	41	162	80	19	8	0	0	0	0	404	1.254	173
4.5-5.0	0	0	1	0	6	16	9	20	67	43	9	8	0	0	0	0	179	0.556	179
5.0-5.5	0	0	1	0	0	7	7	3	23	13	8	1	0	0	0	0	63	0.196	179
5.5-6.0	0	0	0	0	1	6	1	0	2	1	0	0	0	0	0	0	11	0.034	130
6.0-6.5	0	0	0	0	0	2	3	0	3	0	0	0	0	0	0	0	8	0.025	146
6.5-7.0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0.003	133
7.0-7.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	NaN
Total	6	283	3642	4761	3229	3150	2656	2835	7972	2647	575	268	57	45	13	13	32152		
Porc.%	0.02	0.88	11.31	14.78	10.03	9.78	8.25	8.80	24.75	8.22	1.79	0.83	0.18	0.14	0.04	0.04			
Vel.méd	2.0	2.0	2.1	1.8	1.8	2.0	2.0	2.1	2.3	2.4	2.5	2.5	2.1	1.7	2.1	2.0			
Vel.máx	2.3	3.4	5.2	4.5	5.5	6.3	6.5	5.4	6.4	5.7	5.3	5.0	3.9	3.1	3.0	2.8			

Tabela 23: Representação da direção e altura das ondas para todo intervalo de estudo (2003-2014).

																			Dir.
Тр	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	total	Porc.%	méd
0.0- 2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
2.0- 4.0	0	9	3	0	0	0	0	2	2	3	5	2	0	0	0	0	26	0.081	149
4.0- 6.0	0	151	1006	314	95	45	35	58	113	184	204	99	10	1	0	0	2315	7.188	65
6.0- 8.0	0	112	2496	2935	1487	881	474	483	612	569	258	122	25	28	9	12	10503	32.610	86
8.0-10.0	6	10	124	1473	1504	1640	1083	1163	2351	807	80	19	15	15	4	1	10295	31.964	134
10.0-12.0	0	1	9	32	141	485	772	820	3176	905	24	22	7	1	0	0	6395	19.85	170
12.0-14.0	0	0	3	5	2	87	261	282	1367	162	4	4	0	0	0	0	2177	6.759	173
14.0-16.0	0	0	1	2	0	12	30	25	298	14	0	0	0	0	0	0	382	1.186	175
16.0-18.0	0	0	0	0	0	0	1	2	47	2	0	0	0	0	0	0	52	0.161	181
18.0-20.0	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	0	6	0.019	182
Total	6	283	3642	4761	3229	3150	2656	2835	7971	2647	575	268	57	45	13	13	2151		
Porc. %	0.02	0.88	11.31	14.78	10.03	9.78	8.25	8.80	24.75	8.22	1.79	0.83	0.18	0.14	0.04	0.04			
Vel.méd.	8.4	5.8	6.4	7.5	8.0	8.8	9.6	9.6	10.5	9.2	6.7	6.7	7.8	8.1	7.6	7.3			
										18.6									
Vel.máx.	8.6	10.6	14.8	14.7	13.7	14.8	16.5	16.5	18.8	1	3.9	12.4	11.5	11.0	8.1	8.6			

Tabela 24: Representação da direção e período das ondas para todo intervalo de estudo (2003-2014).

Hs	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc. %	Dir. méd
0.0-0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5-1.0	0	0	1	26	14	14	10	6	11	2	0	0	0	0	0	0	84	1.077	108
1.0-1.5	0	11	98	310	196	135	71	82	131	45	3	1	0	0	0	0	1083	13.886	102
1.5-2.0	0	22	325	531	363	285	232	201	408	112	21	6	2	0	0	0	2508	32.158	109
2.0-2.5	0	21	374	373	254	206	165	146	442	93	24	9	2	0	0	0	2109	27.042	111
2.5-3.0	0	9	249	193	74	93	97	100	288	117	18	10	0	0	0	0	1248	16.002	122
3.0-3.5	0	2	101	36	22	34	59	46	117	63	11	2	0	0	0	0	493	6.321	137
3.5-4.0	0	0	22	8	9	1	22	23	60	29	3	0	0	0	0	0	177	2.270	158
4.0-4.5	0	0	1	13	2	0	11	15	21	9	0	0	0	0	0	0	72	0.923	152
4.5-5.0	0	0	0	0	0	0	0	8	11	4	0	0	0	0	0	0	23	0.295	173
5.0-5.5	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2	0.026	185
5.5-6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
Total	0	65	1171	1490	934	768	667	627	1493	475	80	28	4	0	0	0	7802		
Porc.	0	0.83	15.01	19.11	11.98	9.85	8.55	8.04	19.14	6.09	1.83	0.36	0.05	0	0	0			
Vel. Méd	0	2.1	2.2	1.9	1.9	2.0	2.2	2.2	2.3	2.4	2.4	2.4	2.0	0	0	0			
Vel.max	0	3.3	4.1	4.4	4.1	3.5	4.2	4.7	6.4	5.0	3.6	3.1	2.5	0	0	0			

Tabela 25: Representação da direção e altura das ondas para todo intervalo de primavera (2003-2014).

																			Dir.
Тр	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.%	méd
0.0- 2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
2.0- 4.0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.013	53
4.0- 6.0	0	40	330	66	16	6	15	11	16	57	37	17	4	0	0	0	615	7.886	59
6.0- 8.0	0	25	804	848	348	195	121	137	187	140	38	11	0	0	0	0	2854	36.594	83
8.0-10.0	0	0	33	570	558	411	278	274	520	133	5	0	0	0	0	0	2782	35.671	121
10.0-12.0	0	0	2	4	11	152	198	145	559	128	0	0	0	0	0	0	1199	15.374	164
12.0-14.0	0	0	0	2	1	4	54	57	177	17	0	0	0	0	0	0	312	4.001	170
14.0-16.0	0	0	1	0	0	0	1	3	28	0	0	0	0	0	0	0	33	0.423	177
Total	0	65	1171	1490	934	768	668	629	1507	475	80	28	4	0	0	0	7819		
Porc. %	0	0.83	15.01	19.11	11.98	9.85	8.57	8.07	19.32	6.09	1.03	0.36	0	0	0	0			
Vel. Méd	0	5.6	6.4	7.7	8.2	8.8	9.4	9.3	10.1	8.6	6.2	5.7	5.1	0	0	0			
Vel.máx	0	6.6	14.8	12.9	13.5	12.8	16.5	16.5	17.7	13.8	9.2	7.3	5.7	0.0	0.0	0.0			

Tabela 26: Representação da direção e período das ondas para todo intervalo de primavera (2003-2014).

																			Dir.
Hs	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.%	méd
0.0-0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5-1.0	0	0	16	159	60	27	11	12	52	17	3	0	0	0	0	0	357	4.452	95
1.0-1.5	0	4	203	802	356	248	114	110	286	46	19	8	3	6	0	0	2205	27.497	96
1.5-2.0	0	12	319	520	399	368	248	229	542	132	22	13	5	7	0	0	2816	35.117	116
2.0-2.5	0	3	166	162	169	148	103	137	436	180	15	4	2	0	0	0	1525	19.017	139
2.5-3.0	0	1	31	68	69	49	23	61	242	99	9	0	0	0	0	0	652	8.131	153
3.0-3.5	0	0	7	28	45	32	18	21	80	45	3	0	0	0	0	0	279	3.479	145
3.5-4.0	0	0	0	6	19	12	9	6	26	15	0	0	0	0	0	0	93	1.160	146
4.0-4.5	0	0	0	4	12	0	1	4	8	0	0	0	0	0	0	0	29	0.362	119
4.5-5.0	0	0	0	0	5	0	0	2	0	0	0	0	0	0	0	0	7	0.087	113
5.0-5.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
Total	0	20	742	1749	1134	884	527	582	1672	534	71	25	10	13	0	0	7963		
Porc.%	0	0.25	9.25	21.81	14.14	11.02	6.57	7.26	20.85	6.66	0.89	0.31	0.12	0.16	0	0			
Vel.méd	0	1.7	1.7	1.5	1.8	1.8	1.8	1.9	2.0	2.2	1.9	1.7	1.7	1.4	0	0			
Vel.máx	0	2.6	3.4	4.5	4.8	3.7	4.0	4.6	4.5	3.8	3.1	2.2	2.0	1.8	0	0.0			

Tabela 27: Representação da direção e altura das ondas para todo intervalo de verão (2003-2014).

																			Dir.
Тр	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.%	méd
0.0- 2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	NaN
2.0- 4.0	0	0	0	0	0	0	0	0	2	1	3	2	0	0	0	0	8	0.100	213
4.0- 6.0	0	8	294	187	58	31	11	18	56	45	32	12	0	0	0	0	752	9.378	73
6.0- 8.0	0	4	430	1277	687	397	191	174	177	91	24	4	3	9	0	0	3468	43.247	89
8.0-10.0	0	8	16	278	331	391	227	241	559	142	5	0	3	4	0	0	2205	27.497	135
10.0- 12.0	0	0	2	7	58	65	82	116	627	196	7	7	4	0	0	0	1171	14.603	173
12.0- 14.0	0	0	0	0	0	0	13	33	214	54	0	0	0	0	0	0	314	3.916	181
14.0- 16.0	0	0	0	0	0	0	3	0	25	5	0	0	0	0	0	0	33	0.412	180
16.0-	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	11	01112	100
10.0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	11		
Total	0	20	742	1749	1134	884	527	582	1672	535	71	25	10	13	0	0	7964		
Porc. %	0	0.25	9.25	21.81	14 .14	11.02	6.57	7.26	20.85	6.67	0.89	0.31	0.12	0.16	0	0			
Vel. méd	0	6.6	6.1	7.1	7.6	8.1	8.6	8.8	10.0	9.6	6.3	6.9	9.2	7.8	0	0			
Vel.máx	0	8.6	10.3	10.2	11.9	11.8	15.6	13.2	18.6	18.6	10.9	11.7	10.9	9.7	0.0	0.0			

Tabela 28: Representação da direção e período das ondas para todo intervalo de verão (2003-2014).

																			Dir.
Hs	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc. %	méd
0.0-0.5	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3	0.037	182
0.5-1.0	0	7	14	28	33	19	28	54	43	13	5	5	0	0	0	0	249	3.071	134
1.0-1.5	0	19	126	180	219	216	161	179	359	102	14	3	7	9	2	2	1598	19.711	129
1.5-2.0	3	38	154	201	214	260	202	243	649	211	58	42	15	6	0	1	2297	28.334	145
2.0-2.5	3	18	102	76	103	191	242	172	548	167	31	22	2	5	0	0	1682	20.748	152
2.5-3.0	0	7	38	46	65	77	96	73	428	146	34	16	4	2	3	0	1035	12.767	165
3.0-3.5	0	1	14	39	22	62	29	49	278	78	31	10	3	1	1	0	618	7.623	169
3.5-4.0	0	0	3	13	18	23	29	24	163	55	24	5	2	0	0	0	359	4.428	174
4.0-4.5	0	0	1	1	10	14	3	9	69	31	6	1	0	0	0	0	145	1.789	175
4.5-5.0	0	0	1	0	1	13	3	7	27	20	5	2	0	0	0	0	79	0.974	176
5.0-5.5	0	0	1	0	0	5	4	2	7	6	3	0	0	0	0	0	28	0.345	169
5.5-6.0	0	0	0	0	1	6	1	0	0	0	0	0	0	0	0	0	8	0.099	113
6.0-6.5	0	0	0	0	0	2	3	0	0	0	0	0	0	0	0	0	5	0.062	123
6.5-7.0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0.012	133
7.0-7.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
Total	6	90	454	584	686	888	802	812	2574	829	211	106	33	23	6	3	8107		
Porc.%	0.07	1.11	5.60	7.20	8.46	10.95	9.89	10.02	31.75	10.23	2.60	1.31	0.41	0.28	0.07	0.04			
Vel.méd	2.0	1.8	1.8	1.8	1.8	2.1	2.1	2.0	2.3	2.4	2.6	2.3	2.0	1.7	2.2	1.4			
Vel.máx	2.3	3.4	5.2	4.2	5.5	6.3	6.5	5.4	5.5	5.3	5.3	5.0	3.8	3.1	3.0	1.7			

Tabela 29: Representação da direção e altura das ondas para todo intervalo de outono (2003-2014).

					_	505	05	005	6		0.14							5	Dir.
Тр	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	lotal	Porc.%	med
0.0- 2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
2.0- 4.0	0	9	1	0	0	0	0	0	0	1	1	0	0	0	0	0	12	0.148	27
4.0- 6.0	0	59	183	41	14	4	6	15	26	28	69	43	5	1	0	0	494	6.093	59
6.0- 8.0	0	21	248	370	304	165	62	111	136	169	95	35	13	10	2	2	1743	21.500	106
8.0-10.0	6	1	16	161	323	467	336	314	702	222	27	9	12	11	4	1	2612	32.219	145
10.0-12.0	0	0	5	10	45	169	254	248	1052	351	16	15	3	1	0	0	2169	26.755	171
12.0-14.0	0	0	1	1	0	71	123	108	514	47	3	4	0	0	0	0	872	10.756	169
14.0-16.0	0	0	0	1	0	12	21	16	129	8	0	0	0	0	0	0	187	2.307	172
16.0-18.0	0	0	0	0	0	0	0	0	13	2	0	0	0	0	0	0	15	0.185	183
18.0-20.0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2	0.025	190
Total	6	90	454	584	686	888	802	812	2573	829	211	106	33	23	6	3	8106		
Porc. %	0.07	1.11	5.60	7.20	8.46	10.95	9.89	10.02	31.74	10.23	2.60	1.31	0.41	0.28	0.07	0.04			
Vel. méd.	8.4	5.4	6.2	7.5	8.2	9.3	10.1	9.9	10.8	9.6	7.0	7.1	8.0	8.4	7.8	7.7			
Vel.máx.	8.6	9.9 1	3.2	14.7 1	0.7	14.8	15.4	15.6	18.6	18.6	2.4	12.4	11.5	11.0	8.1	8.6			

Tabela 30: Representação da direção e período das ondas para todo intervalo de outono (2003-2014).

Hs	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.%	Dir. méd
0.0-0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
0.5-1.0	0	0	21	36	15	16	23	3	18	5	0	0	0	0	0	0	137	1.654	102
1.0-1.5	0	7	162	235	130	113	115	159	184	69	8	0	0	3	0	0	1185	14.306	115
1.5-2.0	0	41	292	281	159	168	189	215	405	108	31	9	0	1	5	2	1906	23.011	122
2.0-2.5	0	24	353	212	90	160	165	202	572	191	53	21	0	5	2	5	2055	24.810	137
2.5-3.0	0	16	318	123	66	73	115	129	480	159	41	26	2	0	0	3	1551	18.725	142
3.0-3.5	0	20	102	37	14	36	37	64	307	141	34	27	6	0	0	0	825	9.960	168
3.5-4.0	0	0	23	13	1	24	6	25	157	70	24	12	2	0	0	0	357	4.310	180
4.0-4.5	0	0	4	1	0	15	1	13	64	40	13	7	0	0	0	0	158	1.908	185
4.5-5.0	0	0	0	0	0	3	6	3	29	19	4	6	0	0	0	0	70	0.845	189
5.0-5.5	0	0	0	0	0	2	3	1	15	6	5	1	0	0	0	0	33	0.398	185
5.5-6.0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	3	0.036	183
6.0-6.5	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3	0.036	186
6.5-7.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
Total	0	108	1275	938	475	610	660	814	2236	809	213	109	10	9	7	10	8283		
Porc.%	0	1.30	15.39	11.32	5.73	7.36	7.97	9.83	27.00	9.77	2.57	1.32	0.12	0.11	0.08	0.12			
Vel.méd	0	2.2	2.2	1.9	1.8	2.1	2.1	2.1	2.5	2.7	2.8	3.0	3.2	1.8	1.9	2.2			
Vel.máx	0	3.4	4.4	4.0	3.8	5.2	5.0	5.1	6.4	5.7	5.2	5.0	3.9	2.2	2.4	2.8			

Tabela 31: Representação da direção e altura das ondas para todo intervalo de inverno (2003-2014).

																			Dir.
Тр	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.%	méd
0.0- 2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0
2.0- 4.0	0	0	1	0	0	0	0	2	0	1	1	0	0	0	0	0	5	0.060	171
4.0- 6.0	0	44	199	20	7	4	3	14	15	54	66	27	1	0	0	0	454	5.481	61
6.0- 8.0	0	62	1014	440	148	124	100	61	112	169	101	72	9	9	7	10	2438	29.434	73
8.0-10.0	0	1	59	464	292	371	242	334	570	310	43	10	0	0	0	0	2696	32.549	137
10.0-12.0	0	1	0	11	27	99	238	311	938	230	1	0	0	0	0	0	1856	22.407	170
12.0-14.0	0	0	2	2	1	12	71	84	462	44	1	0	0	0	0	0	679	8.198	175
14.0-16.0	0	0	0	1	0	0	5	6	116	1	0	0	0	0	0	0	129	1.557	178
16.0-18.0	0	0	0	0	0	0	1	2	20	0	0	0	0	0	0	0	23	0.278	178
Total	0	108	1275	938	475	610	660	814 2	233	809	213	109	10	9	7	10	8280		
Porc. %	0	1.30	15.39	11.32	5.73	7.36	7.97	9.83	26.96	9.77	2.57	1.32	0.12	0.11	0.08	0.12			
Vel. méd.	0	6.2	6.7	8.0	8.5	8.9	9.9	10.0	10.9	9.0	6.8	6.5	6.6	7.6	7.5	7.2			
Vel.máx.	0.0	10.6	12.9	14.6	13.7	13.5	16.5	16.5	17.7	14.9	13.9	8.5	7.6	7.8	7.9	7.8			

Tabela 32: Representação da direção e período das ondas para todo intervalo de inverno (2003-2014).

Ao analisarmos 11 anos de dados (2003-2014) podemos concluir que, para Tramandaí há ocorrência tanto de ondas vagas (baixo período) quanto ondas de swell (grande período). As ondas de altura significativa mais frequente foram as de valores entre 1,5 m e 2,0 m. A direção de incidência predominante foi de S seguidas da direção ENE, e o período mais frequente entre 6s e 8s. Esses mesmos padrões já foram documentados por Wainer, 1963 e Strauch et al. 2009.

Os ventos dominantes para o período foram os de NE o que leva a inferir que nesse trecho específico as ondas não possuem a mesma direção de aproximação do vento na costa, visto que apenas 11,31% das ondas possuem esta direção.

Quanto as variações sazonais, as alturas de onda apresentaram diferenças entre inverno e verão, sendo que no verão as ondas possuem altura significativa média entre 1,5 m e 2,0 m enquanto que no inverno a altura significativa mais frequente esta entre 2,0 m e 2,5 m. Isso ocorre principalmente devido ao fato de que no inverno as tempestades e entradas de frentes frias provindas de sul são mais energéticas e frequentes do que no período de verão. Pelo fato de o inverno possuir maior incidência de frentes, este possui período de ondas entre 8s e 10s, enquanto que no verão o período mais frequente fica entre 6s e 8s.

Outra variação entre ambas as estações diz respeito à direção de incidência predominante, enquanto no verão a maior incidência é relacionada à direção ENE seguida de S, no inverno a direção mais frequente é de S seguida de NE.

Para o outono e primavera a altura significativa mais frequente foi a mesma, entre 1,5 m e 2,0 m. A direção mais frequente para ambas as estações é proveniente de S, porém na primavera as outras direções mais frequentes são ENE-NE-E, enquanto que no outono são ESE-SSW-SSE.

Essa variação na direção ocorre principalmente em decorrência de uma maior atuação das frentes frias provindas da Antártida no outono. Acompanhadas dessas frentes incidem ondas de maior período, sendo que no outono foram observadas os eventos mais energéticos com ondas de período entre 8s e 10s .Na primavera as ondas apresentaram período entre 6s-8s o que sugere um período menos energético com menor incidência de frentes polares.

As ondas de maior altura e período possuem elevado potencial erosivo,

já as ondas de elevado período e baixa altura são responsáveis por acumularem sedimentos na praia.

Ondas provindas do quadrante E geralmente estão associadas a progradação, enquanto ondas provindas do quadrante S possuem características mais erosivas.

Ao analisarmos todo o período de estudo, as ondas mais frequentes foram as oriundas de sul (24,75%) sendo a altura significativa mais observada entre 1,5m e 2,0m. A segunda direção mais frequente provem de ENE (14,78%) e a altura significativa mais observada está entre 1,5m e 2,0m.

No presente estudo foram analisados dados refrente a ondas em águas profundas, visto que a análise do processo de propagação de ondas para águas rasas para um período tão extenso (11 anos) se torna praticamente inviável. Mesmo avaliando as ondas em águas profundas podemos ter uma ideia geral da direção predominante e da intensidade das ondas incidentes.

Sabe-se que as ondas ao se aproximarem da costa e atingirem menores profundidades, ou seja, ao se aproximarem de águas rasas, sofrem transformações. Esses processos de transformação são o *shoaling* ou empolamento, refração, difração e dissipação e causam modificação na altura e velocidade orbital das ondas.

A refração, o *shoaling* e a difração conservam o fluxo de energia total, porém redistribuem – no com variações na altura das ondas, já na dissipação por fricção com o fundo a altura é reduzida.

Outra modificação das ondas diz respeito à convergência dos raios de onda ou divergência destes. Ao encontrar lentes batimétricas, pontais ou projeções costeiras, as ondas tendem a convergir seus raios, já em locais como embaiamentos as ondas tendem a divergir seus raios, sendo assim haverá mais energia de onda concentrada em pontais e menor energia de onda nos embaiamentos.

Em praias onde a batimetria da plataforma interna possui uma declividade suave e uniforme, como é o caso de Cidreira, as linhas de ondas tendem a aproximarem-se paralelamente a costa, devido a refração. Como ondulações de maior período possuem maior capacidade de refração, elas tendem a atingir a praia com uma direção perpendicular. Podemos usar como exemplo ondulações de sul de elevado período, que ao aproximarem-se da costa, aparentam vir da direção SE.

Outro fator importante com relação ao regime ondulatório é que ao incidirem na costa obliquamente juntamente com o movimento de *backwash*, as mesmas dão origem as correntes longitudinais, as quais são responsáveis por grande parte do transporte sedimentar local.

Como as ondas sofrem diversas transformações ao chegar em águas rasas, e a batimetria tem um papel fundamental, fica difícil prever qual efeito determinada ondulação terá na morfologia praial apenas com dados de onda.

Logo, deve ser levado em consideração, que para ter uma melhor ideia do que realmente está ocorrendo nesta região em relação ao transporte sedimentar causado por ondas, deve ser feito um estudo mais aprofundado com dados batimétricos de alta resolução, podendo assim, ser realizada uma modelagem numérica para estimar quais ondulações causam que tipo de processo. 5.1.5) Conclusão e considerações finais.

A partir da análise de dados de perfis praiais; direção e frequência de vento; altura direção e período de onda; imagens de satélite, conclui-se que há uma reversão na tendência de variação na linha de costa de Cidreira, ou seja, a linha de costa apresenta-se como estável/ progradante. É válido ressaltar que como os perfis praias são referentes à um período de um ano, eles somente mostram o comportamento do perfil ao longo desse período.

Essa reversão na tendência de linha de costa, erosiva para estável/ progradante, ocorreu principalmente em função de variações climáticas relativas ao regime eólico. Os dados de vento apresentaram variações quando comparadas aos padrões conhecidos, principalmente quanto à diminuição dos ventos de NE e aumento dos ventos de N (direção continental). O aumento na frequência dos ventos provindos do continente (NW SW N) faz com que haja maior aporte de sedimentos provenientes do extenso cordão de dunas transgressivas em direção à linha de costa.

A principal consequência da alteração do regime eólico quanto aos padrões conhecidos foi o aumento do pacote sedimentar vertical, tendo suporte esta afirmação nas fotografias digitais obtidas na região junto aos moradores e também durante o período de estudo. Esse acúmulo vertical pode ser observado principalmente junto as obras de engenharia, como o calçadão, onde pode-se observar aproximadamente 2 metros de acresção vertical. Também foi possível concluir que com o aumento dos ventos continentais a largura de praia se manteve estável e progradante como Calliari et. al. 2005 já havia descrito, ainda que com caráter especulativo.

As imagens de satélite processadas em programas de georreferenciamento apontam um saldo positivo sedimentar ao longo do período estudado (11 anos), corroborando com os indicativos visuais e fotografias digitais obtidas. O saldo sedimentar positivo pode ter relação com a alteração do regime eólico resultando em maior aporte sedimentar provindo do cordão de dunas transgressivas em direção à face praial, ou por engarrafamento da corrente de deriva litorânea na região de Dunas Altas e posterior deposição na região de Cidreira.

Os dados de onda obtidos em águas profundas apontam direção de incidência mais frequente provinda de S seguidas de ENE, altura significativa mais frequente 1,5 m e 2,0 m e período de onda mais frequente entre 6s e 8s.

Essa maior incidência de ondas de S contribui para uma deriva litorânea resultante para NE, como a documentada por Da Motta (2015). Ao analisarmos os dados de onda podemos concluir que é necessário um estudo aprofundado com dados batimétricos de alta resolução, podendo assim, ser realizada uma modelagem numérica para estimar quais ondulações causam que tipo de processo na costa (erosão ou progradação).

Os perfis topográficos apresentaram variações sazonais, os perfis mais erosivos coincidem com as passagens de frentes frias provindas da Antártida no inverno e outono, e os perfis mais progradantes são mais frequentes no final da primavera e durante o verão quando as passagens de frentes são reduzidas.

Todos os dados analisados dependem diretamente ou indiretamente do regime climático que atua em determinada região. Dessa maneira podemos ver a relação intrínseca entre variações da linha de costa e o clima.

Segundo relatório do IPCC (Intergovernmental Panel on Climate Change, 2014) as variações climáticas não são mais apenas uma ameaça e sim uma realidade. O relatório conclui que essas variações estão ocorrendo em diferentes escalas e regiões do planeta.

Avaliando-se as variações climáticas no Rio Grande do Sul nos últimos dez anos, podemos observar recordes históricos documentados pelo CPTEC (Centro de Previsão do Tempo e Estudos Climáticos), INPE (Instituto Nacional de Pesquisas Espaciais) e NOAA (National Oceanic and Atmospheric Administration), dentre eles estão a maior temperatura no estado em 71 anos, maior enchente desde 1967, o ano mais quente da história já registrado no planeta e no RS o inverno mais quente em 2014, em 2015 Porto Alegre registrou a temperatura máxima mais alta para o mês de agosto em 105 anos. Em 2016 foi registrado o mês de março mais quente em 137 anos e a menor temperatura mínima para o mês de abril desde 1967.

Todos essas mudanças documentadas sobre o clima reforçam o presente estudo, que confirma uma variação nos padrões de vento, evidenciando que as mudancas climáticas podem alterar significativamente as zonas costeiras e principlamente a dinâmica que rege as praias arenosas e a tendência de variação da linha de costa.

Ainda segundo o relatório do IPCC 2014, os riscos das mudanças climáticas são cada vez mais evidentes, embora essas alterações possam produzir resultados inesperados. No caso de Cidreira a alteração nos padroes dos ventos auxiliou na tendência à estabilidade e progradação da linha de costa porém em outras localidades, as mudanças nesses padrões podem resultar em diferentes respostas ambientais.

Uma linha de costa progradante ou estável não se torna um problema à nivel ambiental e social, visto que não há perda de terreno (visão econômica) ou de habitat (visão ambiental), mas é importante ressaltar que essas transformações podem gerar desequilibrios em outras regiões.

É importante ressaltarmos que a análise de escala temporal de variação da linha de costa foi estipulada para um período de dez anos, e que essa reversão na tendência pode ser apenas parte de um ciclo de maior escala, do qual muito pouco sabemos. Vários trabalhos que contam com dados de longo prazo têm verificado a existências de ciclos de erosão e progradação muito mais longos que imaginávamos (Dias 1985; Dillenburg et. al. 2005; Belém 2007; Nascimento 2008; Quadros 2012).

As variações da linha de costa podem ocorrer tanto em escala de horas como em escala de milênios, sendo difícil obter previsões do seu comportamento para um grande período de tempo visto que o clima do planeta apresenta-se altamente mutável.

Como sugestão para trabalhos futuros, indica-se que ocorra um monitoramento mais longo e frequente da linha de costa e dos padrões oceanográficos e meteorológicos associados, assim aprofunda-se o conhecimento da tendência de variação da linha de costa em diferentes escalas espaciais e temporais.

Também se sugere obtenção de dados de batimetria da parte subaquosa do perfil como ferramenta de auxílio para melhor compreensão dos processos de transporte sedimentar pelas ondas e correntes e também de como a costa responde a essa interação.

BIBLIOGRAFIA

ABREU, J. G. N.; CALLIARI, L. J. Paleocanais na plataforma continental interna do Rio Grande do Sul: evidências de uma drenagem fluvial pretérita. **Revista Brasileira de Geofísica**, v. 23, n. 2, p. 123-132, 2005.

ABSALONSEN, L.; TOLDO, E. E. A influência da inflexao costeira na variabilidade da linha de praia em Mostardas-RS.**Pesquisas em Geociências**. Vol. 34, n. 1 p. 3-18, 2007.

ALIOTTA, S.; SPAGNUOLO, J.; FARINATI, E. Geología del Cuaternario em Ambientes Costeros. Bahia Blanca, Universidad Nacional del Sur, Argentina. 1999.

ALVAREZ J.A.;GRÊ. J.C.R.;TOLDO JR. E.E. Estudos Oceanográficos e sedimentológicos Preliminares da Praia de Tramandaí-RS. In **Pesquisas n 15.** CECO/IG/UFRGS. Porto Alegre, RS.p 66-85, 1983.

ASSINE, M. L. et al. Arquitetura estratigráfica, tratos deposicionais e paleogeografia da Bacia do Paraná (Brasil) no Neo-Ordoviciano/Eo-Siluriano.**Revista Brasileira de Geociências**, v. 28, n. 1, p. 61-76, 1998.

BELÉM, A. L. Impactos das mudanças climáticas globais no risco de inundações em zonas costeiras. Jornadas Internacionales sobre Gestión del Riesgo de Inundaciones y Deslizamientos de Laderas, 2007.

BANCO INTERAMERICANO DEL DESARROLLO, (BID). Estratégia para el Manejo de lós Recursos Costeros y Marinos en America Latina y el Caribe. Barcelona, Espanha, 1998.

BENTZ, D. ; GIANNINI, P. C. F. Interpretação aerofotogeomorfológica da planície costeira de Una-Juréia, municípios de Peruíbe-Iguape, SP: Modelo evolutivo e origem da erosão na praia da Juréia. In: **9 Congresso da Associaçao Brasileira de Estudos do Quaternário**. Recife: ABEQUA, 2003.

BORGES, P. LAMEIRAS, G.; CALADO, H. A erosão costeira como factor condicionante da sustentabilidade. In: **150 Congresso da Associação Portuguesa de Desenvolvimento Regional**. p. 66-75. 2009

CALLIARI, L. J.; KLEIN, AH da F. Características morfodinâmicas e sedimentológicas das praias oceânicas entre Rio Grande e Chuí, RS.**Pesquisas**, v. 20, n. 1, p. 48-56, 1993.

CASAGRANDE A.I. Variações na linha de cota do Rio Grande do Sul: Uma atualização. Projeto de conclusão de curso. Universidade Federal do Rio Grande. 2014

DA MOTTA, L. M. et al. Sandy sediment budget of the midcoast of Rio Grande do Sul, Brazil. **Journal of Marine Research**, v. 73, n. 3-4, p. 49-69, 2015.

DE ALMEIDA TRAVESSAS, F; DILLENBURG, S. R.; CLEROT, L. C. P. Estratigrafia e evolução da barreira holocênica do Rio Grande do Sul no trecho Tramandaí-Cidreira. **Boletim Paranaense de Geociências**, v. 57, 2005.

DE OLIVEIRA, S. M. C. Evolução recente da linha de costa no troço costeiro Forte Novo–Garrão (Algarve). 2004.

DIAS, JM ALVEIRINHO. Registos da migração da linha de costa nos últimos 18 000 anos na plataforma continental portuguesa setentrional. **Actas da I Reunião do Quaternário Ibérico**, v. 1, p. 281-195, 1985.

DILLENBURG, S. R. et al. Modificações de longo período da linha de costa das barreiras costeiras do Rio Grande do Sul. **Gravel**, v. 3, n. 1, p. 4-9, 2005.

DOLAN R.; HAYDEN, B.; HEYWOOD, J.. A new photogrammetric method for determining shoreline erosion. Coastal Engineering, 2: 21-39. Elsevier Scientific Publishing Company, Holanda. 1978.

DOMINGUEZ, J, M. L., Tendências de Erosão Costeira nos Estados da Bahia e Sergipe. In: **Anais IX Congresso da ABEQUA**. 2003.

Erosão e progradação do litoral brasileiro. Brasília DF: Ministério do Meio Ambiente, 2006.

ESTEVES, L.S., PIVEL, M. A. G., SILVA, A.R.P., BARLETTA, R.C., VRANJAC, M. P., OLIVEIRA, U. R. & VANZ, A. Beachfront Owners Perception of Beach Erosion along an Armored Shoreline in Southern Brazil. **Pesquisas em Geociências**, 27(2): 93-109. 2000.

ESTEVES, L. S. et al. Long-and shortterm coastal erosion in southern Brazil. **Journal of Coastal Research**, v. 36, p. 273-282, 2002.

FANNING, A. L. Towards valuing climate change impacts on the ecosystem services of a Uruguayan coastal lagoon. In: **International Perspectives on Climate Change**. Springer International Publishing, p. 61-77, 2014.

GORMAN, L; MORANG, A; LARSON, R. Monitoring the coastal environment; part IV: mapping, shoreline changes, and bathymetric analysis. **Journal of Coastal Research**, p. 61-92, 1998.

GRUBER N.L.S. A Antepraia na Região de Tramandaí-RS. Intituto de Geociencias/UFRGS. Porto Alegre, RS. Tese de doutorado. 221p, 2002.

IBGE. Cidades@. Avaliable from: http://www. ibge. gov. br/cidadesat/topwindow. htm, v. 1, 2010.

KLEIN, A. H. F. & MENEZES, J. T. Beach morphodynamics and profile sequence for a headland bay coast. Journal of Coastal Research 17(4): 812-835. 2001.

KRUEGER, C. P.; SOARES C.R.; PRADO, A. Monitoramento do Recuo e da Progradação da Linha de Costa Utilizando o Sistema de Posicionamento Global (GPS) In: COBRAC 98- Congresso Brasileiro de Cadastro Técnico Multifinalitário-UFSC,1998.

LÉLIS, R. J. F. Variabilidade da linha de costa oceânica adjacente às principais desembocaduras do Rio Grande do Sul. **Trabalho de Conclusão, FURG, Rio Grande, 117p**, 2003.

MAOTDR, C.C. Plano Regional de Ordenamento do Território PROT Algarve, Vol I Plano, 2007.

MARTINHO, C T. Morfodinâmica e evolução de campos de dunas transgressivos quaternários do litoral do Rio Grande do Sul, 2008.

MARTINS, L. R. Aspectos texturais e deposicionais dos sedimentos praiais e eólicos da planíce costeira do Rio Grande do Sul. Escola de Geologia, Universidade do Rio Grande do Sul, 1967.

MORTON, R. A. et al. Monitoring beach changes using GPS surveying techniques. **Journal of Coastal Research**, p. 702-720, 1993.

MUEHE, D. Geomorfologia Costeira. In: Geomorfologia, uma Atualização de Bases e Conceitos. Ed. Bertrand Brasil. Rio de Janeiro, Brasil. 472 p. 1995.

NASCIMENTO J.R. Mudanças morfológicas da extremidade NE da Ilha Comprida (SP) nos últimos dois séculos. **Geologia USP. Série Científica**, v. 8, n. 1, p. 25-39, 2008.

NICOLODI, J. L. Os Impactos produzidos pelas Ressacas no Balneário de Cidreira, Litoral Norte do Rio Grande do Sul. **Trabalho de Graduação do curso de Geografia. UFRGS. Porto Alegre**, 1999.

NIEMER, E. Climatologia da região sudeste do Brasil. **Rev. Bras. Geogr**, v. 34, p. 3-48, 1977.

NIEDORODA, A. W. et al. Shoreface morphodynamics on wave-dominated coasts. **Marine Geology**, v. 60, n. 1, p. 331-354, 1984.

OLIVEIRA, M. B., CALLIARI, L.J.. Evolução de depósitos lamíticos em uma praia arenosa oceânica aberta - Cassino (RS). Universidade do Vale do Itajaí. Centro de Ciências Tecnológicas da Terra e do Mar. **Anais do Simpósio Brasileiro sobre praias arenosas: morfodinâmica, ecologia, usos, riscos e gestão.** p 148-151, 2000.

OLIVEIRA L. C; . Os processos de erosão e preogradação no município de Ilha Comprida-SP. **Revista Geonorte**, v. 3, n. 4, p. 902-915, 2016.

OLIVEIRA, S. M. C. **Evolução recente da linha de costa no Troço Costeiro Forte Novo–Garrão (Algarve). 137p**. Tese de Doutorado. Dissertação de Mestrado, Universidade de Lisboa, Lisboa, Portugal. Disponível em http://enggeografica. fc. ul. pt/documentos/tese_sergio_oliveira. 2005.

PEREIRA, P. S; CALIARI, L. J. Variação morfodinâmica diária da Praia do Cassino, RS, durante os verões de 2002/2003 no setor do terminal turístico. **Brazilian Journal of Aquatic Science and Technology**, v. 9, n. 1, p. 7-11, 2005.

PEREIRA, C; COELHO, C. Mapas de Risco das Zonas Costeiras por Efeito da Ação Energética do Mar. **Revista de Gestão Costeira Integrada**, v. 13, n. 1, p. 27-43, 2013

POMERANCBLUM, M.; COSTA, M. P. A. Integração de Informações sobre Minerais Pesados da Plataforma Continental Brasileira. **Cong. Bras. Geol**, v. 26, 1972.

QUADROS, M. A. R. et al. Avaliação multitemporal do comportamento da linha de costa no litoral entre Carapebus e Quissamã, RJ–Aplicações com geotecnologias e radar de penetração de solo (GPR). Anais do 9º SINAGEO-Simpósio Nacional de Geomorfologia, 2012.

RODRÍGUEZ, J. J.; WINDEVOXHEL, N. J. Análisis regional de la situación de la zona marina costera centroamericana. Inter-American Development Bank, 1998.

SMITH, M.J. & CROMLEY, R.G.. Measuring historical coastal change using GIS and the change polygon approach. Transactions in GIS, 16 (1): 3-15, 2012.

STRAHLER, A.N.; STRAHLER, A.H. Geografía Física. Ed. Omega. Barcelona, Espanha. 515 p. 1994

STRAUCH, J. C., CUCHIARA, D. C., TOLDO Jr, E. E., ALMEIDA, L. E. S. B. O Padrão das Ondas de Verão e Outono no Litoral Sul e Norte do Rio Grande do Sul. Revista Brasileira de Recursos Hídricos 14 (4): 29-37, 2009.

STROHAECKER, T. M. A urbanização no Litoral Norte do Estado do Rio Grande do Sul: contribuição para a gestão urbana ambiental do Município de Capão da Canoa. 2007.

STROHAECKER, T.M. Trajetória do planejamento territorial no Litoral Norte do Rio Grande do Sul. Boletim Geográfico do Rio Grande do Sul, Porto Alegre, n. 27, p. 68-93, mar. 2016SUGUIO, Kenitiro et al. Paleoníveis do mar e paleolinhas de costa. **Quaternário do Brasil**, p. 114-129, 2016.

SUGUIO, K. et al. Paleoníveis do mar e paleolinhas de costa. **Quaternário do Brasil**, p. 114-129, 2005.

SUNAMURA, T. Beach morphologies and their change. In: Horikawa, K. (Ed.). **Nearshore Dynamics and Coastal Processes.** [S.1.]: University of Tokyo Press, p. 133-166, 1988.

TABAJARA, L. L. et al. Controle morfodinâmico na formação das dunas frontais e transgressivas no Litoral Norte do Rio Grande do Sul. In: **X Congresso da Abequa, Guarapari (ES)**. p. 100, 2005.

THERRA. I. Cidreira, historia, cotidiano, cultura e sentimento. Cidreira, RS Casa de Cultura do Litoral. 150p, 2007.

THIELER, E. R. et al. **The Digital Shoreline Analysis System(DSAS) Version 4. 0- An ArcGIS Extension for Calculating Shoreline Change**. U. S. Geological Survey, 2009.

TOLDO Jr, E.E.; ALMEIDA, L.E.S.; BARROS, C. & MARTINS, L.R. Retreat of the Rio Grande do Sul coastal zone, Brazil. In: Martins, L.R. and Santana, C.I. (eds.). Non Living Resources of the Southern Brazilian Coastal Zone and Continental Margin. Porto Alegre, RS., Brazil: Editora CECO-IG-UFRGS, pp. 62-68, 1999.

TOLDO JR, E. E.; ALMEIDA, L. E. S. B. A linha d'água como indicadora da posição da linha de praia. In: **Congresso da associação brasileira de estudos do quaternário**, 2003.

TOLDO Jr, E. E., ALMEIDA, L. E. S. B., NICOLODI, J. L., & MARTINS, L. R. Retração e progradação da zona costeira do Estado do Rio Grande do Sul. **Gravel,** 3, 31-38, 2005.

TOMAZELLI, L. J. Contribuição ao estudo dos sistemas deposicionais holocênicos do nordeste da província costeira do Rio Grande do Sul, com ênfase no sistema eólico. Instituto de Geociências, Universidade Federal do Rio Grande do Sul. Tese de Doutorado. Porto Alegre. 270p.(Inédito), 1990.

TOMAZELLI, L. J.; VILLWOCK, J. A. Considerações sobre o ambiente praial e a deriva litorânea de sedimentos ao longo do litoral norte do Rio Grande do Sul, Brasil. **Pesquisas**, v. 19, n. 1, p. 3-12, 1992.

TOMAZELLI, L.J. O regime dos ventos e a taxa de migração das dunas eólicas costeiras do Rio Grande do Sul, Brasil. **Pesquisas em Geociências**, v. 20, n. 1, p. 18-26, 1993.

TOMAZELLI, L.J.; VILLWOCK, J.A.; DILLENBURG, S.R.; BACHI, F.A. & DEHNHARDT, B.A. Significance of present-day coastal erosion and marine transgression, Rio Grande do Sul, southern Brazil. **Anais da Academia Brasileira de Ciências**, 70(2):221-229. 1998

TRAVESSAS, F. A. Estratigrafia e evolução no Holoceno Superior da barreira costeira entre Tramandaí e Cidreira (RS). **Porto Alegre. 38p. Dissertação de**

Mestrado em Geociências, Instutito de Geociências, Universidade Federal do Rio Grande do Sul, 2003.

VELOSO GOMES, F.; TAVEIRA PINTO, F. A opção protecção para a costa oeste portuguesa. **Colectânea de ideias sobre a zona costeira de Portugal**, p. 163-190, 1997.

VILLWOCK, J. A.; TOMAZELLI, L. J. Geologia costeira do Rio grande do Sul. **Notas técnicas**, v. 8, p. 1-45, 1995.

WAINER, I. J. Technical Report. Análise e Previsão das Alturas de Onda em Tramandaí. Federal University of Rio Grande do Sul, Porto Alegre. 30 p, 1963.

WESCHENFELDER, J. et al. Caracterização morfológica das praias oceânicas entre Imbé e Arroio do Sal, RS. **Notas Técnicas**, v. 10, p. 35-48, 1997.

WRIGHT, L. D. & SHORT, A. D. Morphodynamics variability of surf zones and beaches: a synthesis. **Marine Geology**, (56):93-118, 1984.